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Objective. Combined cisplatin (CDDP) and radiotherapy is increasingly being used to treat advanced head and neck cancers. As
both CDDP and radiation can cause hearing loss, it is important to have a better understanding of the cellular and molecular
ototoxic mechanisms involved in combined therapy. Procedure. The effects of CDDP, radiation, and combined CDDP-radiation
on the OC-k3 cochlear cell line were studied using MTS assay, flow cytometry, Western blotting, and microarray analysis. Results.
Compared to using CDDP or radiation alone, its combined use resulted in enhanced apoptotic cell death and apoptotic-related
gene expression, including that of FAS. Phosphorylation of p53 at Ser15 (a marker for p53 pathway activation in response to
DNA damage) was observed after treatment with either CDDP or radiation. However, posttreatment activation of p53 occurred
earlier in radiation than in CDDP which corresponded to the timings of MDM2 and TP53INP1 expression. Conclusion. Enhanced
apoptotic-related gene expressions leading to increased apoptotic cell deaths could explain the synergistic ototoxicity seen clinically
in combined CDDP-radiation therapy. CDDP and radiation led to differential temporal activation of p53 which suggests that their
activation is the result of different upstream processes. These have implications in future antiapoptotic treatments for ototoxicity.

1. Introduction

Combined chemoradiotherapy is increasingly being used to
treat advanced head and neck cancers. During radiotherapy,
the ear structures are often included in the radiation
fields and it is generally accepted that radiation-induced
sensorineural hearing loss can result. Cisplatin (CDDP),
widely used as an effective antineoplastic drug for these
cancers, is also known to cause ototoxicity. In a randomized
blinded study, it was demonstrated that patients who had
received radiotherapy and concurrent/adjuvant chemother-
apy using CDDP experienced greater sensorineural hearing
loss compared with patients treated with radiotherapy alone
[1]. This was especially so in the high-frequency sounds of
the speech range, resulting in significant hearing disability.

In recent years, immortalized cell lines derived from the
mouse organ of Corti had been developed and characterized
[2]. For example, the OC-k3 cell line was derived from the
organ of Corti of the transgenic mouse. It encoded the large

T antigen of the SV40 (simian virus 40), a thermolabile viral
protein which drove the cells to proliferate indefinitely at
33◦C and in the presence of gamma interferon [3]. This
cell line expressed the neuro-epithelial precursor cell marker
nestin and the inner ear cell marker OCP2, but did not
exhibit markers for glial or neuronal cells. In addition, OC-
k3 cells expressed specific auditory sensory cell markers
(myosin VIIa and the acetylcholine receptor alpha-9) and the
supporting cell marker connexin 26. This and other similar
cell lines had been regarded as good models to study the
mechanisms of cell fate in the organ of Corti of the cochlea
[4].

P53 had been found to play an important role in
apoptotic cell death associated with ototoxicity. In a CDDP-
induced apoptosis experiment using cochlear organotypic
cultures prepared from rats at postnatal days 3-4, significant
upregulation of phospho-p53 serine 15 expression was found
and apoptosis was suppressed by pifithrin-α, a p53 inhibitor
[5]. Other studies have shown that the deletion of the p53
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gene protects sensory hair cells from CDDP-induced cell
death, caspase-2 activation, and cytochrome c translocation
[6]. In radiation-induced ototoxicity, it was found that p53
together with reactive oxidative species (ROS) played an
important role in cochlear cell apoptosis [7].

In the combined use of CDDP and radiation, the
cellular and molecular mechanisms leading to ototoxicity
had not been studied. It is important to have a better
understanding of these mechanisms as effective preventive
strategies directed at the relevant pathways can potentially
be developed. The present study found that although p53
played a role in both CDDP and radiation-induced cochlear
cell apoptosis, p53 was activated at different time points
after each treatment which corresponded to the time MDM2
and TP53INP1 were expressed. Additional apoptotic-related
genes that were not expressed when CDDP or radiation was
used alone were expressed when used in combination. This
included FAS, an important element involved in the extrinsic
apoptotic pathway.

2. Materials and Methods

2.1. Cell Culture. The immortalized OC-k3 cell line derived
from the organ of Corti of the transgenic mice (Immorta-
mouse H-2Kb-tsA58, Charles Rivers Laboratories, Wilming-
ton, MA) was used. The cell line was cultured in high-glucose
Dulbecco’s Eagle’s medium (DMEM, Gibco, Grand Island,
NY) supplemented with 10% fetal bovine serum (FBS,
Gibco, Grand Island, NY), 1% penicillin-streptomycin (P/S,
Gibco, Grand Island, NY), and 50 U/ml gamma-interferon
(mouse recombinant, Sigma-Aldrich, St. Louis, MO) and
maintained at 33◦C with 10% CO2. To study the impact
of chemoradiation treatment, OC-k3 cells were exposed to
5 Gy of gamma irradiation alone, 0.5 μg/ml of cisplatin alone,
or 5 Gy of gamma irradiation in the presence of 0.5 μg/ml
cisplatin (Pfizer, Bentley, WA).

2.2. Cell Viability Assay. The OC-k3 cells were seeded in
96-well plates at densities of 5 × 103 cells/well in 200 μl
complete medium after being exposed to chemo-irradiation
treatment. Cell viability was determined using CellTiter 96
Aqueous One Solution Cell Proliferation Assay (Promega
Corp., Madison, WI) containing tetrazolium compound
3-[4,5-dimethylthiazol-2-yl]-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS) at 3 h, 24 h, 48 h,
and 72 h after chemo-irradiation. This test was based on
the bioreduction of MTS compound into a soluble and
colored formazan product by NADPH or NADH, which is
produced by dehydrogenase enzymes in metabolically active
cells. Twenty microliters of MTS were added to each well,
incubated at 33◦C for 3 h, and then the absorbance was
recorded at 490 nm with a microplate spectrophotometer
(Benchmark Plus, Bio-Rad Laboratories, Hercules, CA).

