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ABSTRACT: A new method termed “Relative Principal Compo-
nents Analysis” (RPCA) is introduced that extracts optimal relevant
principal components to describe the change between two data
samples representing two macroscopic states. The method is widely
applicable in data-driven science. Calculating the components is
based on a physical framework that introduces the objective
function (the Kullback−Leibler divergence) appropriate for
quantifying the change of the macroscopic state affected by the
changes in the microscopic features. To demonstrate the
applicability of RPCA, we analyze the thermodynamically relevant
conformational changes of the protein HIV-1 protease upon binding
to different drug molecules. In this case, the RPCA method provides
a sound thermodynamic foundation for analyzing the binding
process and thus characterizing both the collective and the locally
relevant conformational changes. Moreover, the relevant collective conformational changes can be reconstructed from the
informative latent variables to exhibit both the enhanced and the restricted conformational fluctuations upon ligand association.

1. INTRODUCTION

Studying the transitions and differences between multiple
states populated by a dynamic system is a central topic in
different fields including chemistry, physics, biology, machine
learning, and all of data-driven science. A typical task is to
uncover how macroscopic changes of the dynamic system are
related to the features (variables) that describe its microscopic
individuals (instances). Two examples of such microscopic
features would be the genetic sequences of a virus taken from
snapshots during the course of evolution or the spatial
conformations of two biomolecules when they bind to each
other. The relationship between the “microscopic” factors of a
system and the change of its macroscopic states requires the
definition of an appropriate objective function for quantifying
the change of the “macroscopic” state of the system. Such a
rigorous definition of changes of the macroscopic state of a
system in terms of its microscopic features is available for
physical systems whose thermodynamic quantities can be
measured or computed. For example, the change of free energy
(a scalar value) is a suitable quantity to characterize
macroscopic changes in physical, chemical, and biochemical
systems. However, in other areas of data-driven science, such a
rigorous definition and quantification of macroscopic changes
generally does not exist. Instead, various heuristic objective
functions are used in practice. Examples include divergence
measures from information theory1 and the wide variety of
objective functions that are used for prediction and feature

extraction in pattern recognition.2 Mining the factors
informative for the change between two samples is of high
importance and of general interest in all areas of data-driven
science and is generally performed in a high-dimensional
feature space. In fact, mining informative features is the central
theme in a large domain of machine learning and includes
methods such as dimensionality reduction,3,4 feature extrac-
tion,2 and latent variable models.5 However, one needs to
select an objective function that is appropriate for quantifying
the change before applying a multivariate method to extract
the informative features.
Analyzing the conformational changes taking place during

biomolecular reactions is one of the most important tasks in
structural biology. Unfortunately, analyzing and mechanisti-
cally understanding biochemical interactions is quite tricky due
to the complex conformational dynamics in the high-
dimensional space where the interactions take place. The
macroscopic changes in biochemical systems, on the other
hand, are quantified using the change of free energy (a scalar
quantity). Molecular dynamics (MD) simulations are becom-
ing a more and more attractive tool for analyzing conforma-
tional changes of biomolecules. An important technique for
postanalysis of MD trajectories is provided by Markov state
models.6,7 These models focus on characterizing the kinetic
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transitions between representative conformations. The analysis
is performed in a data space where the points are the
(clustered) conformations. Multivariate methods can be
suitably applied to elucidating the spatial characteristics of
conformational ensembles. For example, principal component
analysis (PCA)8,9 can be used to find the directions in the
feature space with maximum variation. Furthermore, partial
least-squares analysis10 aims at finding the directions in the
feature space that maximize the covariance between the
features and a response variable. However, we argue that
methods adapted from multivariate analysis and their objective
functions are often not adequately reflecting the thermody-
namics and the physical (asymmetric) nature of the change.
In this work, we introduce a unified framework rooted in

statistical information theory and statistical mechanics11−14 for
studying the change between two data sets representing two
states. This physics-based framework is used to introduce a
new method termed “Relative Principal Components Anal-
ysis”. This method extracts directions in the feature space
termed “relative principal components”, which are most
relevant for describing the change between two data samples
(two states). The informative directions of the change are
represented in a latent variable space that is shared between
the two unpaired data samples of the observed variable. RPCA
provides an optimal and disentangled representation15−17 of
the change in the latent space where the directions in the latent
space are selected in a way that the objective function for
quantifying the change (the Kullback−Leibler (KL) diver-
gence) is maximized and additively factorized along the
different directions. Besides the mapping from the original
(observed) feature space to the latent variable space, RPCA
provides mapping (reconstruction) from the latent variable
space to the (observed) feature space. The RPCA method is
applicable in all areas of data-driven science and is introduced
in its generality in sections 2 and 3. As a special but important
example, starting in section 4, we apply RPCA for analyzing the
energetically relevant conformational changes of a biomolecule
(protease of the human immunodeficiency virus, HIV-1) upon
binding to various ligands.

