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Abstract
Introduction: Alzheimer’s disease (AD) is a progressive
neurological disorder characterized by mild memory loss
and ranks as a leading cause of mortality in the USA, ac-
counting for approximately 120,000 deaths per year. It is also
the primary form of dementia. Early detection is critical for
timely intervention as the neurodegenerative process often
starts 15–20 years before cognitive symptoms manifest. This
study focuses on determining feature importance in AD
classification using fused texture features from 3D magnetic
resonance imaging hippocampal and entorhinal cortex and
standardized uptake value ratio (SUVR) derived from posi-
tron emission tomography (PET) images. Methods: To

achieve this objective, we employed four distinct classifiers
(Linear Support Vector Classification, Linear Discriminant
Analysis, Logistic Regression, and Logistic Regression Clas-
sifier with Stochastic Gradient Descent Learning). These
classifiers were used to derive both average and top-ranked
importance scores for each feature based on their outputs.
Our framework is designed to distinguish between two
classes, AD-negative (or mild cognitive impairment stable
[MCIs]) and AD-positive (or MCI conversion [MCIc]), using a
probabilistic neural network classifier and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. Results:
The findings from the feature importance highlight the
crucial role of the GLCM texture features extracted from the
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hippocampus and entorhinal cortex, demonstrating their
superior performance compared to the volume and SUVR.
GLCM texture AD classification achieved approximately 90%
sensitivity in identifying MCIc cases while maintaining low
false positives (below 30%) when fused with other features.
Moreover, the receiver operating characteristic curves vali-
date the GLCMs’ superior performance in distinguishing
between MCIs and MCIc. Additionally, fusing different types
of features improved classification performance compared
to relying solely on any single feature category. Conclusion:
Our study emphasizes the pivotal role of GLCM texture
features in early Alzheimer’s detection.

© 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Alzheimer’s disease (AD) is a progressive degenerative
neurological condition that causes damage to the brain
[1]. Its clinical onset is marked by mild memory lapses
and mild cognitive impairments (MCI) resulting from
focal damage to the hippocampal and entorhinal cortical
areas [1]. With progression, severe memory loss arises,
and other cortical areas become compromised, resulting
in non-cognitive symptoms [1]. Currently, no clinical or
surgical interventions are available to reverse its effects,
but a pressing need exists to improve its early diagnosis.
An early diagnosis becomes crucial for the initiation of
early-on personalized care and, thus, improvement in
quality of life as AD progresses [2, 3]. With the constant
improvement in image quality and clinical procedures,
imaging has become a suitable non-invasive tool for the
early diagnosis of degenerative processes, especially when
knowledge extracted from multiple modalities can be
combined in the fused model for enhanced feature
classification.

Previous studies have investigated the potential and
benefits of combining multiple modalities for the early
detection of AD. For example, Wang et al. [4] used the
partial least squares (PLS) method to distinguish be-
tween people with MCI who will develop AD and those
who will not, using a variety of imaging techniques,
including magnetic resonance imaging (MRI), 18F-
fluorodeoxyglucose positron emission tomography
(FDG-PET), and 18F-florbetapir-PET. Two PLS models
were used: informed and agnostic. The informed PLS
model that used all three modalities had better classi-
fication accuracy, sensitivity, and specificity than the
single-modality model. Similarly, Zhang et al. [5] used a
multimodal approach that combined MRI, functional

(fMRI), and PET features to classify AD, MCI, and
healthy controls. Gupta et al. [6] also concentrated on
fusing data from structural, diffusion, and functional
neuroimaging with multimodal properties derived from
APOE genotype information to increase the accuracy
and knowledge of AD.

This study focused on using two imaging modalities:
MRI and PET. Our rationale is based on the premise that
feature extraction from multiple modalities can enhance
the ability to capture subtle abnormalities in the neural
substrate caused by the degenerative process and increase
the reliability of the diagnosis at the onset and in its early
stages. Here, we focused on MRI and PET images cap-
tured from the hippocampus and entorhinal cortices of
patients diagnosed with MCI. Our choice for these
modalities is based on the fact that both MRI and PET are
currently used independently to track changes in cortical
substrate and to diagnose AD. These modalities can
clearly distinguish between different soft tissues, have
non-invasive qualities, and have detailed imagery [7, 8].
MRI images can be taken from three main directions:
sagittal, coronal, and axial views. Coronal views of the
structural MRI images can be segmented to assess the
differences between MCIs resulting from either AD or
other pathologies.

