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Abstract

Lot quality assurance sampling (LQAS) surveys are commonly used for monitoring and
evaluation in resource-limited settings. Recently several methods have been proposed to
combine LQAS with cluster sampling for more timely and cost-effective data collection. For
some of these methods, the standard binomial model can be used for constructing decision
rules as the clustering can be ignored. For other designs, considered here, clustering is
accommodated in the design phase. In this paper, we compare these latter cluster LQAS
methodologies and provide recommendations for choosing a cluster LQAS design. We
compare technical differences in the three methods and determine situations in which the
choice of method results in a substantively different design. We consider two different
aspects of the methods: the distributional assumptions and the clustering parameterization.
Further, we provide software tools for implementing each method and clarify misconcep-
tions about these designs in the literature. We illustrate the differences in these methods
using vaccination and nutrition cluster LQAS surveys as example designs. The cluster
methods are not sensitive to the distributional assumptions but can result in substantially dif-
ferent designs (sample sizes) depending on the clustering parameterization. However,
none of the clustering parameterizations used in the existing methods appears to be consis-
tent with the observed data, and, consequently, choice between the cluster LQAS methods
is not straightforward. Further research should attempt to characterize clustering patterns in
specific applications and provide suggestions for best-practice cluster LQAS designs on a
setting-specific basis.

Introduction

When designing global health monitoring and evaluation (M&E) surveys in resource limited
settings, the key objective is to balance cost, precision, and feasibility. Lot quality assurance

sampling (1Qas) surveys were originally proposed for industrial quality control [1] and have
more recently been applied in global health M&E for classification of health indicators [2]. In
LQAs surveys, samples of size n are collected from supervision areas (sas), and the number of
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successes X is compared to a decision rule d to classify an sa as acceptable or unacceptable [3].
Because 1qQas is a classification procedure, LQas surveys typically require smaller sample sizes
than estimation-based surveys. Further, the simplicity of classification facilitates local-level
data analysis, reducing the time between data collection and data-driven actions.

Laas designs are typically determined by four parameters p;, p,,, &, and . Specifically, the
sample size n and rule d are selected such that the risk of misclassifying an sa as acceptable or
unacceptable is small, namely:

PX<dlp>p,) < «

(1)
PX>dlp<p) < B

The risk o is the probability of classifying as low when p = p,,, i.e. coverage is truly high; and the
risk 3 is the probability of classifying as high when the health indicator coverage p = p;, i.e. cov-
erage is truly low. The risk a can then be interpreted as the ‘service provider risk,” namely the
risk of intervening in an area that actually has high coverage; and the risk 3 interpreted as the
‘population risk,” namely the risk that a truly under-performing area is classified as having ade-
quate coverage. It is important to note that the LQas equations in 1 are often parameterized dif-
ferently in the literature depending on the application, and the interpretation of the risks
changes with the parameterization. The  and f risks are not restricted for sas with p; < p < p,,,
i.e. in the “grey region.” Choice of the design parameters p;, p,, @, and ff has been discussed else-
where [3-5] and is not addressed in this paper.

Typically, the probabilities in Eq 1 are calculated by assuming data are collected using sim-
ple random sampling (srs) from the target population and then modeling X ~ Binomial(n, p).
Implementing srs requires enumerating and randomly sampling individuals from the target
population, a challenging feat in geographically disperse and hard to reach populations. Cluster
sampling surveys are popular in M&t, where enumerating clusters (often villages) and sampling
within clusters is less costly [6]. Commonly used rapid M&E cluster surveys include 30 x 30
emergency nutrition surveys [7, 8] and 30 x 7 Expanded Program of Immunization (Ep1) sur-
veys [9].

Recently, three methods have been proposed to adjust LQas sample sizes and decision rules
to accommodate cluster sampling. We refer to these methods as the Pezzoli [10-13], Hedt [14],
and Hund [15] methods. In this paper, we contrast these methods and provide recommenda-
tions for choosing a cluster LQas design. First, we review two-stage cluster sampling surveys
and describe the three methods for melding cluster sampling with Lqas. We then evaluate these
methods using example designs from vaccination and nutrition surveys. Finally, we provide
recommendations for choosing a cluster LQas design based on these results.