2. GENERAL FORMALISM FOR ANALYZING
CHANGES IN DYNAMIC SYSTEMS BASED ON
INFORMATION THEORY

Before going into the technical details of finding the directions
in feature space that are informative of the change between two
states, we first introduce a physical framework for defining and
quantifying the change of dynamic systems in all areas of data-
driven sciences and justify the objective function used for
quantifying the macroscopic change.
Let x be a random vector encoding the microscopic features

(variables) necessary to identify the difference between the
instances of a system of interest. By a system we mean a
collection of individuals or instances, e.g., viruses or molecules,
where each instance is defined via a set of (microscopic)
features. A macroscopic state (a) of the system is defined by the
probability density distribution P(x|a) = Pa(x) of all possible
instances (x) when the system is at equilibrium in this
macroscopic state a. The macroscopic state a can be changed
into a new macroscopic state b by perturbing the probability
distribution of the microscopic instances x to P(x|b) = Pb(x).
Here, a Bayesian approach is used whereby the macroscopic
state is viewed as a random variable, and the conditional
probability P(x|i) = Pi(x) is naturally interpreted as the

equilibrium distribution of state i that can be taken from a
finite or discrete set. A relationship between the two
macroscopic states can be obtained by applying Bayes’s
theorem, yielding the following equation for the probability
density ratio Pb(x)/Pa(x)
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Here, P(b) and P(a) are conditional probabilities under the
(implicit) condition of the perturbing factors. Averaging the
logarithm of the density ratio equation over the probability
distribution of state b (Pb(x)) yields
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Indeed, this is a general derivation of the Perturbation
Divergence Formalism (PDF), which was previously derived
for physical systems for the purpose of decomposing the
change of free energy (ΔF) between two macroscopic states a
and b13,14
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For physical systems, we use here the natural unit of the energy
(kBT)

−1 = 1. DKL is the KL divergence18 (also termed the
relative entropy19 or the discriminant information11) between
the probability distributions of states a and b. Interestingly, eq
2.2 provides a purely probabilistic formalism of free energy
change via a new probabilistic definition of the perturbation Up
of the microscopic instances as the logarithm of the ratio of the
posterior probabilities of two macroscopic states given a
particular microscopic configuration x
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Bridging the Macroscopic Change and the Micro-
scopic Features. The concept of the perturbation of a
microscopic instance was originally introduced in statistical
thermodynamics as an energetic quantity (the difference
between the potential energies of the states; Up(x) = Ub(x)
− Ua(x)) in order to formalize the relationship between the
microscopic (atomistic) description of a physical system and
its macroscopic changes between states (free energy
change).20,21 When considering the change between two
macroscopic states, the perturbation Up(x) is a one-dimen-
sional (microscopic) variable that has the same KL divergence
(discriminant information) as the high-dimensional feature x13

∥ = ∥x x x xD P P D P U P U( ( ) ( )) ( ( ( )) ( ( )))b a b p a pKL KL (2.5)

In statistical inference theory,22,23 such a variable is termed a
sufficient statistic. A sound framework for the relationship
between the change of macroscopic states of a dynamic system
and its microscopic elements can be inherited from the

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b01074
J. Chem. Theory Comput. 2019, 15, 2166−2178

2167

http://dx.doi.org/10.1021/acs.jctc.8b01074


formalism of exponential families12,24 in statistical estimation
theory.
Let us assume we have a dynamic system at equilibrium in a

macroscopic reference state labeled by the so-called natural
parameters λ. The system can populate a new macroscopic
state Pλ(x) upon perturbing its original state Pλ0(x). The
principle of minimum discrimination information25 (equivalent
to the principle of maximum entropy26) is applied to find the
new distribution Pλ(x) by minimizing the KL divergence from
the reference distribution Pλ0(x) to the new distribution Pλ(x)
under the constraint of a finite expected value of the sufficient
statistic ⟨T(x)⟩λ. The probability density distribution Pλ(x)
forms an exponential family of distributions in terms of the
reference distribution

∫

λ λ

λ λ

ψ

ψ

= [ − ]

=

λ λ

λ

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

x T x x

x x T x

P P

P

( ) exp ( ) ( ) ( )

( ) ln d ( ) exp( ( ))

T

T

x

0

0 (2.6)

λ λψ∥ ⟨ ⟩ = ⟨ ⟩ −λ λ λ λx x T x T xD P P( ( ) ( ), ( ) ) ( ) ( )T
KL 0 (2.7)

Here, the sufficient statistic T(x) is a vector (or a scalar)
function of the microscopic configuration x of the system. The
cumulant generating function ψ(λ) depends on only the
natural parameters λ. Besides being used to formulate a
theoretical framework for studying the error bound of
parameter estimation,25 the formalism of exponential families
plays a central role in different fields of machine learning such
as generalized linear models and variational inference.3 In
statistical thermodynamics, Kirkwood introduced his thermo-
dynamic integration (TI) equation20 using the exponential
family to “alchemically” interpolate two macroscopic states.20

Indeed, the one-dimensional sufficient statistic, “the perturba-
tion”, is the appropriate tool for interpolating between two
macroscopic states in free energy calculations. Generally, a
higher-dimensional sufficient statistic is required when study-
ing multiple macroscopic states.22 The sufficient statistic and
the corresponding cumulant generating function in eq 2.6 are
not unique. Notably, comparing eqs 2.2 and 2.7 shows that the
sufficient statistic can be selected such that the corresponding
cumulant generating function is a function of the change of
free energy between the macroscopic states of dynamical
systems. For example, when selecting the negative value of the
perturbation (−Up(x)) as a sufficient statistic for studying the
change between two macroscopic states, the corresponding
cumulant generating function is the negative of the free energy
change and eq 2.6 turns into the free energy perturbation
equation that is well-known in statistical thermodynamics.21,27