Recently, the field of biomarkers in AD has witnessed a
transformative shift toward digital biomarkers [9]. AD
biomarkers are derived from various sources, such as the
traditional sources of measurements taken from cere-
brospinal fluid (CSF) analysis and neuroimaging tech-
niques taken from various imaging modalities. However,
digital biomarkers, such as speech characteristics, offer
non-invasive monitoring and detection of AD. Digital
biomarkers have the potential for continual, non-invasive
monitoring, potentially enabling early detection and
longitudinal tracking of cognitive decline [10]. While we
focus on using measurements taken from imaging mo-
dalities due to the wealth of the available datasets and
their high accuracy, we do so without overshadowing the
emerging importance of recent digital biomarkers. We
believe that integrating both has the potential to present
an exhaustive model of AD progression, overcome single
biomarker limitations, and allow for early detection,
intervention, and personalized prognosis.

Our focus on the hippocampus and entorhinal cortex
regions is based on the premise that these brain regions are
often among the first to show signs of degenerative damage
[11, 12]. The hippocampus and entorhinal cortex have
fusion features that can be exploited to identify AD early
warning symptoms. BrainMRI scans can be used to extract
these features. For instance, the hippocampus and
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entorhinal cortex can be used to extract structural features
from MRIs like volume and 2D-GLCM [13–16]. In ad-
dition, these techniques can be used to recognize the
presence of higher-than-normal concentrations of
amyloid-β (Aβ) peptide and Tau [17]. The accumulation of
Aβ and Tau-PET (Aβ and Tau-PET) is now recognized to
be significantly higher in MCI patients who developed AD
within 2 years compared to those who did not [18].
Therefore, the purpose of this study is to assess the sig-
nificance and contributions of various features in the early
prediction of AD. This involves using fused texture fea-
tures extracted from 3DMRI images of the hippocampal
and entorhinal cortex, along with the standardized uptake
value ratio (SUVR) derived from PET images. The veri-
fication of the feature importance analysis findings is
accomplished using the probabilistic neural network
(PNN) classifier within this research by differentiating
between two primary classes: (1) individuals with stable
MCI (MCIs AD-negative) and (2) those progressing to AD
(MCIc AD-positive). This exploration not only emphasizes
the importance of specific brain regions but also under-
scores the significance of texture-based features in the early
detection of AD and its progression.

Methodology
To achieve our goals, we developed a framework that

calculates feature importance using fused texture features
to optimize classification accuracy. The proposed

framework has four main processes: segmentation, fea-
ture extraction and fusion, feature selection, and classi-
fication. These processes are shown in the system process
block diagram in Figure 1 (shown in Fig. 1).

Segmentation of Alzheimer’s Disease Neuroimaging
Initiative Dataset

Data Acquisition –Alzheimer’s Disease Neuroimaging
Initiative Dataset
For the success of our project, data from theAlzheimer’s

Disease Neuroimaging Initiative (ADNI) database were
used (www.loni.ucla.edu/ADNI). The ADNI was estab-
lished in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioen-
gineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-profit
organizations. The main objective of the ADNI has been to
determine whether serial MRI, PET, other biological
markers, clinical evaluation, and neuropsychological
testingmay be integrated to track the evolution ofMCI and
lead to early AD detection [19].

This study involved randomly downloading the
coronal MRIs of 137 participants from the ADNI da-
tabase and categorizing them into two groups: MCIc and
MCIs. The number of MRIs for each group is roughly
the same, so the results of the analysis are not biased.

Fig. 1. System process block diagram. It shows the four main processes of the proposed framework: segmentation,
feature extraction and fusion, feature selection, and stage prediction.
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Achieving a balance in the dataset resulted in a more
accurate depiction of the variations between the groups
and the robustness of the results by avoiding
sampling bias.

FMRIB Software Library for Hippocampus and
Entorhinal Cortex Segmentation
FMRIB Software Library – FMRIB’s Integrated

Registration and Segmentation Tool (FSL-FIRST) is
one of the most frequently used segmentation tech-
niques and is widely used in the neuroimaging research
community [20]. It is a tool that is automated to use
flexible models to divide brain images into different
segments. It was developed by the FMRIB group at
Oxford University and uses a Bayesian approach to
segment and register subcortical brain structures using
shape and appearance models. Thus, it is a part of the
FSL, which is a collection of image analysis tools
specifically designed for fMRI data. It can segment
several brain components, including gray matter, white
matter, and CSF (as shown in Fig. 2), and it reliably
aligns brain images using a mix of intensity-based and
surface-based registration techniques [20].