Methods
Cluster surveys

Global health M&E surveys often implement two-stage cluster sampling, with clusters sampled
using probability proportional to size (pps) and individuals sampled using an approximation to
srs. When clusters are sampled with replacement (or the probability of sampling the same clus-
ter more than once is small), this design is ‘self-weighting’. That is, every individual in the tar-
get population has an equal probability of being sampled and the data do not have to be
weighted during the analysis. Cluster LQas decision rules rely on use of self-weighting designs,
and throughout this paper we assume that data are collected using a self-weighted two-stage
cluster sampling design.
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When individuals within a cluster are more similar than those between clusters, the data
cannot be analyzed as a simple random sample. Consider a population of size N consisting of K
total clusters of size M; for cluster j. Define X;; as the health indicator status (1 success, 0 failure)
of subject i in cluster j; X; = ¥; X;; as the number of ‘successes’ in cluster j; and X = ¥; X; as the
number of ‘successes’ in the sample. Suppose k clusters are sampled and m individuals are sam-
pled per cluster (n = km) and define p; as the coverage in cluster j. In the presence of clustering,
the cluster-level coverages {p;} differ from the overall coverage p; one measure of clustering is
the standard deviation of p; across clusters, denoted 0. Another measure of clustering is the
intraclass correlation, p. For two-stage designs in which cluster coverages {p;} have mean p and
standard deviation o and Xj|p; ~ Binomial(m, p;), the intraclass correlation is defined as [16]:

0.2

p(1—p) @

p =
The intraclass correlation p varies between 0 and 1 with higher values denoting more clustering
(technically, under alternative models, p can be negative when individuals within a cluster are
less similar than between clusters, though this setting is typically not relevant to M&E surveys
and is not considered here).

Cluster sampling in LQAS

Initially, cluster sampling LQas surveys were designed to minimize the amount of variance infla-
tion due to clustering without directly inflating the sample size for clustering. For instance,
within-cluster sample sizes of m = 1 have been used in LQas surveys (e.g. [17]; [18]) to achieve
the same precision as a srs survey. In 67 x 3 and 33 x 6 LQas nutrition surveys, small within-
cluster sample sizes were selected to minimize cluster sampling variance inflation [19-21].
Stroh and Birmingham (2009) use cluster sampling for LQas neonatal tetanus elimination sur-
veys and ignore the cluster sampling design, noting that cluster sampling approximates srs
‘when an attribute to be measured in a population is rare or is homogeneously distributed’

[22]. The common theme between these approaches is that the cluster sampling design can be
ignored if the within cluster sample size is small or if clustering is negligible. In these situations,
the LQas sample size and decision rule can be calculated using the standard binomial model
with no adjustments required to accommodate the use of cluster sampling.

In practice, clustering is often not negligible, and visiting many clusters and selecting few
individuals per cluster may be less logistically feasible or cost-effective than sampling more
individuals per cluster. To address these limitations, three methods have recently been devel-
oped to explicitly accommodate clustering sampling at the design-phase in cluster LQAs surveys:
the Pezzoli [10-13], Hedt [14], and Hund [15] methods. In this paper, we compare these three
methods (Hund, Hedt, and Pezzoli) for explicitly accounting for the cluster sampling design
and do not discuss designs that ignore the cluster sampling design. We describe these methods
below.

Pezzoli method. Pezzoli et. al [10] proposed the first cluster LQas method, developed to
assess vaccination coverage. The mathematical representation of the Pezzoli model described
in[11,12] is:

p; ~ Binomial(y,p)/n

Sd@j) = 0, E@j):p (3)
X

]

2

Binomial(m, p,;).

We refer to this model as a binomial-scaled model, because p; is modeled as a binomial random
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variable scaled by 7 to ensure that p; € (0,1). Clustering is incorporated through specifying a
value for o, the standard deviation of the cluster level coverages. To apply the Pezzoli design,
is selected such that o” = p(1 — p)/n. Using the relationship between o and p, it follows that 1 =
1/p. This method is subject to some rounding error, since 77 is rounded to an integer.