2.3. Cell Death Analysis. The cells were collected at each time
point post CDDP-radiation treatment, fixed in 75% ethanol
and stored at 4◦C. Upon analysis, the cells were washed
with PBS and incubated with 100 μg/ml propidium iodide

(PI) containing 0.1% Triton X-100 and 500 μg/ml RNase
A in 50 μl PBS for 30 mins in darkness at 4◦C. The DNA
contents of cells were analyzed using the flow cytometer
CyAnTM ADP Analyser (Beckman Coulter, Fullerton, CA).
The magnitudes of the sub-G1 fractions were determined
using the Summit 4.3 software (Beckman Coulter, Fullerton,
CA). DNA fragmentation resulting from apoptotic cell death
would manifest in the sub-G1 fraction.

2.4. Western Blot Analysis. Protein extraction was done by
incubating the cells at 4◦C for 30 minutes in lysis buffer con-
taining 150 mM NaCl, 10 mM Tris-HCl pH 7.4, 2 mM EDTA,
0.5 mM EGTA, 1 mM sodium orthovanadate, 0.1% sodium
deoxycholate, 0.5% NP-40, and 1% Triton X-100 supple-
mented with 1x complete protease inhibitor mixture (Roche,
Basel, Switzerland). Equal amounts of protein samples were
denatured separated by 10% SDS-PAGE and transferred
onto nitrocellulose membrane by iBlot dry blotting system
(Invitrogen, Carlsbad, CA). The membrane was blocked with
5% nonfat milk in PBS with 0.1% Tween-20 (PBST) for 1 h,
followed by an overnight incubation of primary antibodies
in 5% BSA/PBST at 4◦C. Primary antibodies included anti-
p53 pAb (NCL-p53-CM5p, Novocastra), anti-phospho-p53
(ser-15) pAb, anti-phospho-c-jun (ser-73) pAb, anti-c-jun
(60A8) mAb (Cell Signaling Technology, Inc.), and anti-beta-
actin mAb (Sigma-Aldrich, St. Louise, MO). After washing
the membrane extensively, incubation with horseradish
peroxidase-conjugated antirabbit or antimouse secondary
antibody (Cell Signaling Technology, Inc.) was done for 1 h
at room temperature. After washing, the membrane was
incubated in Immobilon Western chemiluminescent HRP
substrate (Millipore, Billerica, MA), and the chemilumi-
nescence signals were detected using UVIchemi (UVItec,
Cambridge, UK), a dedicated chemiluminescence documen-
tation system. For reprobing with a new primary antibody,
the membrane was stripped in Re-Blot plus strong solution
Western blot stripping buffer (Chemicon, Temecula, CA) at
room temperature for 30 minutes and rinsed 3 times with
PBST for 10 minutes each time.

2.5. Microarray Analysis. The global changes of gene expres-
sion were analyzed at 3 h, 24 h, and 72 h after chemoir-
radiation, on the GeneChip Mouse Genome 430A 2.0
Array (Affymetrix, Santa Clara, CA). Biological duplicates
of experiments were performed. Briefly, RNA was extracted
from cells using TRIzol reagent (Invitrogen, Carlsbad, CA)
followed by generation of double-stranded cDNA. These
were used as templates for synthesis of biotin-labeled cRNA,
using the GeneChip IVT labeling kit in accordance with
the manufacturer’s instructions. The biotinylated cRNA was
purified using RNeasy Mini kit (Qiagen, Hilden, Germany)
and fragmented before reconstitution in a hybridization
cocktail mixture containing eukaryotic hybridization con-
trol. The hybridization was performed at 45◦C for 16 h
in a rotisserie oven set at 60 rpm. Upon completion, the
arrays were then loaded onto an Affymetrix Fluidic sta-
tion, washed according to the standard Affymetrix EukGE-
WS2v5 protocol and stained with streptavidin-phycoerythrin
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Figure 1: Cell viability analysis by MTS assay at different time
points (3 h, 24 h, 48 h, and 72 h) after treatment with 5 Gy gamma
radiation and 0.5 μg/ml cisplatin (CDDP). After co-treatment with
radiation and CDDP, cell viability was significantly reduced at
72 h. The data shown are the most representative of 3 separate
experiments.

(SAPE) solution. After washing and staining, the arrays
were scanned with the Gene Array scanner (Affymetrix,
Santa Clara, CA). Hybridization intensity data detected
by the scanner were automatically acquired and processed
by the Affymetrix GeneChip Operating Software (GCOS,
Affymetrix, Santa Clara, CA). The average intensity for all
the genes was normalized to 100. The statistical algorithms
implemented in GCOS software were used for analysis.
In a comparison expression analysis, each probe pair on
the experimental array was compared to the corresponding
probe pair on the baseline array (control). This generated
an associated “change” (increased, no change, or decreased)
to determine the relative expression of transcripts. To have
an overview of gene expression profiles, probe sets showing
chemoradiation-induced increased or decreased expressions
in both duplicated experiments were retrieved. The dif-
ferentially expressed genes of chemoradiation treatment
were submitted for biological functional analysis using
Ingenuity Pathway Analysis (IPA) tools (Ingenuity Systems,
http://www.ingenuity.com).

3. Results

3.1. Combined CDDP-Radiation Treatment Reduced Cell
Viability More than CDDP or Radiation Treatment Alone.
Cell viability analysis by MTS assay at different time points
revealed that although CPPD and radiation each exerted a
negative effect on cell viability, treatment when combined
appeared to have a greater effect. These effects were observed
at 48 hrs after treatment and became even more marked at
72 hrs after treatment (Figure 1).

3.2. Apoptosis Occurred Predominantly at 72 h after Combined
CDDP-Radiation Treatment . At 72 hrs after treatment,
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Figure 2: Flow cytometric subG1 phase as determined by PI
staining at different time points (3 h, 24 h, 48 h and 72 h) after
exposure to 5 Gy of gamma radiation and 0.5 μg/ml of cisplatin
(CDDP). Co-treatment with radiation and CDDP resulted in a
significant increase in subG1 phase at 72 h. The data shown are the
mean + SD of 4 independent experiments.

combined CDDP-radiation led to a greater increase in the
sub-G1 phase as compared to using CDDP and radiation
alone (Figure 2). As pointed out previously, DNA fragmen-
tation resulting from apoptotic cell death manifests in the
sub-G1 fraction.