The CSF surrounds the brain and spinal cord, pro-
viding essential nourishment and acting as a protective
cushion [22]. The white matter consists of bundles of
nerve fibers that facilitate communication between
different brain regions [23], while the gray matter en-
compasses the cell bodies of neurons and serves as the
primary site for information processing and integration
[24]. As the hippocampus and entorhinal cortex are two
of the brain regions that are most severely affected by the
disease and are often among the first to show signs of
damage [11, 12], the software FSL-FIRST was used to
identify and segment them from the MRI images (shown
in Fig. 2).

MRI images can be taken from three main directions:
sagittal, coronal, and axial views. Coronal views of the
structural MRI images were segmented to assess the

differences between MCIs (AD−ve) and MCIc (AD+ve).
As on coronal views, the hippocampus and entorhinal
cortex can be easily identified [21, 22]. The differences
are visible betweenMCIs (−ve AD), MCIc (+ve AD), and
AD, on a coronal view, with our region of interests
pointed by arrows, as shown in Figure 3 (shown in
Fig. 3).

The process of segmenting the hippocampus and
entorhinal cortex into distinct regions involves several
steps. These steps include preparing the data, using FSL’s
segmentation tools to identify the structures, and creating
masks to isolate them, detailed in the following
instructions:
a. Brain Extraction Tool (BET) is used to extract the

brain from the skull-stripped T1-weighted images. In
other words, it was used to remove non-brain tissue
and improve image quality [23, 24].

b. Standard brain: T1 images must be aligned with a
standard brain. Stand-alone registration can be carried
out by first using linear registration, FMRIB’s Linear
Image Registration Tool (FLIRT), and then non-linear
registration (FNIRT). To align structural images with
a standard, FLIRT can be used to register the MRI T1-
weighted images to a common space and thus create a
template of the hippocampus and entorhinal cortex,
aligning the MRI T1 images with the standard space
(MNI152_T1_2 mm) [23, 24].

c. Atlas-based segmentation: the template and atlases
(Harvard-Oxford subcortical structural atlas and
Juelich Histological Atlas) were used to segment the
hippocampus and entorhinal cortex in each individual
aligned T1-weighted image [23, 24].

d. Mask creation: binary masks for the hippocampus and
entorhinal cortex were created using the segmentation
results [23, 24].

e. Visual inspection: FSL’s visualization tool (FSLeyes)
was used to inspect the segmentation results and check
if the segments are consistent with the underlying
anatomy [23, 24].

Fig. 2. Segment of the brain highlighting
several regions of interest including CSF
and white and gray matters.
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f. Orientation check: this was done by loading the left
and right hippocampus and entorhinal cortex masks
and checking their orientation with the orientation of
each MRI scan. If the orientations were not the same,
the masks were transformed to match the orientation
of the MRI scan. The MRI data were then extracted
based on the mask, resulting in a Neuroimaging In-
formatics Technology Initiative (NIFTI) image con-
taining only the regions of interest (ROIs).

Feature Extraction

In this study, texture features (2D-GLCM and volume)
were extracted from the hippocampus and entorhinal
cortex in ADNI MRIs due to their significance in diag-
nosis [25–28]. Additionally, since the buildup of Aβ and
Tau can serve as a biomarker for the early diagnosis of AD
[18, 29], the accumulation of proteins Aβ and Tau ab-
normalities was measured using the SUVR from the
extracted hippocampus and entorhinal cortex.

Hippocampal and Entorhinal Cortex 2D-GLCM
Texture Features
Textural feature extraction is achieved using 2D-

GLCM. GLCM provides a relative assessment of the
characteristics of two or more pixel values that occur at a
particular point. Each element of the matrix Pij represents
the number of times the pair of adjoining pixels with pixel
values i and j occur in the image. A case of a 2D image is
computed using a displacement vector d and orientation
θ. Construction of GLCM is determined by the radius,
angle, and quantized gray levels. Changing these pa-
rameters has a significant influence on the computation
of GLCM and classification.

Radius Choice
The radius (offset) in GLCM refers to the distance in

various directions between the pixel under consider-
ation and the adjoining pixel and is normally between 1
and 10, but it may be greater depending on the image
being processed. Smaller radii are frequently preferred
because the probability of identifying two pixels with
comparable gray levels improves when pixels are closer
together, thus decreasing the distance yields better
results than increasing the distance [30]. In the context
of this research, we chose a smaller radius, denoted by
d = 1, 3, 5. This option allows us to detect differences in
intensity between pixels that may indicate the presence
of pathological disorders.