Another example is the logarithm of the density ratio, which is
a well-known sufficient statistic in statistical inference, and its
corresponding cumulant generating function is the relative
change of free energy (see Supporting Information section S4).
An interesting known relationship of an exponential family is
the functional dependence of the change of ψ(λ) (the function
of the macroscopic state) on the microscopic features x that is
given by the average and the covariance of the sufficient
statistic
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The free energy TI equation20 is a special case of eq 2.8.
However, quantification of the macroscopic change is not of
general interest in the field of data-driven sciences. The
important task here is identifying the unknown sufficient
statistic that explains the influence of the microscopic features
of the macroscopic change. Unlike the free energy change, KL
divergence is a quantity familiar in machine learning and can
be computed using parametric or nonparametric models.28

Indeed, eq 2.7 shows that KL divergence is a Legendre
transformation12,29 of the cumulant generating function and
can be used to quantify the change of the macroscopic state.
The PDF given by eq 2.2 is a special case of eq 2.7 where we
use the perturbation as a sufficient statistic for studying the
change between two macroscopic states (λ = 0,1). Due to the
Legendre duality12,29 between the KL divergence and the
change of the free energy, the relevance of the PDF goes
beyond being decomposition of the change of free energy. In
fact, the terms of eq 2.2 are the perturbations (the features
informative of the change) and their fingerprints (the
configurational changes), which are quantified by the KL
divergence. In this view, significant perturbations are reflected
by significant changes of KL divergence.

3. RELATIVE PRINCIPAL COMPONENTS ANALYSIS
This section presents a new method for analyzing the change
between two states (data sets) using multivariate analysis
methods.4 Studying the change between multiple states is
beyond the scope of this work and will be presented in a future
publication. The newly introduced method termed “relative
principal components analysis” (RPCA) computes collective
canonical variables (linear combinations of the original
features) termed the relative principal components (RPCAs)
to which the KL divergence factorizes additively. Indeed,
factorization of the KL divergence is equivalent to factorization
of the logarithm of the density ratio, which is a sufficient
statistic of interest in machine learning28 (see above).
Factorization of KL divergence was introduced for multivariate
normal distributions in the seminal work of Kullback.11

However, the theoretical approach of factorizing KL
divergence as introduced by Kullback was not accessible in
practice. Specifically, a solution is needed around the
singularity of the covariance matrices, and the resulting
features have to be optimal with respect to maximizing their
KL divergences (see below).
Let x = (x1...xd)

T be a d-dimensional continuous random
variable with two samples from two macroscopic states that
will be labeled (a) and (b). RPCA aims at finding k latent
canonical variables y = (y1, y2, ..., yk)

T = f(x) that satisfy the
following two conditions: (i) their marginal distributions are
independent in states a and b, meaning that their KL
divergences are additive, and (ii) they are optimal in terms
of maximizing the KL divergence, such that we can use m (m
≪ d) latent variables to represent the significant directions
informative of the change. The KL divergence of a new variable
y = f(x) is always non-negative11,19 and is bounded from above
by the KL divergence of the original variable x11,14

∥ ≥ ∥ ≥x x x xD P P D P f P f( ( ) ( )) ( ( ( )) ( ( ))) 0b a b aKL KL (3.1)

The new variable y = f(x) is “sufficient” if the equality holds in
eq 3.1. When studying the change between two macroscopic
states, a sufficient one-dimensional variable always exists (e.g.,
the perturbation14) regardless of the dimensionality of x.
Although the existence of a one-dimensional sufficient feature
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appears promising, it is not practically useful for two reasons:
(i) the analytical nature of the sufficient one-dimensional
variable is generally unknown and (ii) the complexity and
nonlinearity of a sufficient one-dimensional variable, if it is
known, will hinder its interpretability in terms of the original
features x. In fact, its simple interpretability and analytical
traceability is one reason for the widespread use of the
Gaussian linear parametric model in latent variable models5

(e.g., PCA). We will adopt this model here as well. Then the
latent variables are linear combinations of the original variable
and are normally distributed

μ Λ

= =

∼ =
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f
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Here, G is a d × k transformation matrix with columns gi.
Thus, =y g xT

i i and μl; l = a,b are the averages of the two
distributions. The covariance matrices Sl of the original
variables are related to the covariance matrices of the latent
variables by Λl = GTSlG; l = a,b. Under the model assumption
of normality, the independence of the variables yi requires Λl to
be diagonal in both states a and b

Λ
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Here, the diagonal matrix of state b, Λ =diag (λ1...λk), contains
the variances λ1...λk of the latent variables at state b, while the
covariance matrix of the latent variables at state a is arbitrarily
selected to be an identity matrix (I). In the case of a
multivariate normal distribution (Sa is nonsingular), Kullback

11

formulated the solution for G as the generalized eigenvectors
corresponding to the generalized eigenvalue problem |Sb −
λSa|, which can be solved using Wilkinson’s algorithm30

involving the Cholesky decomposition of Sa.
31 Practically, the

covariance matrices of real data are mostly singular or ill-
conditioned, and the generalized eigenproblem is not solvable.
Singularity arises due to the fact that the real dimensionality of
the probability distributions is smaller than the apparent
dimensionality of x.32