To select designs, the authors choose p = {p, p,} and ¢ € (0,.1) and determine decision rules
via simulation based on the distribution of X = ¥; X;. There is currently no user-friendly soft-
ware for implementing the Pezzoli method that allows users to select their own design, though
Stata simulation code is available from the authors of [11]. We have written R functions for
designing these surveys and provide examples using this code at https://github.com/Ibhund/
ClusterLQAS_PLOS.

Hedt method. Hedt et. al [14] propose modeling X; as a beta-binomial random variable
with mean p and intraclass correlation p:

X; ~ Betabinomial(m, p, p) (4)

The betabinomial model can also be written as a two-stage model, with X; ~ Binomial(m, p;)
and p; ~ Beta(p, p) (where the beta distribution is parameterized based on the mean p and
intraclass correlation p). The beta distribution has support on (0,1), and this betabinomial
model is common for clustered binary data. The final decision rule is based on the distribution
of X =3, X;. Hedt et. al [14] provide R code for selecting sample sizes and decision rules for this
method; the R package in [15] can also be used to calculate sample sizes and decision rules
using the Hedt method.

Hund method. Hund and Pagano (2014) do not specify a distribution for p; and instead
use an overdispersed binomial model for X [15]:

X ~  Quasibinomial(n,p)

(5)
E(X) = np, Var(X)=Dnp(l-p)

where D is the survey design effect allowing variability in X above that of the binomial distribu-
tion. The design effect is the ratio of the variances using cluster sampling compared to srs and
is the multiplicative factor by which the sample size should be inflated to achieve the same pre-
cision as srs when using cluster sampling [23]. For the two-stage cluster sample with large K,
the design effectis D=1 + (m — 1)p.

The Hund method can also be written in terms of the ‘effective sample size’ as X* ~ Bino-
mial(n*, p), where X* = X/D and n* = n/D is the effective sample size. Thus, the sample size
and decision rule can be calculated under srs and inflated by the design effect to accommodate
clustering. The R package in [15] can be used to calculate sample sizes and decision rules for
this method. A limitation of the Hund method is that & and j errors are inexact due to round-
ing error when transforming from the effective sample size scale.

Evaluating the designs

There are two primary differences between the methods above: the distributional assumptions
(binomial-scaled, beta, and quasi-binomial models) and clustering parameterization using o
versus p (that is, the difference between treating o or p as known and the same for p;and p,,).
These differences are summarized in Table 1. We compare the impacts of these differences
across the Pezzoli, Hedt, and Hund methods and determine situations in which the choice of
method results in a substantively different design. As example designs, we use three couplets
for p;and p,: 55-70%; 75-90%; and 90-95%. The first two couplets are from the 6 x 10 two-
stage cluster designs for vaccination coverage proposed in [12]. The last couplet is consistent
with the 5-10% couplet used in the 33 x 6 or 67 x 3 malnutrition LQAS surveys. We

PLOS ONE | DOI:10.1371/journal.pone.0129564 June 30, 2015 4/15


https://github.com/lbhund/ClusterLQAS_PLOS
https://github.com/lbhund/ClusterLQAS_PLOS

@’PLOS ‘ ONE

Choosing a Cluster LQAS Survey Design

Table 1. Differences between the 3 methods.

Method Distribution for p; Clustering parameterization
Pezzoli Binomial-scaled o fixed
Hedt Beta p fixed
Hund None specified p fixed

doi:10.1371/journal.pone.0129564.1001

parameterize these designs according to Eq 1 and specify X as the number of successes (vacci-
nated children or children with no evidence of malnutrition) out of n. As noted above, both the
Pezzoli and Hund models are subject to some rounding error; we use nearest integer rounding
for all calculations. All analyses have been conducted using R 3.1 .1 [24], and code for repro-
ducing all figures and tables, along with the R package from [15], is available at https://github.
com/Ibhund/ClusterLQAS_PLOS.