Angle Choice
Different angles can provide different GLCMs. As

shown in Figure 4, each pixel of interest has eight
neighboring pixels, so we can have 8 GLCMs with each
neighbor; however, choosing 0 and 180 provides identical
GLCMs based on the GLCM definition. So, for a 2D
image, there will be four GLCM captured at angles of 0,
45, 90, and 135 degrees [30] (shown in Fig. 4).

Gray-Level Choice
The number of gray levels determines the size of

GLCM. For example, if we examine 256 gray levels, the
final GLCMwill be 256 × 256 = 65,536 in size. If the image
contains multiple gray levels, using a higher gray level for
GLCM calculation will improve classification accuracy.
Using all the matrix entries in the feature vector will
considerably expand its length. This number can be re-
duced by extracting some matrix properties such as
dissimilarity, correlation, homogeneity, contrast, and
angular second moment (ASM) [30].

Fig. 3.Differences betweenMCIs (−ve AD),
MCIc (+ve AD), and AD [27]. MCIs is the
class of patients who have stable MCI and
will not convert into AD in the future,
MCIc is the class of those patients who will
convert from MCI to AD diagnosis
(i.e., positive prediction), and finally, AD
patients.
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Finding the 2D-GLCM matrix for each 3D hippo-
campus and entorhinal cortex required the following
processes to take place:
a. Calculating the GLCM matrix: for each 2D slice,

calculate the GLCM using a combination of offsets d ∈
{1, 3, 5} and orientations θ ∈ {0°, 45°, 90°, 135°}. This
gives a 2D-GLCM matrix for each slice. It should be
observed that {180°, 225°, and 270°} were left out to
prevent repetition.

b. Combining the GLCM matrices: create a single 2D-
GLCM matrix for the entire hippocampus and en-
torhinal cortex by combining the 2D-GLCM matrices
for all slices of each ROI along each of the three
orthogonal axes.

c. Analyzing the GLCM matrix: use statistical measures
such as homogeneity, contrast, and correlation to an-
alyze the texture features of the hippocampus and
entorhinal cortex and extract relevant information
based on the outright inconsistencies between couples
of gray levels or mean 2D-GLCM levels. Gray-level
values represent the brightness or intensity levels of
pixels in an image [31, 32].
The following textural details are among the textural

characteristics of interest [31, 32]. We define key variables
as follows: N is the number of gray levels in the ROI, and
N × N is the size of the normalized 2D-GLCM. Pij is the
number of occurrences of gray levels iandj given a certain
(d,θ) pair, µ is the mean, and σ is the standard deviation
within the ROI.

A. Contrast. The contrast value measures the spatial
variations or differences in pixel intensity within an ROI
and is computed using Equation 1:

CON � ∑
N−1

i,j�0
Pij i − j( )2 (1)

B. Dissimilarity. It is used to assess the degree of di-
vergence between two ROIs and is defined by Equation 2.

DISS � ∑
N−1

i,j�0
Pij i − j

∣∣∣∣
∣∣∣∣ (2)

C. Homogeneity. Homogeneity or inverse difference
moment (IDM) is a measure of uniformity of the dis-
tribution of gray levels in the ROI around the diagonal,
and is defined by Equation 3:

HOM � ∑
N−1

i�0
∑
N−1

j�0

Pij

1 + i − j( )2
(3)

D. Correlation. The correlation feature calculates the
linear dependence between a pixel and its neighbor
throughout the entire ROI using Equation 4:

Corr � ∑
N−1

i�0
∑
N−1

j�0
Pij( )[ i − µi( ) j − µj( )

σi( ) σj( )
] (4)

where σi and σj are the standard deviations of the rows
and columns of the GLCM, respectively.

E. ASM. It provides the GLCM’s element squared sum,
which is a measure of uniformity, and can be calculated
using Equation 5:

ASM � ∑
N−1

i�0
∑
N−1

j�0
Pij( )2 (5)

Feature Engineering: Creating a Single Texture
Feature Using Histogram Techniques
Feature engineering is a critical step that aims to extract

and create meaningful representations of the original fea-
tures for machine learning tasks [33]. In this section, we
demonstrated the histograms to extract a single feature from
the entorhinal cortex and hippocampus texture features for
classifying cognitive impairment. The histogram approach
involves creating histograms for GLCM features to capture
value distributions. Introducing histogram bins or counts as
a new feature provides insights into the prevalence and
strength of texture patterns. It is appropriate for situations in
which the statistical distribution of GLCM features and the
significance of texture pattern frequency or intensity are
important, such as image classification tasks where texture
patterns are discriminative variables [34]. As the distribu-
tion of values of the GLCM features is critical for our
purpose andwewant to capture the occurrence and strength

Fig. 4. Values of θ between the center pixel and its eight neigh-
boring pixels [36].
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of the texture patterns, the histogram is selected as the most
effective for creating a new single texture feature from the
major texture features.