RPCA via Simultaneous Diagonalization of Two
Matrices. Here, we present a general algorithm for the
simultaneous diagonalization of the matrices in eq 3.3, which
can be used even if Sa is singular.
A transformation matrix ∈ ×G d k that simultaneously

diagonalizes the symmetric matrices ∈ ×Sa
d d (of rank k)

and ∈ ×Sb
d d (eq 3.3) can be found by a combination of two

transformation matrices

=G WL (3.4)

(1) The so-called whitening transformation2 matrix
∈ ×W d k of the matrix Sa is computed from its

eigendecomposition Sa = UDUT = UkDkUk
T

= −W U Dk k
1/2

(3.5)

Here, the k eigenvectors in the columns of Uk

correspond to the k nonzero eigenvalues in the diagonal
matrix Dk. Clearly, W reduces Sa to an identity matrix

= ∈ ×W S W IT
a

k k corresponding to the covariance
matrix of the whitened data (WTx). The algorithm above
is well-known in case Sa is nonsingular (d = k).2

(2) The matrix L is formed using the eigenvectors from the
symmetric matrix WTSbW

Λ=W S W L LT T
b (3.6)

It is straightforward to see from eqs 3.5 and 3.6 that G =
WL simultaneously diagonalizes Sa and Sb and satisfies
eq 3.3.

The k columns of G are the generalized eigenvectors with
the corresponding generalized eigenvalues in the diagonal
matrix Λ. The relative principal components yi = gi

Tx can be
reordered based on their KL divergences. The additive KL
divergences of the independent variables yi can be analytically
computed based on the model assumption of normality11
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Here Δ = μb − μa is the change of the average of the
distributions of x in states a and b. However, it is important to
keep in mind that the value of DKL of the components from eq
3.7 is computed based on the model assumption (normality).
Fortunately, a significant KL divergence of a variable yi has to
be reflected in a significant change between its distributions in
states a and b, which can be used to assess the accuracy of the
model-based KL divergences (see the example below).

Optimal RPCAs via Average-Covariance Subspacing.
Although the simultaneous diagonalization algorithm above
returns independent latent variables into which the KL
divergence factorizes additively, the obtained latent variables
are not optimal in terms of maximizing the KL divergence.
Optimal latent variables are required for reconstructing the
most informative approximation (maximizing KL divergence)
of the original variable; see below. The KL divergences of the
relative principal components in eq 3.7 can be decomposed
into the terms holding the change of the variances

λ λ[− + − ]ln 1i i
1
2

and the terms holding the change of the

average ΔΔg g( )T T
i i

1
2

. Indeed, the latent variables from eq 3.4

are optimal with respect to maximizing the KL divergences due
to a change of the variances.11 Unfortunately, this optimality is
violated by the contributions to the KL divergences due to the
change of the average ΔΔg g( )T T

i i
1
2

. Therefore, the following

average-covariance subspacing algorithm is introduced to
achieve the optimality of RPCAs with respect to maximizing
their KL divergences. The detailed derivation is presented in
Supporting Information section S1. The idea is to find a
transformation matrix G = [gμ Gv] such that the KL divergence
of the variable yμ = gμ

Tx summarizes the total KL divergence
due to changes of the averages while the KL divergences of the
variables yv = Gv

Tx are purely due to the change of covariance.
The required solution for gμ is given by

=
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Here, the generalized pseudoinverse Sa
− is used for the general

case (e.g., singular Sa) and gμ is normalized with respect to the
covariance matrix Sa such that gμ

TSagμ = 1. The KL divergence
of the variable yμ = gμ

Tx includes the total KL divergence due to
the change of the average, which in turn equals half of the
Mahalanobis distance between the averages Δ Δ−ST
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Here, the KL divergence of the new variable yμ = gμ
Tx also

includes a contribution due to the change of its variance (λμ).
The remaining generalized eigenvectors Gv, which do not

contain contributions arising from the change of the average
(gi≠μ

T Δ = 0), are computed after deflating the contributions to
the KL divergence due to vector gμ from the matrices Sa and
Sb. Given the vector gμ, the restricted simultaneous
diagonalization problem can be presented in the equations
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Δ =

Δ =μ≠
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( 0; no KL divergence due to the average change)
v
T

i
T

(3.11)

Here, Λv is a diagonal matrix, and 0 denotes a matrix or a
vector of zeros of suitable dimensionality. To fulfill the
conditions in eqs 3.10 and 3.11, the generalized eigenvectors
Gv can be constructed using a combination of two trans-
formation matrices (for details, see Supporting Information
section S1)

=G W Lv v v (3.12)

(i) The whitening transformation matrix Wv, similarly to eq
3.5, is constructed here from the eigendecomposition of the
covariance matrix of the projection of x on the subspace, which
is orthogonal to the vector (Sagμ). (ii) The second trans-
formation Lv is obtained from the eigenvectors of the
covariance matrix of the projection of the whitened data
(WTx) onto the subspace that is orthogonal to the vector
Wv