Comparing the distributional assumptions. First, we conduct a simulation study to eval-
uate whether the choice of distributional model (binomial-scaled, beta, and quasi-binomial)
makes a substantive difference in the classification precision of the cluster LQas designs. For the
2 p;and p,, threshold couplets from [12], we use the 6 x 10 design with decision rules d = 38
and 50; for the 90-95% couplet, we use the 33 x 6 design with d = 13. We fix o = .1 for all mod-
els (we repeat the analysis fixing o = .05; results are similar and are not presented). That is, we
select the clustering parameters at p; and p,, such that o = .1 for all models and thresholds (devi-
ating from the specific methods described above) to isolate the impact of the probability distri-
bution choice. For each pj, p,, couplet, we generate 10,000 draws from each of the three
distributions fixing m, k, d, and ¢ = .1 and examine how o and §§ change with the distributional
assumption. For the quasi-binomial and betabinomial models, we calculate p using Eq 2. We
then repeat the simulation fixing p = .1 (rather than fixing o = .1) and calculate ¢ for the bino-
mial-scaled model using Eq 2.

Fixing o versus p. Historically, survey sample size calculations rely on the design effect
and thus assume p is known and constant across levels of coverage p [16, 25]. The Hund and
Hedt methods also model clustering assuming p is known and fixed as a function of p. The Pez-
zoli method parameterizes clustering differently, assuming o is fixed as a function of p. Fixing p
results in less cluster-level variance (smaller ¢) as p moves away from .5. Fixing o results in the
same variance of p; for all levels of p (and larger p as moves away from .5). Intuitively, variabil-
ity in p; may decrease as p moves away from .5 (e.g. less variability in the coverage of a rare
event), though there is also evidence that p decreases as p moves away from .5 [25, 26]. It is
thus not immediately clear as to whether fixing o, p, or neither is appropriate.

To examine design differences according to the clustering parameterization, we compare
the Pezzoli, Hund, and Hedt designs when o= .1 and when p = .1. That is, we first calculate p;
and p, such that 0 = .1 at p; and p,, respectively, and compare fixing both p; and p,, for the Hedt
and Hund designs to the Pezzoli design with o = .1. We then repeat this exercise, calculating o;
and o, such that p = .1 at p; and p,, respectively, and compare fixing both ¢, and o, for the Pez-
zoli design to the Hedt and Hund designs with p = .1. We again evaluate the three couplets 55-
70%, 75-90%, and 90-95% and specify a = f = .1 and m = 10.

We then examine reported estimates of p, 0, and p from [12] and [27] to assess how esti-
mates of p and o vary as a function of estimated vaccination coverage in practice. Before delving

into this data example, we note that the standard deviation of the estimated p; s, s =
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\/ (k — 1)712;. (b, — p)” where p is the estimated coverage, is an overestimate of 0. Some have

criticized the Pezzoli method for using an upper bound of o = .1 in the designs and cite exam-
ples of 0 >.1 in practice. Using s as an estimate of ¢ with small m likely accounts for some of
this phenomenon. While s estimates sd(p,), sd(p;) is higher than o, because sd(p,) includes
additional variability associated with the estimation of p,. That is, the standard deviation of the
estimated cluster coverages is not an accurate estimate of ¢. In the Appendix, we derive an esti-
mator for ¢, denoted 62

62 = mSQ_ﬁ(l_IA)). (6)

m—1

From Eq 6, it is clear that using s to estimate ¢ is only appropriate when m is large (which is sel-
dom the case in cluster LQAs surveys).

We estimate 6 using reported p and standard errors s/+/k for 20 different 6 x 10 surveys in
[12]. Minetti et. al [27] report p, s, and intraclass correlation estimates p from 41 different
10 x 15 vaccination coverage surveys. Rather than using Eq 6, we estimate 6 = pp(1 — p) for
the data in [27]. For each dataset, we estimate the relationship between p and p and between &
and p using a nonparametric loess smooth [28] based on the 1oess function in R. We use the
default parameters in the 1oess function, using a weighted least squares fit based on 75% of
the data for the local smoothing.

For each data example, we then estimate operating characteristic (oc) curves for the 6 x 10
design with d = 50 for the 75-90% couplet using the binomial-scaled distribution but varying
the values of p and o. First, we assume p is fixed at the value corresponding to the mean of p
across all SAs; next, we allow p to vary as a function of p, estimating p from the nonparametric
loess smooth for p. We then repeat for o, resulting in 4 oc curves for each data example.