Figure 5 illustrates the creation of individual histograms
for each single feature extracted from both the entorhinal
cortex and the hippocampus. These histograms are then
concatenated, resulting in a single, comprehensive histo-
gram feature for each region. By focusing on the distri-
bution of values in the GLCM features and capturing the
occurrence and strength of texture patterns, the histogram
approach effectively generates a single texture feature that
encapsulates the most relevant information from the
original features (shown in Fig. 5).

Hippocampal and Entorhinal Cortex Volume
Extraction
Several studies have shown that measuring the

hippocampus and entorhinal cortex size is a useful
method for identifying and monitoring a variety of

brain disorders, including AD [13, 35–38]. Hence,
using Equations 6 and 7, the total hippocampus and
entorhinal cortex volumes in mm3 for each participant
were determined in cubic millimeters.

THV � LHV + RHV (6)
where THV represents the total hippocampal volume, LHV
represents the left hippocampal volume, and RHV rep-
resents the right hippocampal volume.

TECV � LECV + RECV (7)
where TECV represents the total entorhinal cortex
volume, LECV represents the left entorhinal cortex
volume, and RECV represents the right entorhinal
cortex volume.

The volume of each hippocampus and entorhinal
cortex was determined by adding the non-zero volumes
per voxel, using Equation 8 [39]:

Fig. 5. Feature engineering: construction of histogram features for the entorhinal cortex and hippocampus.
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Right ROI Volume � ∑
n−1

k�0
voxel volumek; voxel volume > 0 (8)

where n = number of voxels and voxel_volume =
x-pixel-dimension * y-pixel-dimension * z-pixel-
dimension.

SUVR – Amyloid (β) Peptide and Tau Abnormalities
The SUVR is a metric used to measure the accumu-

lation of a radiotracer relative to a reference region in
particular brain regions [40]. The average uptake of the
radiotracer in a particular ROI (the hippocampus and
entorhinal cortex) is divided by the average uptake in a
reference region, such as the cerebellum. The cerebellum
is often used as the reference region because it exhibits a
relatively stable uptake across different individuals and
situations. Equation 9 illustrates how to measure SUVR
for the hippocampus.

SUVR � Average uptake in the hippocampus

Average uptake in the cerebellum
(9)

SUVR is a relative measurement and does not give an
exact reading of the levels of amyloid or tau. However, it can
be used to assess the amount of accumulation over time or
compare the levels of these proteins in various people’s
brains, as well as to identify people with various stages of AD
and other neurodegenerative diseases [41]. Thus, SUVR can

be used to distinguish between MCIs and MCIc. A higher
SUVR value indicates a higher level of tau or amyloid ac-
cumulation in the brain, which is associated with an in-
creased risk of developing neurodegenerative diseases such as
Alzheimer’s [42].

Feature Fusion – Hippocampal, Entorhinal Cortex
Texture Features, and SUVR
There is complementing information in the many

biomarkers collected from various neuroimaging mo-
dalities [43–45]; therefore, feature fusion is pursued.
Feature vectors are merged with the numerical features
obtained from the ROI segments through concatenation.
These fusion vectors are comprised of texture features of
the hippocampus and entorhinal cortex from the seg-
mented MRI images, as well as SUVR from the PET
images, as illustrated in Figure 6. The resulting fusion
vectors were then classified using benchmarked methods
such as PNN classifiers (shown in Fig. 6).

Feature Importance Analysis
The classifiers used by [46] were used to find feature

importance. These classifiers are selected for their ability
to reveal feature importance and produce probability
outputs. This determination of feature importance was
primarily reliant on the assigned weights to the individual
features. Furthermore, to calculate the overall feature

Fig. 6. Hippocampus, entorhinal cortex texture features, and SUVR extraction and fusion. The texture features
include contrast, dissimilarity, homogeneity, ASM, correlation, and volume within these regions, combined with
the measured SUVR.
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importance, averaging and top-ranked approaches were
adopted, considering the feature importance output from
each classifier that contributed to the final decision
through voting.

The following are the classifiers that were used to find
feature importance:
a. Linear Support Vector Classification (L-SVM) [47]
b. Linear Discriminant Analysis (LDA) [48]
c. Logistic Regression (LR) [49]
d. Logistic Regression Classifier with Stochastic Gradient

Descent Learning (LRSGD) [50]
The feature importance analysis involved com-

bining four different classifiers: L-SVM, LDA, LR, and
LRSGD Classifier, as shown in Figure 7. The average
importance and the top-ranked importance of each
feature were then calculated based on the output of
these classifiers, providing valuable insights into the
contribution of different features in classifying the
output (shown in Fig. 7).