TSbgμ. Here, the number of generalized eigenvectors from the
optimal RPCA subspacing is one less than the number of
generalized eigenvectors from the nonoptimal RPCA algorithm
of eq 3.4.
Data Reconstruction from the Latent Variable. The

influence of the m-dimensional (m < d) latent variable ym =
Gm

Tx on the original d-dimensional variable ∈ x d can be
presented via the reconstruction (projection) ̂ ∈ x d in the
subspace that is spanned by the corresponding m generalized
eigenvectors Gm = [g1...gm] and is given by the relationship33
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Here, ∈ ×Pm
d d is the projection matrix33 on the d-

dimensional subspace that is spanned by columns of Gm.
∈ ×R d m is the reconstruction matrix facilitating the trans-

formation from the latent variable. It is straightforward (see
Supporting Information section S2) to show that the KL
divergence between the distributions of the reconstructed
variable x̂ equals the KL divergence between the distributions
of its corresponding latent variable ym. In other words, the
most informative approximation (the one maximizing KL
divergence) of the original variable x using a restricted number
(m < d) of variables is obtained using the m-dimensional latent
variables ym with the highest KL divergences.

Change Hotspots from RPCA. Besides representing the
changes collectively (incorporating all xi), RPCA provides the
possibility to map the feature-wise (local) contributions to the
change from the individual elements xi of x such that the
elements of x with larger contribution to the change (KL
divergence) can be interpreted as the hotspots of the change.
The contributions to the divergence in eq 3.7 can be
approximated as a sum of two quadratic terms
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Here, (A)ij denotes element (i,j) of matrix A. The
contributions to the quadratic terms are due to the local
contributions from the elements and their cooperative (cross)
terms, taking into account that each element of a generalized
eigenvector (gli) corresponds to an element xi. However, it is
clear that the contributions to the quadratic terms in eq 3.15
can be collected via arbitrary grouping of the elements into
subgroups. The computation of the (local) group-wise
contributions and their cooperative contributions is equivalent
to the computation of the quadratic terms using the
corresponding submatrices of Sb and ΔΔT.

Asymmetric Nature of RPCA. Multivariate analysis
methods can be grouped into methods handling either one
state or multiple states. The methods that study one state
include methods handling one multivariate variable, such as
PCA, factor analysis, and independent components analysis,
and methods handling two multivariate variables with
concurrent measurement (a joint distribution) include canon-
ical correlation, regression, and partial least-squares. Discrim-
inant analysis (classification) methods, on the other hand, aim
at finding the variation between several states (classes).
Although RPCA is similar to feature extraction for
classification,2 there are fundamental differences between
pattern classification and the physical definition of the change,
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which is introduced above. For example, the discriminant
features in Fisher discriminant analysis (FDA) are related to
the change of the averages of distributions, and the information
from the covariance matrices is whitened using a unified
pooled (average) covariance matrix.2 Therefore, the use of
FDA for dimensionality reduction34 is known to be restricted
by a limit on the number of dimensions, which is equal to the
number of classes minus one. While the objective functions in
discriminant analysis are required to be symmetric,2 the
objective function (KL divergence) for RPCA is asymmetric,
which reflects the directed character of changes.35 When
studying the backward change from state b to state a, the
generalized eigenvectors GR pertaining to the reverse direction
are the scaled eigenvectors pertaining to the forward direction
(G), and the generalized eigenvalues, which present the change
of the variance, are inverted (1/λi)
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Taking into account that the KL divergence due to the change
of the variance 1

2
(−ln λi + λi − 1) in eq 3.7 is a convex function

with a minimum of 0 at λi = 1, we can divide the relative
principal components into two groups. The first group includes
the components with λi > 1 where the variance (quantified by
λi) along the direction gi increases as we transit from state a to
b. The second group includes the components with λi < 1
because the respective variance decreases as we transit from
state a to b. When the backward change takes from b to a, the
roles of the components of these groups (quantified by 1/λi)
are exchanged. The same role of these groups is also observed
when taking the KL divergence due to the change of the
average where the directions gi with λi > 1 have diminished
contributions ( ΔΔ

λ
g gT T

i i
1

2 i
) to the backward direction from b

to a in comparison with their contribution ( ΔΔg gT T
i i

1
2

) to the

transition from state a to b and vice versa.
RPCA and the Distance Metric. Even though the task of

RPCA (analyzing the change between states) differs from the
task of PCA (finding the variation within one state; see Figure
1), a similarity exists regarding the applied distance metric.
However, it is important to notice that the generalized
eigenvectors are orthonormal with respect to the matrix33 Sa
(gi

TSagj = δij), orthogonal with respect to Sb (gi
TSbgi = λi;

gi
TSbgj≠i = 0), and not necessarily orthonormal to each other
(gi

Tgj ≠ δij). RPCA analysis can be interpreted as using the
distance metric36 of state a to analyze state b. Indeed, applying
the whitening transformation2 in eq 3.5 removes the
“information” within state a (WTSaW = I). The eigendecom-
position of WTSbW in eq 3.6 is performed in the whitened
space in which the squared Euclidean distance between two
points x1 and x2 equals their Mahalanobis distance in the
original space and the projections on the generalized
eigenvectors factorize the Mahalanobis distance (see Support-
ing Information section S3)
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Moreover, the average Mahalanobis distance of points in state
b to the average of state a can be written as the sum of the
generalized eigenvalues and the Mahalanobis distance between
the averages of the states (see Supporting Information section
S3)
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4. APPLICATION OF RPCA TO REVEAL THE
THERMODYNAMICALLY IMPORTANT MOLECULAR
CONFORMATIONAL CHANGES