3.3. Apoptosis-Related Gene Expressions were Enhanced by
Combined CDDP-Radiation Treatment. On analyzing the
results of molecular and cellular functions under the biologi-
cal functions of IPA, it was found that among the 3925 probe
set IDs which were differentially expressed in at least one
treatment, 942 represented 623 unique genes associated with
apoptosis (see Table 1). Their distribution at each time point
for the different treatment regimes is summarized in Venn
diagrams (Figure 3). A subset focusing on the genes, which
had a direct upstream or downstream relationship with p53,
is shown in Table 2. Combined CDDP-radiation treatment
resulted in an increase in the number of gene expressions
which was more than merely a summation of the number of
expressions resulting from individual treatments (Figure 3,
Table 2). At 72 hrs after treatment, 40 out of the 163 genes
listed (24.5%) were expressed in combined CDDP-radiation
treatment, but not when CDDP or radiation was used alone
(Table 2). Among these 40 genes was FAS, an important
element of the extrinsic apoptotic pathway.

3.4. Differential Temporal Activation of p53 Occurred with
CDDP and Radiation Treatment. It was observed that Post-
treatment activation of p53 occurred earlier in radiation
than in CDDP (Figure 4). In response to DNA damage,
activation of the p53 pathway normally occurs with the
phosphorylation of ser-15 in p53. The present study showed
radiation-induced phosphorylation of p53 occurred at 3 hrs
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Table 1: Differentially expressed apoptosis-related genes in each treatment group [irradiation (Gy), cisplatin (CDDP), or combination of
both (Gy + CDDP)] when compared to nontreated control cells at 3 h, 24 h, and 72 h after treatment