Classification Methods

The PNN model was selected to continue based on
its strengths as a robust classification algorithm, its
capacity to offer probability distributions across
classes, and its established effectiveness in similar
problem domains [51, 52]. PNN is a feed-forward
neural network that combines Kernel-Fisher dis-

criminant analysis and the Bayesian network [53].
PNN requires less retraining time and computational
resources when new samples are added or removed
compared to some other models since it uses lazy
learning and saves parameters for predictions [53].

Experimental Work Design

In Figure 8, the experimental work design is pre-
sented. The extracted features of the hippocampus and
entorhinal cortex are fused and saved in a CSV file.
Those features are labeled by adding another column
that contains the output features. The output labels are
MCIs: AD−ve and MCIc: AD+ve. Then, both average
and top-ranked techniques were used to determine the
significance of each feature in the output. Finally, the
PNNmodel was implemented using the fused features to
test their strength in classifying MCIc individuals
(shown in Fig. 8).

Results

After determining the 2D gray-level co-occurrence
matrices, volume, and ratio of SUVR from both the
hippocampus and entorhinal cortex, these matrices
and ratios were combined at the feature level to form
the feature fusion vectors.

Fig. 7. Feature importance analysis using L-SVM, LDA, LR, and LRSGD.
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Feature Importance Analysis – Highlighting the
Significance of New Texture Features, Volumes, and
SUVRs in the Hippocampus and Entorhinal Cortex
The approach for determining feature importance in

this study was adapted from the work of [46]. Similar to
their methodology, the feature importance analysis in-
volved combining four different classifiers: L-SVM, LDA,
LR, and LRSGD classifier. The feature importance
analysis included the determination of the average im-
portance and top-ranked importance for each feature,
providing insights into the contribution of different
features in classifying the output.

The feature importance visualization is presented
using Figure 9, where each slice corresponds to a distinct
feature category. The categories are as follows:
1. Volume: this category includes the hippocampus

volume and cortex volume features.
2. SUVR: this category consists of the hippocampus

SUVR and cortex SUVR.
3. Texture features: this category includes the newly

engineered texture features obtained through feature

engineering for both hippocampus texture features
and cortex texture features (shown in Fig. 9).
Figure 9 clearly illustrates feature importance deter-

mined through the average and top-ranked methods.
Both approaches illustrate that the texture features
extracted from the entorhinal cortex and hippocampus
outperformed the volume measurements of the cortex
and the hippocampus, which were less important in the
analysis. Additionally, the volume and SUVR exhibited
the least significance in contributing to the output.

This finding is consistent with prior research con-
ducted by [54, 55], where they demonstrated that texture
features extracted from the hippocampus significantly
outperformed the volume in terms of predictive accuracy
for AD. Texture analysis (TA) has been successfully
applied in previous research to produce imaging bio-
markers for AD. They enable the identification of changes
in MRI image pixel intensity caused by key characteristics
of early-stage AD, such as neurofibrillary tangles and Aβ
peptides, which are not directly detectable by human
eyes [56].

Fig. 8. Experimental work design.

68 Digit Biomark 2024;8:59–74
DOI: 10.1159/000538486

Hassouneh/Bazuin/Danna-dos-Santos/
Acar/Abdel-Qader

https://doi.org/10.1159/000538486


Fig. 9. Feature importance analysis using L-SVM, LDA, LR, and LRSGD classifiers.
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Impact of Hippocampal and Entorhinal Cortex
2D-GLCM, Volume, and SUVR on Early Detection
of AD
The objective is to demonstrate the importance of

different features found in the previous section by
evaluating the accuracy of the various feature combina-
tions using the PNN classifier for early diagnosis of AD in
individuals with MCIs compared to those who will later
develop AD (MCIc). As presented in Table 1, the PNN
classifier used several fusions of features extracted from
the hippocampus and entorhinal cortex, including
GLCMs, volumes, and SUVRs. Each feature category
represents a unique set of information derived from
medical imaging data, and their significance in classifying
AD development is of particular interest. Validation
accuracy, test accuracy, precision, sensitivity (also known
as recall or true-positive rate), specificity (true-negative
rate), F1 score, and area under the receiver operating
characteristic (AUC-ROC) curve were the metrics used
for performance evaluation.