Although our RPCA method is not limited to biomolecular
data, the starting point for its development was based on the
new insight stemming from our recently introduced PDF.13,14

PDF reveals that the KL divergence (DKL) equals the work that
is spent to change the conformational ensemble and hereby is
the thermodynamically relevant objective function for
analyzing conformational changes.13 Indeed, PDF provides a
flexible framework for studying conformational changes
involving either all atoms of the structure, a part of them, or
aspects of the structure based on phenotypical features (e.g.,
open/closed, pocket volume, domain movement, etc.); see the
discussion in ref 14. An important benefit of using the KL
divergence for quantifying the energetics related to conforma-
tional changes is avoiding the misleading entropic terms that
are subject to enthalpy−entropy compensation when using the
changes in conformational entropy to estimate the importance
of conformational changes, as was previously shown.37,38,14

In the following, we present use cases for applying RPCA to
analyze the molecular conformational changes of the protein
HIV-1 protease upon binding to several inhibitor molecules.
The conformations of the protein are sampled via MD
simulations for both the initial (free, unbound) state and the
final (bound) state. Technical details on these simulations are
provided in Supporting Information section S5. Figure 2 shows
an assessment of the relationship between the relevant
components of the dynamic change within one state, which
are analyzed using traditional PCA of the data points of the
final state, and the thermodynamic importance of the
corresponding conformational changes. The thermodynamic
importance of the conformational changes along a principal
component to the association process is quantified by the KL

Figure 1. Schematic representation of the conceptual difference
between PCA, which finds the largest variation within each state, and
RPCA, which finds the change from the initial to the final state.
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divergence of the distributions of projections of both the free
and the bound state conformations on the component.37

Figure 2a shows that the eigenvalues of the principal
components are not related to their thermodynamic
importance for the association process. To illustrate this
more clearly, Figure 2b shows that principal component 3654
has more thermodynamic importance (KL divergence) than

the first principal component, which is mostly irrelevant for the
association process.
Figure 3 shows the RPCA of the conformational changes of

wild-type HIV-1 protease upon binding to a drug molecule
that has high affinity (Tipranavir). Presented are both the
nonoptimal RPCA (Figure 3a) and the optimal RPCA
calculated with the subspacing method (Figure 3b). The
scores (KL divergence) of the importance of the components
show that the first few components account for most of the KL
divergence. The data points (conformations) of both the free,
unbound state and the bound state are projected on selected
components to illustrate the correspondence between the
score (model based) and the real divergence, which can be
extracted from the difference between the distributions of the
projections of the states. There are clear benefits of the optimal
subspacing RPCA (Figure 3b). Namely, the first component
has a significant divergence because it collects the total
contribution to the KL divergence arising from the change of
the average. In contrast, one obtains identical averages when
projecting the conformations sampled in the two states onto
the remaining components. Thus, the remaining components
do not contribute to the KL divergence that is due to the
change of the averages. Figure 4 shows a comparison of the KL
divergence (discriminant information) of the top-scoring
component versus the lowest-scoring and the principal
component with largest eigenvalue from PCA of the bound
state.
RPCA facilitates studying the conformational changes from

both the collective and the local points of view. The relevant
collective conformational changes (with respect to their KL
divergence) can be presented by reconstructing the con-
formations in the subspace that is spanned by the relevant
generalized eigenvectors; see eq 3.13. Collective conforma-
tional changes can also be represented by reconstructing the
conformations from the (normally distributed) latent variable
ym using eq 3.14. Interestingly, RPCA provides a clear
distinction between the directions (generalized eigenvectors)
along which the fluctuation of the conformations increases
upon the change (corresponding to λi > 1) and the directions
along which the fluctuation of the conformations decreases
(corresponding to λi < 1). Figure 5a shows the collective
conformational changes around the average conformation of
the bound state along the 33 eigenvectors with the highest
generalized eigenvalues (λi > 10), which represent the
enhanced motions of the wild-type HIV-1 protease upon
binding Tipranavir. Figure 5b, on the other hand, shows the
collective conformational changes around the average con-
formation of the free state along the 33 eigenvectors with the
smallest generalized eigenvalues (λi < 0.009), which, in turn,
represent the most strongly restricted motions of the wild-type
HIV-1 protease upon binding Tipranavir. It should be stressed
that the importance of the local conformational changes (e.g.,
at residues) cannot be inferred from the collective conforma-
tional changes. In other words, a large fluctuation in a site,
when presenting the collective conformational changes, does
not imply larger thermodynamic importance than the
associated less strongly fluctuating sites. Alternatively, hotspot
analysis from RPCA in eq 3.15 can be used to rank the
thermodynamic contribution of the local conformational
changes (conformational hotspots) of the biological building
blocks (residues) to the association process and the
importance of the cooperative (correlation) interactions
between them (see Supporting Information Figure SF1). In