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

AAK1 1420025 s at,
1434935 at

I I

AARS 1423685 at D

ABCB1B 1418872 at I I

ABCC1 1452233 at I

ABCG2 1422906 at I

ABL2 1455495 at I

ACSL4 1451828 a at I

ACTN4 1423449 a at I

ACVR1 1448460 at D

ADAMTSL4 1451932 a at I

ADM 1416077 at,
1447839 x at

D D I I

AES 1420619 a at D

AFP 1416645 a at I

AHR 1422631 at I

AIMP1 1416486 at D

AKAP12 1419706 a at I I

AKT1S1 1428158 at,
1452684 at

D

ALDH1A1 1416468 at I I

ALDH1A2 1422789 at D

ALDOA

1416921 x at,
1433604 x at,
1434799 x at,
1439375 x at

D D I I I

ANKRD1 1420991 at,
1420992 at

I I I

ANLN 1433543 at,
1439648 at

I I

ANP32A 1421918 at D

ANXA1 1448213 at I I I

ANXA7 1416138 at I I

AP2A2 1452490 a at I

APBB2 1452342 at I

APEX1
1416135 at,
1437715 x at,
1456079 x at

D D

APOE 1432466 a at I I I

APPL1 1455159 at I

ARNT2 1434028 at I

ASAH2 1450726 at I I

ATF3 1449363 at D D D

ATF5 1425927 a at D D

ATG12 1451746 a at D D

ATG5 1418235 at I

ATM 1421205 at,
1428830 at

I I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

ATN1 1421149 a at I

ATP1A1 1451071 a at D

ATP7A 1436921 at I

ATXN2 1460653 at D

AURKA 1424511 at D I I I

AXL 1423586 at D I I

BAG3 1422452 at D

BANF1
1421081 a at,
1421082 s at,
1421083 x at

D D

BCAR1 1439388 s at,
1450622 at

D I I

BCL3 1418133 at I I

BCLAF1

1428844 a at,
1428845 at,
1436023 at,
1438089 a at

I I

BDNF 1422168 a at I

BECN1 1455880 s at,
1460320 at

I I

BGN 1437889 x at,
1448323 a at

D D I

BHLHE40 1418025 at D D I

BID 1417045 at,
1448560 at

D I I

BIRC3 1421392 a at I

BIRC5 1424278 a at I I

BLM 1448953 at I

BNIP2 1453993 a at D

BNIP3 1422470 at D

BPTF 1427310 at,
1456615 a at

I

BRAF 1435434 at I

BRCA1
1424629 at,
1424630 a at,
1451417 at

I

BRD2 1423502 at,
1437210 a at

D D D

BRE 1426312 at,
1426313 at

D D D

BTG1 1426083 a at D

BTG2 1416250 at,
1448272 at

I I

BUB1 1424046 at I I I I

BUB1B 1416961 at,
1447363 s at

I I I

C11ORF82 1429734 at I I I

C1QBP 1455821 x at D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

C3 1423954 at I I

CACNA1A 1450510 a at I

CACNA1C 1421297 a at D D

CASP12 1449297 at D

CASP2 1448165 at D

CASP3 1426165 a at,
1449839 at

I

CASP6 1415995 at I I

CASP7 1426062 a at,
1448659 at

D D

CASP9 1426125 a at D

CAST
1426098 a at,
1435972 at,
1451413 at

I I I I I

CAT 1416429 a at I

CAV1 1449145 a at D I I I

CBX5 1421933 at,
1450416 at

D D

CCAR1 1436156 at,
1436157 at

I I

CCL13 1420380 at I I I I

CCL5 1418126 at I I I I

CCL9 1417936 at,
1448898 at

I I

CCNA2 1417910 at,
1417911 at

I I

CCNB1

1416076 at,
1419943 s at,
1448205 at,
1449675 at

D I I I

CCND1
1417419 at,
1417420 at,
1448698 at

D I I I

CCND3 1415907 at I I

CCNG1
1420827 a at,
1450016 at,
1450017 at

I I I I I I I I

CD14 1417268 at I

CD24
1416034 at,
1437502 x at,
1448182 a at

D I

CD274 1419714 at I D

CD2AP 1420907 at I

CD44
1423760 at,
1434376 at,
1452483 a at

I I

CD47
1419554 at,
1428187 at,
1449507 a at

D D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

CD80 1432826 a at I

CD9 1416066 at D I I I

CDC20 1416664 at,
1439377 x at

I I I

CDC25B 1421963 a at I I

CDC25C 1422252 a at,
1456077 x at

I I

CDC2L2 1418841 s at D

CDC37 1416819 at I I

CDC42EP3 1422642 at,
1450700 at

I I I

CDC45L 1416575 at D D

CDC6 1417019 a at D

CDCA2 1437251 at,
1455983 at

I I

CDH2 1418815 at I

CDK4
1422439 a at,
1422440 at,
1422441 x at

D D D

CDK8 1460389 at I

CDKN1A 1421679 a at,
1424638 at

I I I I I I I I

CDKN1B 1434045 at D D

CDKN2A 1450140 a at D

CDKN2C 1416868 at D

CEBPB 1427844 a at D D

CEBPD 1423233 at D I I I

CENPF 1427161 at I

CFLAR 1424996 at I

CHEK1 1439208 at D

CKAP2 1434748 at I I I I

CLCF1 1437270 a at,
1450262 at

D I

CLU

1418626 a at,
1437458 x at,
1437689 x at,
1454849 x at

I I I

CNN2 1450981 at I I

CNP 1418980 a at,
1437341 x at

I I

CNTF 1426327 s at D

COPS5 1460171 at D

CR1 1422563 at D

CREB3L1 1419295 at I I

CRK 1416201 at,
1448248 at

D I I I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

CROP 1424802 a at,
1451485 at

I I D

CRYAB 1416455 a at,
1434369 a at

I I I

CSF1

1425154 a at,
1425155 x at,
1448914 a at,
1460220 a at

D I I

CSF2 1427429 at I

CSNK2A1

1419034 at,
1419035 s at,
1419036 at,
1419038 a at

D D

CST3 1426195 a at I

CTCF 1418330 at,
1449042 at

D D

CTGF 1416953 at I I I

CTNNA1 1437807 x at,
1448149 at

I

CTSB
1417490 at,
1417491 at,
1417492 at

I I

CTSD 1448118 a at I I

CTTN

1421313 s at,
1421315 s at,
1423917 a at,
1433908 a at

I I

CUL3 1434717 at D

CUL5 1428287 at I

CX3CL1 1415803 at I

CXCL12 1417574 at,
1448823 at

D D

CXCL2
1419209 at,
1441855 x at,
1457644 s at

D I I I

CXCR7 1417625 s at D D I I

CYB5A 1416727 a at I

CYB5R3
1422185 a at,
1422186 s at,
1425329 a at

I I

CYBA 1454268 a at I

CYLD 1429617 at I

CYR61

1416039 x at,
1438133 a at,
1442340 x at,
1457823 at

I I I

DAB2
1420498 a at,
1423805 at,
1429693 at

I I

DAP 1423790 at,
1451112 s at

D D I I I

DAXX 1419026 at D I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

DCN 1449368 at I

DDIT3 1417516 at D

DDIT4 1428306 at I I I

DDR1
1415797 at,
1415798 at,
1456226 x at

D I I

DDX5 1419653 a at I

DDX58 1436562 at,
1456890 at

D I D

DHCR24 1451895 a at I I

DKK3 1417312 at,
1448669 at

D D I I I

DLC1 1436173 at,
1460602 at

I

DLX2 1448877 at D

DNAJC15 1416910 at D

DNM1L 1428086 at,
1452638 s at

I

DTYMK 1438096 a at I

DUSP14 1431422 a at I I

DUSP22 1448985 at I

DUSP4 1428834 at D

DUSP6 1415834 at I

DUT 1419270 a at D

E2F1 1417878 at D

ECOP 1451127 at D

EDA2R 1440085 at I I I I I

EEF1D 1439439 x at,
1449506 a at

D D

EGR1 1417065 at I I I

EHD4 1449852 a at I

EIF2AK2 1422006 at,
1440866 at

I I I

EIF4E 1450908 at D

EIF5A 1437859 x at D

ELAVL1 1452858 at D

EMILIN2 1435264 at I I

EMP1 1416529 at I I I

EMP3 1417104 at I I I

ENO1 1419022 a at,
1419023 x at

I

EPHA2 1421151 a at I

EPHX1 1422438 at I I I

ERCC3 1448497 at I

ERCC5 1450935 at I

ESPL1 1433862 at I

ETS1
1422027 a at,
1426725 s at,
1452163 at

D I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

ETS2 1416268 at D

EVI1 1438325 at D D

EWSR1 1417238 at I I

EXOC2 1428470 at I

EZR 1450850 at I I

F2R 1437308 s at,
1450852 s at

I

F3 1417408 at D

FAS 1460251 at I

FASN 1423828 at I

FBL 1416684 at,
1416685 s at

D D

FBN1
1425896 a at,
1438870 at,
1460208 at

I I

FDFT1 1438322 x at,
1448130 at

D I I

FEN1 1421731 a at,
1436454 x at

D D D

FGF7 1422243 at,
1438405 at

I I I

FGFR1 1424050 s at D I I

FHL2 1419184 a at D I I

FKBP1B 1449429 at I I

FLT3LG 1422115 a at I

FN1 1437218 at I

FOS 1423100 at I I

FOSL1 1417487 at,
1417488 at

I I I

FOXM1

1417748 x at,
1448833 at,
1448834 at,
1453107 s at

I I

FOXO1 1416982 at D

FOXP1
1421141 a at,
1421142 s at,
1435222 at

D

FST 1421365 at,
1434458 at

I I I I

FSTL1 1416221 at,
1448259 at

I I I

FTH1 1427021 s at I

FUBP1 1433482 a at,
1433640 at

I D D

FUS 1451285 at,
1455831 at

I D

FXN 1427282 a at D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

FXR1
1417598 a at,
1442059 at,
1452247 at

I

FYN 1448765 at I

G2E3 1434699 at,
1455355 at

I I

G6PD 1448354 at I I

GABPA 1450665 at D

GADD45A 1449519 at D D D

GAS1 1416855 at,
1448494 at

D D D D D D

GATAD2A

1423992 at,
1451197 s at,
1451198 at,
1455505 at

D I

GDF15 1418949 at I I

GDNF 1419080 at I

GFRA1 1450440 at I I

GHR 1417962 s at,
1451501 a at

I I

GJA1

1415800 at,
1415801 at,
1437992 x at,
1437992 x at,
1438650 x at,
1438945 x at,
1438973 x at