The performance of the PNN classifier using indi-
vidual features was as follows: the model using just
volumes achieved a decent accuracy of 80.0% on the test
set but had difficulty distinguishing between MCIs and
MCIc, as demonstrated by its relatively low sensitivity
and F1 score. The GLCMs texture feature, on the other
hand, performed very well, obtaining 91.44% accuracy on
the test set with high sensitivity and specificity, indicating
its strong ability to accurately classify MCIs and MCIc
cases. In addition, the fusion of volumes and GLCM
features performed well, with 89.59% accuracy on the test
set and a high F1 score. Additionally, the fusion of GLCM
and SUVR features exhibited excellent performance with
88.67% accuracy on the test set. However, the SUVR
feature alone did not perform well on the test set, as
indicated by its low accuracy, sensitivity, and specificity
(50%, 49.5%, and 49.5%, respectively), suggesting a lack
of discriminative power between the two classes. Fusion

of Volumes and SUVRs performed poorly as well, with
relatively low accuracy and F1 score (66.67% and 40%,
respectively), struggling to correctly identify both MCIs
and MCIc cases.

The most notable result was produced when the 2D-
GLCM texture features were fused with all the features,
resulting in the best performance. In this case, the model
obtains a test set accuracy of 92.89% and displays a strong
capacity to correctly classify both MCIs and MCIc in-
stances, as evidenced by its high sensitivity, specificity,
and F1 score.

While our study aligns with prior research [46] in
recognizing the significant impact of texture features on
the classification results, it distinguishes itself by focusing
on the classification of “MCIs and MCIc,” a different
patient group than that of “healthy controls and AD”
group explored in [46]. Our contribution to this work is
also through feature the engineering technique, that is,
standardizing all texture features for consistent analysis
across various features (GLCM texture features, volume,
and SUVR) for both the hippocampus and entorhinal
cortex regions. These unique aspects of our research
confirm and deepen the understanding of the significance
of texture features in the classification of MCIs and MCIc
patients, offering a more comprehensive perspective on
their role in cognitive impairment. Furthermore, the
study highlighted the significance of using several features
in the classification of MCIs and MCIc patients. The
fusion of volumes, GLCMs, and SUVRs yields positive
results.

To summarize the results presented previously, we
used Figure 10 which displays the chart of validation
accuracy and test accuracy to allow for a comparison of
feature performance for early AD detection. It includes
volumes, GLCMs, SUVRs, and their various combina-
tions. It highlights the importance of GLCM texture
features as significant biomarkers for the early detection
of AD. Volumes and SUVRs had comparatively lower

Table 1. Performance factors (validation and test accuracy, precision, sensitivity, specificity, F1 score, and AUC) for all feature
combinations using PNN algorithm for MCIs versus MCIc

Features Validation accuracy Test accuracy Precision Sensitivity Specificity F1 score AUC

Volumes 55.56 80.0 83.3 83.3 83.3 80.0 83.0
GLCMs 90.3 91.44 91.9 92.3 92.3 91.4 92.0
SUVRs 70.0 50.0 50.0 49.5 49.5 48.6 50.0
Volumes + GLCMs 91.29 89.59 90.5 90.7 90.7 89.6 91.0
Volumes + SUVRs 45.45 66.67 43.0 50.0 50.0 40.0 50.0
GLCMs + SUVRs 90.9 88.67 90.1 89.6 89.6 88.7 90.0
All features 92.15 92.89 93.5 93.2 93.2 92.9 94.0
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performance when compared to GLCM texture features
alone (shown in Fig. 10). Further analysis was done (see
online suppl. material; for all online suppl. material, see
https://doi.org/10.1159/00053886) to demonstrate that
GLCM’s features are more effective in differentiating
between MCIc and MCIs.

Discussion

This study highlights the importance and discrimi-
native ability of the texture features extracted from the
hippocampus and entorhinal cortex in predicting MCI
individuals who are prone to developing AD (MCIc) from
those who will not (MCIs). This holds significant promise

for clinical applications and the development of a digital
biomarker model for early detection of AD. In other
words, the integration of texture features into diagnostic
protocols could provide clinicians with objective mea-
sures for accurate tracking of disease progression and
aiding in therapeutic decision-making. As well as helping
them in establishing more precise prognoses for patients
diagnosed with MCIc, thus enabling timely interventions
and personalized patient care strategies. Moreover, the
lower false-positive rates associated with GLCM classi-
fications offer a potential tool to minimize misdiagnoses,
reducing unnecessary stress and treatment for patients
who may not develop AD (MCIs). Moreover, it performs
well and has high sensitivity rates when it is fused with
other features (volumes or SUVR). It signifies a potential

Fig. 10. Comparison of feature accuracy for early detection of Alzheimer’s disease (AD): volumes, GLCMs,
SUVRs, and their combinations.