Figure 2. Assessing the thermodynamic contribution of the
conformational changes along the directions of the principal
components from PCA to the association process. (a) Top panel:
PCA eigenvalues derived from the covariance matrix of the
conformational fluctuation (heavy atoms) in a MD simulation of
HIV-1 protease bound to its inhibitor Tipranavir. Bottom panel:
Importance (KL divergence) along PCAs computed from the
projections of the data points (conformations) of the final state
(bound) and the initial state (free). (b) Divergence of the largest
eigenvalue PCA#1 (DKL ≈ 0.1) compared to that of the PCA with
highest divergence #3654 (DKL ≈ 7.3). Two thousand data points are
projected on the PCA vectors of the final (bound; blue) and the initial
(free; red) states. The marginal probability distribution densities are
shown on the side panels. The PCA analysis is performed on the
conformations from the bound state using the heavy atoms of the
protein. The superposition of the conformations of both the bound
and the free state ensembles and the superposition of the two
ensembles to each other are performed in a way similar to that for
RPCA (see below). The KL divergences between the distributions of
the projections of the two states are computed using the KLIEP
method.39
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Figure 6, the relative local residue contributions to the
divergence are mapped on the structure of the protein, and the
importance of the conformational changes is indicated by radii
of varying size in the cartoon representation, in addition to
using the color code. Interestingly, most of the marked
hotspots are residues known to affect the binding affinity upon
mutating them. Examples of the defined conformational

hotspots are the residues in the active pocket (e.g., D25,
V82) and residues of the flap region (e.g., I50, I54). Figure 7a
shows analysis of the conformational hotspots from RPCA of
the binding of a ligand (Saquinavir) to the HIV-1 protease
mutant with a resistance-related mutation (I50V), which is
located on the flap region outside of the binding pocket. The
conformational hotspots of the mutant are located at the flap

Figure 3. RPCA of the conformational changes of HIV-1 protease upon its association with Tipranavir. Shown are the nonoptimal RPCA (a) from
eq 3.4 and optimal RPCA with subspacing (b) from eq 3.12. The right panels show the KL divergences of the components (blue colored) and their
corresponding contributions due to the change of the average (red colored). Left panels show projections of the data points (conformations) of
both the initial (free, unbound) and the final bound state on selected components. The scores (KL divergences) of the components are displayed
after their corresponding number. The projections show that the components (components 1−8) with the highest rank (KL divergence)
distinguish the change between the free and bound states, while the components with the lowest rank do not distinguish the change (similar
projections). The analysis is performed using the heavy atoms of the protein. The plots are generated using R,40 and the densities are smoothed
using the kernel density estimation.
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region around the mutation V50. The same flap region does
not show important conformational changes when applying the
same analysis to the association of Saquinavir to the wild-type
(I50) in Figure 7b.
Technical Aspects of Using RPCA of Molecular

Conformational Changes. Optimal Superposition of
Conformations of the Ensembles. The first step in analyzing
an ensemble of conformations is removing the six external
rotational and translational degrees of freedom by super-
imposing the conformations. Although the internal coordinates
are not altered due to these similarity transformations
(rotations and translations), the average conformation and
the covariance matrix are highly affected by the way the
conformations are superimposed to remove these external

degrees of freedom. Traditionally, the conformations are
superimposed on an arbitrary reference structure (e.g., the
starting structure of the MD simulation). However, the
resulting ensemble is dependent on the reference structure
used for superimposing the conformations. A popular approach
to superimposing multiple conformations is known in
statistical shape analysis as Generalized Procrustes Analysis36,42

(GPA). GPA treats the conformations in the ensemble as rigid
and rotates and translates them to a suitable reference structure
(the average conformation) such as to minimize the squared
distance between the conformation and the reference (the
average conformation), which is equivalent to minimizing the
sum of squared distances over all pairs of conformations.36

Initially, a random conformation from the ensemble is used as

Figure 4. KL divergences of the highest scored relative principal component. The initial state (red) and the bound state (blue) are mapped on the
top-scoring RPCA#1 against the lowest-scoring RPCA#4541 (a) and on the top-scoring RPCA#1 against the top-scoring PCA#1 (highest
eigenvalue) (b). RPCA is successful in extracting the components holding the most significant information on the change (binding process from
free to bound states). The marginal probability distribution densities are shown on the side panels. Samples of 2000 data points were used for the
projections.

Figure 5. Representation of the enhanced and restricted conformational fluctuations of HIV-1 protease upon binding the inhibitor Tipranavir.
Conformations around the average conformation are reconstructed from the latent variable after interpolation around its average along selected
generalized eigenvectors; see eq 3.14. (a) Enhanced conformational fluctuations around the average structure of the bound state along the 33
eigenvectors with the highest generalized eigenvalues (λi > 10). These conformational fluctuations increase the affinity of binding by optimizing the
local conformations in the ligand−receptor interface. (b) Conformational fluctuations around the average structure of the free state along the 33
eigenvectors with the smallest generalized eigenvalues. These latter fluctuations are highly restricted upon association (λi < 0.009) because they
decrease the affinity of binding via adverse local movements in the binding pocket and opening of the flap regions; see the Supporting Information
movies. The cartoon representation is generated using Pymol.41 The conformation of the ligand is taken from the experimental structure. Movies of
these conformational changes are presented as Supporting Information, and their descriptions are given in Supporting Information section S6.
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the reference. Then GPA iterates between superposing the
conformations of the ensemble to the reference, as described
above, and computing the average structure of the resulting
ensemble as a new reference. The result is an ensemble
approximating the minimum sum of squared distances over all
pairs of conformations in the ensemble. Fortunately, a few
iterations are usually enough for convergence (see an example
of the performance of GPA in Supporting Information section
S7).
Superposition of Two Ensembles. The Mahalanobis

distance term (ΔTSa
−Δ) of the KL divergence in eq 3.9 is

affected by the fashion in which we superimpose the average
conformations (μb,μa). However, superimposition via minimiz-
ing the Euclidean distance may overestimate the KL
divergence via an artificial contribution to the Mahalanobis
distance ΔTSa