Results
Distributional assumptions

In Fig 1, we contrast the shapes of the beta and binomial-scaled distributions for p; (the Hund
method does not impose a distribution on p;). We plot the shape of these distributions with o=
land p=.5,.7 and .9. When p = .5, these distributions are symmetric and similar. When p

Fig 1. Shape of the beta and binomial-scaled distributions with standard deviation o0=.1 and meansp =.5,p=.7,andp = .9.

doi:10.1371/journal.pone.0129564.9001
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Table 2. Comparing distributional assumptions between the methods when o0=.1 and p = .1.

p;=.55,p,=.7 pi=.75,p,=.9 p;=.9,p,=.95
a B a B a B

o=.1

Binomial-scaled .203 107 147 .081 .203 .103
Betabinomial 195 .109 143 .088 .203 107
Quasi-binomial .159 .160 .072 169 .204 .103
p=.1

Binomial-scaled .234 149 147 11 170 107
Betabinomial .233 .148 131 118 .168 .106
Quasi-binomial 222 149 .092 153 126 143

For the 55-70% and 75-90% couplets, the risks for the 6 x 10 design with d = 38 and d = 50, respectively,
are shown. For the 90-95% couplet, the risks for the 33 x 6 design with d = 13 are shown. We compare the
binomial-scaled (Pezzoli), beta (Hedt), and quasi-binomial (Hund) models.

doi:10.1371/journal.pone.0129564.t002

2.5, both distributions are skewed, with the beta distribution more skewed than the binomial.
Additionally, as p — 1 and as o increases, the binomial distribution becomes more discrete.
When p =.9and ¢=.1,77=9 and p; can only take on 10 distinct values: (0,1/9,.. .,8/9,1).

While Fig 1 highlights important differences in beta and binomial-scaled distributions, our
simulations suggest that the distribution choice does not have a large impact on the o and
risk levels (Table 2). Specifically, when the clustering levels are fixed (to either 6 =.1 or p = .1),
the differences in risks between the binomial-scaled and beta model are negligible for these
designs, even with the relatively high levels of clustering specified. The quasi-binomial model
generally results in similar o and f errors to the other models, though differences occur due to
rounding error in small sample sizes. Results of these simulations thus suggest that specifica-
tion of the distribution for p; does not markedly impact the o and j errors.

Clustering parameterization

In Tables 3 and 4, designs are compared based on the clustering parameterization (fixed o ver-
sus fixed p). For the 55-70% and 75-90% couplets, the designs are similar regardless of how
clustering is parameterized. For the 90-95% couplet, the sample size is much larger in the Hedt
and Hund methods with fixed p,, versus fixed pj; similarly, the sample size is much larger in the
Pezzoli method with fixed o; versus fixed o,,. Recall that the examples in Tables 3 and 4 assume
that m, the sample size within clusters, is fixed and increments the overall sample size by add-
ing additional clusters. As noted above, clustering variance inflation increases as the within-
cluster sample size increases. Subsequently, discrepancies between the three methods are more
pronounced when the number of sampled clusters k is fixed, rather than m. As an example, if
we were to fix the number of clusters to k = 6 rather than fixing the within-cluster sample size
m = 10, the total sample size n would range between 72 and 150 when o = .1 (analogous to the
70-90 sample size range in Table 3 with m fixed).

Eq 2 helps explain the sensitivity of the sample size to the clustering parameterization when
prand p,, are near 0 or 1. The parameters p and o will be similar for both p; and p,, when p,(1 —
pn =~ p.(1 —p,). Hence, p;and p,, are negligibly different when o = .1 for the 55-70% couplet,
whereas p,, is nearly double p; for the 75-90% and 90-95% couplets. To illustrate this difference
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Table 3. Comparing the Pezzoli, Hund, and Hedt designs for o0=.1,a=8=.1,and m=10.