Machine Learning for Early Detection of
AD: Hippocampus and Cortex Features

Digit Biomark 2024;8:59–74
DOI: 10.1159/000538486

71

https://doi.org/10.1159/00053886
https://doi.org/10.1159/000538486


shift toward more accurate and earlier AD detection
compared to volume and SUVR features and has the
potential to significantly impact clinical practice.

While this study demonstrates the importance of
texture features in predicting MCIc, further research and
validation studies are needed to ensure that these textural
features can properly be rendered into digital biomarkers,
included in clinical protocols and routine clinical settings,
with existing methodologies, and with the unique ad-
vantages of our proposed approach. Implementing our
framework within a clinical setting involves not only the
technical aspects of incorporating various data types but
also the feasibility and scalability of the approach across
different patient groups and imaging modalities, MRI,
fMRI scans, and AD digital biomarkers. Addressing these
differences is essential for an adaptable clinical frame-
work deployment. Furthermore, our study not only goes
beyond the scope of existing methodologies, exemplified
by the work of [46], and focuses on the main regions that
are affected by AD at the onset, but also presents an
innovative integration model. This integration encom-
passes machine learning, feature engineering, feature
fusion, and feature importance analysis, emphasizing the
distinctive benefits of our contribution. Moreover, the
features analyzed in our study are different from those in
their investigation. We included the SUVR which is as-
sociated with an increased risk of developing neurode-
generative diseases such as Alzheimer’s. This work puts
forth our findings in the landscape of AD feature im-
portance analysis through machine learning models.

Conclusion

This study established a framework for the early de-
tection of AD by classifying fused feature vectors from the
hippocampus and entorhinal cortex 2D-GLCM texture
features and volume of 3DMRI, along with SUVR of PET
images, into two primary yield classes –MCIs and MCIc.
The importance of these features extracted from the
hippocampus and entorhinal cortex was determined
using four different classifiers: L-SVM, LDA, LR, and
LRSGD classifier. The average and top-ranked impor-
tance of each feature were then calculated based on the
output of those classifiers. The feature importance pro-
vides insights into the contribution of those different
features in classifying the early stages of AD. Next, we
proceeded to validate the significance of these feature
importance findings by classifying various combinations
of feature fusion vectors using a PNN classifier. This
additional step allowed us to assess how well these im-

portance rankings translated into predictive accuracy and
confirmed the meaningfulness of our feature importance
analysis.

The results of the study showed that GLCM texture
features are significant important biomarkers for early
detection of AD, and they perform better compared to
the volume and SUVR features of the hippocampus and
entorhinal cortex. This importance was verified through
an evaluation of various feature combinations using the
PNN classifier. The results demonstrated that certain
feature-class fusion combinations exhibited higher on-
target (sensitivity) rates. Notably, the fusion of GLCMs
with other features (volume or SUVR) yielded an im-
pressive sensitivity (approximately 90% and higher),
highlighting its effectiveness in accurately identifying
MCIc cases. Additionally, GLCMs showed relatively
lower false-positive rates for MCIs and MCIc cases (less
than 30%), compared to SUVRs and volumes which
have higher false-positive rates, indicating a higher
chance of false-positive identifications for these groups.
Moreover, the receiver operating characteristic curves
for GLCMs and their fusions exhibited discriminatory
ability in distinguishing betweenMCIs andMCIc classes
compared to volume and SUVRs, indicating a poorer
performance for this particular fusion. Furthermore, the
study’s results emphasize that fusing different types of
features can lead to better classification performance
and informative more than using any category of fea-
tures alone.

In summary, our study distinguishes itself from re-
ported work in the literature because it is focused on the
classification of MCIs and MCIc, a distinctive patient
group not yet extensively explored. Moreover, in this
work, we implemented a novel feature engineering
scheme and standardized all texture features (GLCM
texture features, volume, and SUVR) from both the
hippocampus and entorhinal cortex regions. These
unique aspects of our research deepen the understanding
of the significance of each feature in the classification of
MCIs andMCIc patients, which ranks features frommost
to least significant. This provides a distinctive viewpoint
on each feature’s role in cognitive impairment and im-
proves our knowledge of the effects of those features on
the classification of AD patients. For future work, it may
be beneficial to explore additional affected brain regions
beyond the hippocampus and entorhinal cortex to further
improve the proposed framework. Additionally, inves-
tigating more features such as surface area, cortical
thickness, and folding index could improve our under-
standing of the significant features that help in detecting
AD early-onset symptoms.
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