−Δ; Δ = μb − μa. Therefore, superimposition of
the average conformations should aim at minimization of the
Mahalanobis distance. In contrast to the minimization of the
Euclidean distance, there is no analytical solution known for
minimizing the Mahalanobis distance. This type of nonlinear
minimization is known as the Covariance Weighted Procrustes
Analysis43 (CWPA), and numerical methods can be used to
find the optimal superposition (rotations and translations) for
minimizing the quadratic term ΔTSa

−Δ.
Steps for Performing RPCA Analysis of Two Molecular

States.

(1) GPA fitting of the conformations sampled in the
simulation of the first state. The covariance matrix of
this state is also computed at this step. A successful
superimposition of the ensemble will lead to a singular
covariance matrix with at least six eigenvalues of zero
value accounting for removing the external degrees of
freedom.

(2) GPA fitting of the conformations sampled in the
simulation of the second state to obtain the average
conformation.

(3) Covariance-weighted fitting of the average conformation
of the second state on the average conformation of the
first state by minimizing their Mahalanobis distance.
This unconstrained nonlinear optimization is numeri-
cally performed using the line-search algorithm and the
BFGS factored method to update the Hessian.44

(4) The new average conformation of the second state is
used as a reference to refit the conformations of the
second state and to compute the covariance matrix of
the second state.

(5) Simultaneous diagonalization of the covariance matrices
is performed. Optionally, the subspacing optimal
algorithm can be used.

(6) KL divergences of the relative principal components are
computed and the components are reordered based on
their scores (KL divergences).

We have developed computational tools to perform these
steps. The tools are written in the C programming language,
and the numerical linear algebra operations are performed
using the BLAS and LAPACK routines.45 When computing the
whitening transformation matrix in eq 3.5, the limit of the zero
value of the eigenvalues is defined using the square root of the
“machine epsilon” in double precision multiplied by the largest
eigenvalue. The covariance-weighted superimposition is
performed using the nonlinear minimization algorithm by
Dennis and Schnabel.44

5. CONCLUSIONS
Here, we introduced the RPCA method, which extracts the
relevant principal components describing the change between
two macroscopic states of a dynamic system represented by

Figure 6. Conformational hotspots corresponding to the association of Tipranavir to the wild-type HIV-1 protease protein. The conformational
hotspots represent the local conformational changes that are computed for each residue of the protein and mapped on the structure of the protein.
The radius and the color of the cartoon indicate the importance of the conformational changes. The computed importance values are the local
terms (the first term) in eq 3.15. The values are normalized relative to the highest value that is set to 1. The analysis is performed using the
coordinates of the heavy atoms of the protein, which are taken from snapshots from MD simulations of the unbound protein and the complex (see
the details in Supporting Information section S5). The structure of the ligand is taken from the experimental structure of the complex (PDB code
1D4Y).
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two data sets. The definition of the macroscopic change of a
dynamic system and its quantification are based on previous
work where we derived a generalized quantification of the
change of a physical system based on statistical mechanics. We
presented use cases for conformational changes taking place
upon ligand binding to HIV-1 protease that clearly illustrate
the power of RPCA to characterize the relevant changes
between two ensembles in a high-dimensional space. More-
over, software solutions were introduced to ensure the removal
of the similarity transformations (rotations and translations) by
superposing the conformations using GPA and CWPA. These
procedures may also be beneficial for preparing the
conformations for other analysis methods.

Although RPCA is currently limited to handling only
continuous variables and two macroscopic states, the
introduced framework for quantifying changes of dynamic
systems using the exponential family of distributions is flexible
regarding the nature of probability distributions and the nature
of the microscopic variables (continuous and categorical).
Therefore, the presented theoretical formalism opens the door
for developing improved new methods for mining the factors
underlying changes in dynamic systems in the directions of (i)
handling both continuous and categorical data (e.g., the effect
of sequence changes (mutations) on the binding affinity) and
of (ii) handling multiple macroscopic states (e.g., study the
binding of a series of ligands to a receptor).

Figure 7. Conformational hotspots from RPCA analysis recognize the importance of the resistance-related mutation (I50 V) of HIV-1 protease
when bound to Saquinavir. The conformational hotspots of the mutant (a) are located at the flap region around the mutation V50. The
corresponding flap residues of the wild-type (I50) in (b) do not show energetically important (expensive) conformational changes. The radius and
the color of the cartoon indicate the importance of the conformational changes. The importance is normalized relative to the highest value. The
structures of the ligands are taken from the experimental structure of the complexes (PDB codes 3OXC and 3CYX for the wild-type and the I50 V
mutant, respectively). The analysis is performed using the coordinates of the heavy atoms of the proteins, which are taken from snapshots from MD
simulations of the unbound proteins and the complexes (see the details in Supporting Information section S5).
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