D D I I

GLIPR1 1424927 at I I I

GLRX 1416592 at,
1416593 at

I I

GNA12 1421026 at,
1450097 s at

D

GNA13

1422556 at,
1433749 at,
1450656 at,
1453470 a at,
1460317 s at

D D

GNPNAT1 1423158 at D

GPI
1420997 a at,
1434814 x at,
1450081 x at

I

GPX1 1460671 at I

GRN 1448148 at I

GSK3B
1437001 at,
1451020 at,
1454958 at

D D

GSN

1415812 at,
1436991 x at,
1437171 x at,
1456312 x at

I I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

GSPT1 1426736 at,
1452168 x at

D

GSTM1 1416411 at I

GSTM5 1448330 at D

HBEGF 1418349 at D

HELLS 1417541 at I

HIP1 1434557 at D

HIPK1 1424540 at D

HIST1H1C 1416101 a at,
1436994 a at

D D I I

HK1 1420901 a at I I

HK2 1422612 at I

HMGA1 1416184 s at I I I

HMGA2
1422851 at,
1450780 s at,
1450781 at

I I I

HMGB1L1

1425048 a at,
1435324 x at,
1439463 x at,
1448235 s at

D D

HMGN1 1455897 x at D

HMMR

1425815 a at,
1427541 x at,
1450156 a at,
1450157 a at

I I I

HMOX1 1448239 at D

HNRNPA1
1423531 a at,
1430019 a at,
1430020 x at

D D D

HOXA7 1449499 at D

HSH2D 1442130 at I I

HSP90AA1
1426645 at,
1437497 a at,
1438902 a at

I I I

HSP90AB1 1416364 at,
1416365 at

I

HSPA1B 1427127 x at D

HSPA5
1416064 a at,
1427464 s at,
1447824 x at

D D

HSPB1 1422943 a at,
1425964 x at

D I I I

HSPB8 1417014 at D

HTATIP2 1451814 a at I

HUWE1 1415703 at D

ID1 1425895 a at I

ID2 1422537 a at D

IER3 1419647 a at I I I

IFI16 1419603 at,
1452349 x at

I D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

IFI202B 1421551 s at,
1457666 s at

I I I

IFIH1 1426276 at I D

IFNAR2 1451462 a at I

IGFBP4

1421992 a at,
1423756 s at,
1423757 x at,
1437405 a at,
1437406 x at

D D

IGFBP5 1422313 a at,
1452114 s at

D D D D

IGFBP7 1423584 at,
1423585 at

D I I

IKBKG 1454690 at I

IKIP 1429065 at,
1429219 at

I I

IL15 1418219 at I

IL15RA 1448681 at I

IL18 1417932 at I I

IL1RL1 1422317 a at I

IL6 1450297 at I I I

INHBA 1422053 at I I I

INPP1 1418045 at,
1442073 at

I

IRF8 1416714 at,
1448452 at

I I

IRS1 1423104 at D I I I

ITGA5 1423267 s at D

ITGB5
1417533 a at,
1417534 at,
1456195 x at

D D

ITM2B 1417999 at,
1418000 a at

I I

ITPR3 1417297 at I I

JMJD6 1420056 s at,
1454109 a at

D D

JUN 1417409 at,
1448694 at

D D D

KAT2B 1434037 s at,
1450821 at

I I

KAT5 1433980 at,
1433981 s at

D

KIF1B 1455182 at I

KITLG 1415855 at,
1448117 at

I I

KLF10 1416029 at I I

KLF4 1417394 at,
1417395 at

I I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

KLF6
1418280 at,
1427742 a at,
1447448 s at

D D D I

LAMP2 1416344 at I I

LCN2 1427747 a at I I

LDLR 1421821 at D I I

LGALS3 1426808 at I

LGALS3BP 1448380 at I I

LGALS8 1422662 at I

LIF 1421207 at I

LIMS1 1418232 s at D

LMNA
1421654 a at,
1425472 a at,
1457670 s at

D D D I I I

LPAR1 1426110 a at,
1448606 at

D D I

LRIG1 1434210 s at,
1449893 a at

I I

LTBR 1416435 at D

MAOA 1428667 at I I I

MAP2K3 1451714 a at I

MAP3K12 1438908 at I

MAP3K4 1459800 s at I I

MAP3K7 1419988 at I

MAPK3 1427060 at D

MAPK8 1420932 at D

MAPKAP1 1417284 at I I

MAX 1423501 at D D D

MCF2L 1434140 at D

MCL1 1416880 at D

MCM2
1448777 at,
1423605 a at,
1427718 a at

D D D

MDM2 1427718 a at I I I I I I

MED1 1450402 at I

MEF2A 1427186 a at,
1452347 at

I

MET 1422990 at,
1434447 at

I I

MFGE8 1420911 a at I

MGP 1448416 at D D I I

MGST1 1415897 a at I I I

MMP2 1416136 at I

MMP3 1418945 at I I

MPG 1417571 at,
1417572 at

I I

MT1E 1428942 at D I I I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

MT1F 1422557 s at D I

MTMR6 1425485 at I

MTPN 1437457 a at I

MX1 1451905 a at D I

MYC 1424942 a at D

MYO6 1433942 at I

NAMPT 1417190 at D D

NCAM1 1426864 a at I

NCAPG2 1417926 at I

NDRG1

1420760 s at,
1423413 at,
1450976 at,
1456174 x at

D D D

NDST1 1422044 at,
1460436 at

D D

NDUFAF4 1427997 at I

NDUFV2 1428179 at,
1452692 a at

I

NEDD9 1422818 at I

NEK2 1417299 at,
1437580 s at

I I

NEK6 1423596 at,
1425850 a at

I I

NFAT5 1438999 a at,
1439805 at

D I I I

NFIL3 1418932 at D

NFKB1 1427705 a at I

NFKB2 1425902 a at I

NFKBIA

1420088 at,
1438157 s at,
1448306 at,
1449731 s at

I I I

NFKBIZ
1417483 at,
1448728 a at,
1457404 at

I I I

NGF 1419675 at D

NME1 1424110 a at D

NOD1 1454733 at I I

NOTCH2 1455556 at D

NP 1416530 a at,
1453299 a at

I I

NQO1 1423627 at I I

NQO2 1449983 a at,
1455590 at

I I

NR2F1 1418157 at D

NR3C1
1421867 at,
1457635 s at,
1460303 at

I I

NR4A1 1416505 at D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

NRF1 1434627 at D

NRP1 1418084 at I

NT5C3 1451050 at I I

NTRK3 1433825 at D D D

NUAK2 1429049 at I

NUPR1 1419665 a at I

OAS1 1424775 at I

OAS1B 1425119 at D

OAS3 1425374 at D I I

ODC1 1437711 x at D

OSGIN1 1424022 at D

P2RX4 1425525 a at,
1452527 a at

I I

P2RX7 1439787 at I

PA2G4
1420142 s at,
1423060 at,
1435372 a at

D D D