n d k m a B
py=.55,p,=.7
SRS 71 44 .091 .096
Pezzoli o=.1 100 62 10 10 .090 .096
Hund p = .04 110 68 11 10 .069 .091
Hedt pr=.04 110 68 11 10 .071 .097
Hund py =.05 110 69 11 10 .091 .079
Hedt py =.05 110 68 11 10 .071 .099
p;=.75,p,=.9
SRS 40 33 .100 .096
Pezzoli o=.1 80 66 8 10 .088 .076
Hund p=.05 70 58 7 10 .093 .071
Hedt p = .05 70 58 7 10 .081 .077
Hund py =11 80 66 8 10 .100 .096
Hedt py =11 90 75 9 10 .096 .074
pi=.9,p,=.95
SRS 187 173 .087 .098
Pezzoli o=.1 440 407 44 10 .095 .091
Hund o =.11 380 352 38 10 .096 .087
Hedt o =11 370 343 37 10 .100 .093
Hund py = .21 540 501 54 10 .087 .098
Hedt py = .21 550 510 55 10 .088 .091
doi:10.1371/journal.pone.0129564.t003
Table 4. Comparing the Pezzoli, Hund, and Hedt designs for p=.1,a=8=.1,and m=10.
n d k m a B
pi=.55,p,=.7
SRS 71 44 .091 .096
Pezzoli 0,=.16 140 87 14 10 .098 .098
Pezzoli o,=.14 130 81 13 10 .099 .087
Hund p=.1 140 87 14 10 .091 .087
Hedt p=.1 140 87 14 10 .087 .099
pr=.75p,=.9
SRS 40 33 .100 .096
Pezzoli o =.14 110 90 11 10 .063 .095
Pezzoli o, = .09 80 66 8 10 .075 .071
Hund p=.1 90 74 9 10 .093 .071
Hedt p=.1 90 75 9 10 .088 .073
pr=.9,p,=.95
SRS 187 173 .087 .098
Pezzoli o,=.09 410 379 41 10 .093 .098
Pezzoli o,=.07 320 296 32 10 .088 .094
Hund p=.1 360 332 36 10 .093 .090
Hedt p=.1 370 343 37 10 .089 .085
doi:10.1371/journal.pone.0129564.t004
PLOS ONE | DOI:10.1371/journal.pone.0129564 June 30, 2015 8/15
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Fig 2. Plot of beta distributions with fixed mean coverages and varying standard deviation and/or intraclass correlation. The dotted lines represent
the mean coverages p,; = .75 and p, = .9, which are the same in all 3 panels. Left: standard deviation is fixed for both distributions at o = .1; middle: intraclass
correlation is fixed at p, = .05 (note: p, = .1%/(.75*.25)); right: intraclass correlation is fixed at o, = .11 (note: p, = .1%/(.9*.1)).

doi:10.1371/journal.pone.0129564.g002

for the 75-90% couplet, we plot beta distributions fixing o = .1, fixing p;, and fixing p,, in Fig 2.
Unlike the distributional assumptions, choice of clustering parameterization can substantially
impact the final sample size for the survey when p; and p,, are near 0 or 1.

Next, we examine whether existing data support one of the two proposed parameterizations.
In Figs 3 and 4, 6 and p are plotted as a function of p for the data in [12] and [27], respectively.
Both p and ¢ decrease as a function of estimated vaccination coverage (less clustering occurs
in more highly vaccinated areas), consistent with [25] and [26]. Fixing either o or p likely
results in some level of misspecification of & and 5. The oc curves corresponding to the differ-
ent clustering specifications are also shown in Figs 3 and 4. In the example from [12], the @ and
B risks are substantially higher when the mean versus the lowess smooth estimate of o and p are
used. This inflation of the risks occurs because o and p decrease as a function of p but the aver-
age coverage across sas is lower than 75%. The risks are not inflated in the example from [27]
because the range of vaccination coverages is similar to the 75-90% couplet thresholds.

Discussion

After reviewing three methods for implementing cluster sampling in LQas surveys, we conclude
that the cluster LQas methods result in similar designs when p; and p,, are far from 0 or 1 or
when clustering is minimal. In these situations, the user should not be concerned about which
of the cluster methods to use, as the methods should all result in similar designs. Our simula-
tion study suggests that the choice of distributional assumptions also does not appear to sub-
stantively impact the survey design.