PAFAH1B1 1460199 a at D D

PAK1 1420980 at,
1450070 s at

D I

PAK3 1435486 at,
1437318 at

D I

PALLD 1427228 at,
1433768 at

D I

PARK7 1416526 a at,
1456194 a at

D D

PARVA 1431375 s at I I

PARVB 1438672 at I

PAWR 1426910 at D I

PCNA 1417947 at D D

PDCD2 1423534 at D

PDGFRA 1421917 at D D

PDGFRB 1417148 at,
1436970 a at

D D D D

PEA15 1416407 at I

PHLDA1 1418835 at I I I

PIK3CA 1460326 at I

PIK3R2 1418463 at I

PITPNA 1423282 at,
1423283 at

I I

PKN2 1437295 at,
1437296 at

I

PLAC8 1451335 at I I

PLAT 1415806 at I I

PLAUR 1452521 a at I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

PLD1 1437113 s at I I

PLD2 1417237 at I

PLEKHF1 1424671 at I I

PLK1 1448191 at D I I I

PLK3 1434496 at I I

PLSCR1 1429527 a at,
1453181 x at

I I

PLSCR3 1449020 at I

PMEPA1 1422706 at,
1452295 at

D D D

PML 1448757 at,
1456103 at

D I

PNKP 1416378 at I I

PNPT1 1452676 a at D

POLK 1449483 at I I

PPID 1417057 a at D D

PPM1A 1429501 s at,
1451943 a at

D

PPM1F 1454934 at I

PPP1R13L 1459592 a at D

PPP1R15A 1448325 at D D

PPP2R2A 1437730 at,
1453260 a at

D D

PRDX5 1416381 a at I

PRKAR2B 1438664 at,
1456475 s at

I

PRKCA 1450945 at I

PRKD1 1447623 s at I

PRMT2 1416844 at I

PRPF19 1460633 at D

PRR13 1423686 a at I I I

PSENEN 1415679 at D

PSIP1 1417166 at,
1460403 at

I I I

PSMG2 1425373 a at,
1448212 at

D

PTGR1 1417777 at I I I

PTGS1 1436448 a at I

PTGS2 1417262 at,
1417263 at

I I I

PTMA 1423455 at D D

PTPN1 1438670 at D

PTPRA 1425340 a at I I

PTPRE 1418540 a at I

PTPRG 1434360 s at D D

PTRH2 1451845 a at D D D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

PTTG1
1419620 at,
1424105 a at,
1438390 s at

I I I

PXN 1424027 at,
1456135 s at

I I

QARS 1423712 a at,
1456726 x at

I I

QKI

1417073 a at,
1425597 a at,
1429318 a at,
1451179 a at

D D D D

RABGGTB 1419553 a at I

RAD18 1451928 a at I

RAD21 1416162 at D

RAD54L 1450862 at I I I

RALB 1417744 a at I

RARG 1419415 a at,
1419416 a at

D

RASA1 1426476 at,
1426477 at

I

RASSF1 1441737 s at,
1448855 at

I

RASSF5 1422637 at I

RB1 1417850 at I

RBBP4
1434892 x at,
1454791 a at,
1454875 a at

D D D

RBBP6 1425114 at D

RBL1 1424156 at,
1425166 at

D D

RBP1 1448754 at I I I

RCAN2 1421425 a at I

RECK 1450784 at I

RFC1
1418342 at,
1449050 at,
1451920 a at

I I I

RFK 1415737 at,
1416230 at

D D

RFWD2 1426913 at I

RGS3 1425296 a at,
1425701 a at

I I I

RIPK1 1419508 at,
1449485 at

I I

RIPK2 1450173 at I

RNF34 1415791 at I

ROCK1 1423444 at,
1423445 at

I I

RPS3 1435151 a at I

RPS3A 1422475 a at I I

RPS6KB1 1454956 at I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

RRAS 1418448 at I

RRAS2 1417398 at I

RRM2B 1437476 at I

RTN4 1421116 a at,
1452649 at

D I

S100A1 1417421 at,
1419814 s at

I I

S100A10 1416762 at,
1456642 x at

I I I

S100A4 1424542 at D D I I I

S100A6 1421375 a at I I

S1PR1 1423571 at D I I

S1PR2 1428176 at D

S1PR3 1438658 a at I

SAT1 1420502 at I

SCARB1
1416050 a at,
1437378 x at,
1455820 x at

I I

SDC1
1415943 at,
1415944 at,
1437279 x at

D D I

SDC4 1448793 a at I

SEMA3A 1449865 at I

SENP1 1424330 at D

SERBP1 1437280 s at I

SERPINE1 1419149 at D D I I I

SERPINE2 1416666 at I

SERPINF1 1416168 at,
1453724 a at

D

SFRP1 1448395 at I

SFRP2 1448201 at D

SFRS5 1423130 a at I

SGK1 1416041 at I I I

SGMS2 1428663 at,
1429029 at

I

SGPL1 1415892 at D

SH3BP5 1421922 at,
1421923 at

I I

SH3GLB1 1418011 a at,
1418012 at

D I

SH3KBP1 1431592 a at,
1460337 at

I I

SHISA5 1423986 a at,
1437503 a at

I I

SHPRH 1452261 at I

SIRT7 1424238 at I

SKIL 1452214 at I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

SLC25A24 1427483 at,
1452717 at

I I

SLC2A1 1426599 a at,
1434773 a at

D I

SLC7A11 1420413 at I

SLK 1425977 a at,
1449336 a at

I

SMN1 1426596 a at D D

SMNDC1 1429043 at D

SNRPE 1451294 s at D D

SOCS3
1416576 at,
1455899 x at,
1456212 x at

D I I I

SOD2 1417193 at,
1448610 a at

I

SOD3 1417633 at I I

SORBS2 1437197 at I I I

SOX4

1419155 a at,
1419156 at,
1419157 at,
1433575 at,
1449370 at

D D D D D

SP1 1418180 at,
1454852 at

D D

SPP1 1449254 at D D I I I

SRGN 1417426 at I I

STAT1
1420915 at,
1450033 a at,
1450034 at

D D D

STAT5A 1421469 a at,
1450259 a at

I I

STAT6 1426353 at I I

STK24 1426248 at D

STMN1 1415849 s at,
1448113 at

D D

STX8 1418089 at I I

SULF1 1436319 at,
1438200 at

I

TACC3
1417450 a at,
1436872 at,
1455834 x at

I I

TADA3L 1417467 a at I

TAX1BP1 1420174 s at,
1448399 at

I I

TCF12 1427670 a at D

TCF4 1416724 x at I

TCF7 1433471 at I

TENC1 1452264 at D I
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

TERF1 1418380 at I

TFAP2A 1421996 at,
1426048 s at

D D

TGFB1 1420653 at I I

TGFB1I1 1418136 at I

TGFB2 1450922 a at I I

TGFBR2 1425444 a at,
1426397 at

I I

TGFBR3 1433795 at D I

THBS1
1421811 at,
1450377 at,
1460302 at

D I I I

THBS2
1422571 at,
1447862 x at,
1450663 at

D D D I

TIAL1 1421148 a at D

TIMP1 1460227 at I I

TIMP2

1420924 at,
1433662 s at,
1450040 at,
1454677 at,
1460287 at

I I I

TIMP3

1419088 at,
1419089 at,
1449334 at,
1449335 at

D I I

TLR1 1449049 at I

TLR3 1422781 at,
1422782 s at

I D I I

TLR4 1418163 at I

TMEM173 1427911 at,
1447621 s at

I I I

TMSB10
1417219 s at,
1436902 x at,
1437185 s at

I I

TMSB4X 1415906 at I I I

TNC 1416342 at,
1456344 at

D I

TNFAIP3 1433699 at I I

TNFAIP8 1416950 at I I

TNFRSF12A 1418571 at,
1418572 x at

I I I

TNFRSF19 1425212 a at I

TNFRSF1A 1417291 at D

TNKS2 1447522 s at I I

TOP1 1423474 at I

TOP2A 1454694 a at I I

TOPBP1 1452241 at I I

TOPORS 1417754 at I

TP53 1426538 a at,
1427739 a at

D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

TP53BP2 1433937 at,
1433938 at

D D

TP53INP1 1416926 at,
1416927 at

I I I I I I

TPD52L1 1418412 at I

TPM1 1423049 a at,
1423721 at

I I

TPP1 1434768 at I I

TRAF3IP2 1448508 at I

TRAF7 1424320 a at I I

TRIAP1 1460702 at D

TRIB2 1426640 s at D D

TRIB3 1426065 a at,
1456225 x at

D D D

TRIM27 1438376 s at,
1456375 x at

D

TSC2 1452105 a at I

TSLP 1450004 at I I

TSPO
1416695 at,
1438948 x at,
1456251 x at

I I

TTK 1449171 at I I I

TXN 1416119 at I

TXNDC17
1423034 at,
1423035 s at,
1439184 s at

I I

TXNIP 1415996 at,
1415997 at

I D D

UBA7 1426971 at I I

UBE2C 1452954 at I I I

UBR4 1454668 at D

UNG 1425753 a at D D D D D

UTP11L 1429485 a at I

UXT 1418986 a at D

VCAM1

1415989 at,
1436003 at,
1448162 at,
1451314 a at

I I

VCAN 1427256 at D

VCL 1416156 at,
1416157 at

I I

VDR 1418175 at,
1418176 at

I

VHL 1434708 at D D

WEE1 1416773 at D

WFS1 1448411 at D
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Table 1: Continued.

3 h 24 h 72 h

Symbol Probe set ID Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

Gy CDDP
Gy +
CDDP

WISP1 1448593 at,
1448594 at

I I

WRN 1425982 a at I

WTAP 1454805 at D D

WWOX 1416334 at D D

XAF1 1443698 at I

XBP1 1420886 a at,
1437223 s at

D

XDH 1451006 at I

XPA 1460725 at I

XRCC2 1455335 at D

XRCC4 1424601 at D D

XRCC6 1417437 at D D

YARS 1460638 at D

YWHAE 1435702 s at,
1438839 a at

D

YY1 1435824 at,
1457834 at

D I I

ZFP36 1452519 a at D I

ZFP36L2 1437626 at D D I

ZMAT3 1449353 at I I I

ZNF148
1418381 at,
1449068 at,
1449069 at

I I

ZNF622 1438000 x at D D

ZYX 1417240 at I I I

after treatment, compared to CDDP-induced activation
which was observed only at 24 hrs or later (Figure 4). These
timings corresponded with those observed for the expres-
sion of apoptotic-related genes after radiation and CDDP
treatment (Figure 3). For example, MDM2 and TP53INP1
were expressed at 3 hrs after radiation. They were however,
expressed only at 24 hrs after CDDP (Table 2).

4. Discussion

Combined chemoradiation is increasingly being used to treat
advanced head and neck caners. As radiation and CDDP are
both ototoxic, it is of concern that significant sensorineural
hearing loss will result. Indeed, patients with nasopharyngeal
carcinoma who had received radiotherapy and concur-
rent/adjuvant chemotherapy using CDDP were found to
experience greater sensorineural hearing loss compared with
patients treated with radiotherapy alone, especially to high-
frequency sounds in the speech range [1]. It is of interest
to note that different etiologies of sensorineural hearing
loss, such as noise, ototoxic drugs, and aging, result in
similar patterns of audiometric changes and cochlear cellular
degeneration [8]. The cellular and molecular mechanisms
involved in sensorineural hearing loss from diverse causes

appear to lead to a final common pathway which results in
apoptosis of cochlear hair cells [6, 9].

In radiation-induced ototoxicity, cochlear cell apoptosis
and ROS generation were observed after irradiation, and p53
was thought to play a key role [7]. This phenomenon was
dose dependant and occurred predominantly at 72 h after
irradiation. Microarray analysis supported these findings,
as associated dose-dependant apoptotic gene regulation
changes were observed.

The ototoxic manifestations of CDDP are primarily
due to its effects on the cochlear hair cells although the
spiral ganglion cells and the stria vascularis are also affected
to some extent. According to Rybak et al. [10], CDDP
ototoxicity appears to be triggered by ROSs that initiate
a cascade of molecular events that lead to apoptosis of
outer hair cells, resulting in hearing loss. Ototoxic effects
on the stria vascularis are transient, resulting in temporary
reduction of endocochlear potential associated with stria
edema. The endocochlear potential recovers but residual
shrinkage of the strial persists. The spiral ganglia are thought
to be least affected.