Choice of the clustering parameterization is the major factor that can impact the final clus-
ter LQas survey design. Specifically, if p; or p,, is near 0 or 1, the design (sample size) changes
substantially depending on the clustering parameterization, namely whether p or o is fixed as a
function of p. That is, when p; <.1 and p,, >.9, clustering parameters should be selected care-
fully to avoid severe misspecification of classification risks. As an example, assume p;, p,, >.5.
When ¢ and p result in the same amount of clustering for p = p; (that is, 0 = pp,(1 — p;)), the

PLOS ONE | DOI:10.1371/journal.pone.0129564 June 30, 2015 9/15
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Fig 3. Top panel: Estimated o and p as a function of jy‘, for 37 areas in Minetti et. al [27], with loess smooth overlayed. Bottom panel: Solid line
represents OC curve for n = 60, d = 50 for p, = .75, p,, = .9 design when o and p are fixed at the mean value of & (left) and § (right). Dashed line represents OC
curve when o and p vary over p according to the predicted loess smooth of & (left) and /) (right).

doi:10.1371/journal.pone.0129564.9003
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Fig 4. Top panel: Estimated o and p as a function of jy‘, for 20 areas in Greenland et. al [12], with loess smooth overlayed. Bottom panel: Solid line
represents OC curve for n = 60, d = 50 for p, = .75, p,, = .9 design when o and p are fixed at the mean value of & (left) and § (right). Dashed line represents OC
curve when o and p vary over p according to the predicted loess smooth of & (left) and /) (right).

doi:10.1371/journal.pone.0129564.9004
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design with fixed o will require a larger n; for p = p,,, the design with fixed p will require a larger
n. Differences in n between these options can be substantial when p,, is close to 1 or p,—p; is
large.

We did not find evidence that p is constant as a function of p (assumed by Hedt and Hund)
nor that o is constant as a function of p (assumed by Pezzoli). In two vaccination coverage
examples, estimates of both p and o decrease as coverage increases, consistent with [25, 26].
Using historical data to plot clustering estimates 6 and p as a function of estimated coverage p
can help evaluate the clustering parameterization assumptions. Our data analysis suggests that,
if clustering design parameters (o or p) are determined from historical data, only estimates of &
and p from sas with estimated coverages near the range of p; and p,, should be incorporated. To
facilitate incorporation of historical data, we provide r functions that estimate ¢ using sum-
mary statistics commonly available in the literature. We strongly encourage cluster LQas users
to publish their estimates of these summary statistics (p, s, and p) for each sa to provide more
historical data for specifying these design parameters in the future.

When the Hund or Hedt methods are used, we propose the following steps to choose a
design:

1. Define p,, as whichever of p; or p,, is closer to .5. Estimate p using existing data or existing
literature using sas with coverage estimates near p,,. If data are not available, consider how
much variability is expected around p,,, to select p.

2. Determine the cost of sampling a cluster and sampling each individual per cluster.
3. Iterate through choices of m and k to minimize cost for e, S, pj, p,,» and p.

The same steps could be applied to the Pezzoli method, replacing p with 0. The r package
accompanying this paper can help achieve Steps 1 and 3. Additionally, users can examine the
sensitivity of their designs to the selected model (as in Tables 3 and 4) by calculating different
possible designs with varied clustering parameterizations (after selecting the relevant values of
P Pu @ and ) using the R package. Knowledge of the design’s sensitivity to the clustering
parameterization contributes to understanding the robustness of the design.

In Step 1 above, determining p or o based on p,, has two advantages: (1) o and p are likely to
decrease as p moves away from .5, so this clustering estimate is conservative (note that, using
this algorithm, fixing ¢ is more conservative than fixing p); and (2) visualizing a highly skewed
distribution in terms of a mean and standard deviation is not straightforward, and the skew-
ness of the beta and binomial-scaled distributions increases as p moves away from .5. Returning
to Fig 1, the beta and binomial-scaled distributions with mean p = .5 are symmetric, and one
can easily visually check that o = .1 by examining the spread of the distribution. With mean p =
.9, there is no way to visually inspect these highly skewed distributions and conclude that o =
1.

If the clustering parameters are underestimated in practice, the survey design will not have
the desired precision; that is, the true & and f§ risks will be higher than those specified by design.
One way to protect against this situation is to employ a sequential design [22, 29]. In a sequen-
tial design, the data are collected in multiple stages. In theory, the clustering parameters could
be estimated as the data are collected and the design could then be changed to accommodate
the observed clustering values. However, the variance of clustering parameters is high in small
samples. Further, sequential designs are logistically more challenging. Future research should
evaluate such sequential designs in simulation and in practice. Users should keep in mind that
overestimating clustering parameters at the design phase is always more conservative and adds
to the cost of the survey.
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In practice, to select an 1QAs survey design, the user first must decide whether srs is feasible
and practical. If srs is used, survey design can proceed using a standard binomial model and
the simple steps described in the Introduction. If srs is not used, two-stage cluster sampling is a
commonly used practical alternative. In some situations, the cluster sampling design can be
ignored when small within-cluster sample sizes are used [17, 19-21] or when clustering is
known to be negligible [22]. Survey design is much simpler when the cluster sampling design is
ignored, because the user can act as though the data are a simple random sample and use stan-
dard Lqas procedures for design; that is, the user does not need to specify a clustering model or
specify the clustering amount (i.e. p or 0). When the cluster sampling design cannot be ignored,
choice between the cluster LQas methods (Pezzoli, Hedt, and Hund) is not straightforward. His-
torically, p, not g, is fixed as a function of p in design calculations [16, 25]. Uniting the method-
ology for LQas surveys with other M&E estimation surveys may help de-mystify LQas. The
binomial-scaled model is not used in the statistics or survey sampling literature, possibly due to
the discrete nature of this distribution. However, based on the empirical calculations in this
article, choice between the Pezzoli, Hedt, and Hund methods should depend more upon the
anticipated clustering patterns in the study population than the distributional specification
(though prior information on clustering is likely quite limited). Hence, further research should
attempt to characterize clustering patterns in specific applications and provide suggestions for
best-practice cluster LQas designs on a setting-specific basis. We only considered data examples
in the context of vaccination coverage cluster LQAS surveys in this paper, but the validity of
different clustering parameterizatons should be evaluated in other contexts, for instance
nutrition.

Cluster sampling in 1Qas has also been recently discussed in the context of Large Country
LQAS (Lc-LQas) [18, 30, 31]. These Lc-LQas surveys select sas using cluster sampling with the
goals of estimating prevalence over a large geographic region and classifying indicators at the
sa-level. The Lc-LQas surveys are distinct from cluster LQas surveys discussed in this paper
which sample clusters within sas, rather than sampling sas.

Future work could explore accommodating uncertainty in p or o at the design phase. In the
data examples in this paper, both p and ¢ vary with p, complicating selection of a cluster LQas
method. All three methods could be modified to allow o or p to vary as a function of p, though
this modification would introduce an additional design parameter into the LQas procedure.
Future work should investigate the merits of considering designs with different clustering
parameters corresponding to p; and p,, or exploring different clustering parameterizations [25].
Additionally, all of the cluster surveys discussed in this paper rely on using a self-weighting
sampling design. Future work should explore how to extend LQas designs for unequal probabil-
ity weights.

Appendix

Assume we have a model where p; ~ F with E(p;) = p and Var(p;) = ¢ and X; ~ Binomial(m,
pj)- Let p; = X;/m. To estimate o” from summary statistics, note that:

Var(p;) = E{Var(p,lp,)} + Var{E(p,|p,)} = E{Pj(lm—P})} Ty

Additionally, E{p,(1 — p,)} = E(p;) — E(p}) = p(1 —p) — 0.
Then, Var(ﬁj) = P(l+)“’2 + a2,

mVar(p;)—p(1—p)
m—1 :

Solving for ¢°, we have that o> =
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Plugging in the empirical variance of the p; s for Var(p;) and p for p, the final estimator is:

srome—p—p)

m—1

This estimator is unbiased for o” as m, k, or mk gets large (i.e. Var(p) — 0 or m — o0),

since E(6%) = ¢* + —V;’ﬁ) .

Note that 6> < 0 when s* < p(1 — p)/m (within-cluster variance > between cluster vari-

ance). When estimates of o are negative, we use 6% = 0.
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