Although the cellular and molecular processes of ototox-
icity have been described for radiation and CDDP when used
alone, those involved in combined therapy have not been
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Table 2: Differential expression of apoptosis-related genes which have direct upstream or downstream relationship with p53 in each
treatment group [irradiation (Gy), cisplatin (CDDP), or combination of both (Gy + CDDP)] when compared to nontreated control cells at
3 h, 24 h, and 72 h after treatment.

3 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

CCNG1 I I KLF6 D D D

CDKN1A I I CCND1 D

MDM2 I I CTCF D

TP53INP1 I I IRS1 D

BTG2 I ATF3 D

DDX5 I AURKA D

GDF15 I BID D

IL6 I CCNB1 D

C11ORF82 I CEBPB D

CASP3 I DDR1 D

CASP6 I ETS1 D

CRYAB I FHL2 D

HSP90AA1 I HBEGF D

MED1 I HIPK1 D

ZMAT3 I HSPB1 D

MAPK3 D

MCL1 D

MYC D

NR4A1 D

OSGIN1 D

PLK1 D

PMEPA1 D

PPP1R13L D

THBS1 D

THBS2 D

YY1 D

24 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

CCNG1 I I I APEX1 D D

CDKN1A I I I BHLHE40 D D

EIF2AK2 I I I BRE D D

RFC1 I I I PMEPA1 D D

BUB1 I I S100A4 D D

CCAR1 I I SERPINE1 D D

CKAP2 I I SPP1 D D

HSP90AA1 I I THBS2 D D

MDM2 I I WWOX D D

TOP2A I I SLC2A1 D

TP53INP1 I I BTG1 D

ZNF148 I I CAV1 D

KLF6 I CEBPB D

BLM I TIMP3 D
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Table 2: Continued.

24 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

BRCA1 I ATP1A1 D

HMMR I CDK4 D

IFI16 I CDKN2A D

RAD54L I CDKN2C D

RB1 I GSTM5 D

TOP1 I ID2 D

TOPBP1 I TFAP2A D

TTK I

BTG2 I

C11ORF82 I

FUBP1 I

NFKB2 I

NUPR1 I

TOPORS I

72 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

ANXA1 I I I LGALS3 I

AURKA I I I LIF I

BUB1B I I I MAP2K3 I

CAV1 I I I MMP2 I

CCNB1 I I I MYO6 I

CCND1 I I I NFKB1 I

CCNG1 I I I PLAUR I

CDC20 I I I PRKCA I

CDKN1A I I I PTGS1 I

CLU I I I SAT1 I

DDIT4 I I I SERPINE2 I

EGR1 I I I SLC2A1 I

FOSL1 I I I SOD2 I

GLIPR1 I I I TADA3L I

HSPB1 I I I THBS2 I

IER3 I I I TOPBP1 I

INHBA I I I TSC2 I

IRS1 I I I VDR I

NFKBIA I I I FEN1 D D D

PHLDA1 I I I GADD45A D D D

PLK1 I I I JUN D D D

PTGS2 I I I MCM2 D D D

PTTG1 I I I NDRG1 D D D

S100A4 I I I STAT1 D D D

SERPINE1 I I I ATF3 D D

SGK1 I I I PPP2R2A D D

SPP1 I I I TP53BP2 D D

THBS1 I I I CDK4 D D

TMSB4X I I I FUBP1 D D

UBE2C I I I GSK3B D D

ZYX I I I HMGB1L1 D D

BCL3 I I HSPA5 D D

MMP3 I I PARK7 D D

S100A6 I I PCNA D D
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Table 2: Continued.

72 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

ABCB1B I I PPP1R15A D D

AKAP12 I I SMN1 D D

ATM I I SP1 D D

BID I I STMN1 D D

BIRC5 I I XRCC6 D D

BUB1 I I DAXX D I

CCNA2 I I MX1 D I

CCND3 I I PML D I

CDC25C I I E2F1 D

CKAP2 I I IFI16 D

CRYAB I I BRE D

CTSD I I CDC6 D

DDR1 I I CHEK1 D

DHCR24 I I COPS5 D

EZR I I CTCF D

FHL2 I I DDIT3 D

FOS I I DUT D

FOXM1 I I ELAVL1 D

HMMR I I HOXA7 D

IL6 I I HUWE1 D

KAT2B I I KAT5 D

KLF4 I I MAPK8 D

MDM2 I I NME1 D

MET I I RBBP6 D

NEK2 I I TFAP2A D

NQO1 I I TP53 D

NQO2 I I VCAN D

NR3C1 I I

PLK3 I I

PTPRA I I

RAD54L I I

S100A1 I I

SHISA5 I I

TACC3 I I

TGFB2 I I

TIMP3 I I

TP53INP1 I I

TTK I I

YY1 I I

ZMAT3 I I

TXN I

GDF15 I

GSTM1 I

RFWD2 I

RRM2B I

WRN I

AFP I

AHR I

AP2A2 I

BHLHE40 I

C11ORF82 I
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Table 2: Continued.

72 hours

Symbol Gy CDDP Gy+CDDP Symbol Gy CDDP Gy+CDDP

CASP6 I

CAT I

CDK8 I

CENPF I

CFLAR I

CSF2 I

CX3CL1 I

EPHA2 I

ERCC3 I

ERCC5 I

ETS1 I

FAS I

FASN I

GPI I

HK2 I

HSP90AB1 I

ID1 I

Gy + CDDP Gy + CDDP Gy + CDDP

Gy

3 h 24 h 72 h

78

5 0
1

10 0 0

39

2
9

41

5 1 49

179

26 167
81

23 4 33

CDDP Gy CDDP Gy CDDP

Differentially expressed apoptotic related genes

Figure 3: Microarray findings are summarized by Venn diagrams which show the distribution of differentially expressed probeset IDs in
each treatment group [irradiation (Gy), cisplatin (CDDP) or combination of both (Gy and CDDP)] when compared to nontreated control
cells at 3 h, 24 h, and 72 h after treatment.

studied previously. The present study demonstrated that
combined therapy led to decreased viability of cochlear cells,
with an increase in the subG1 population. These findings
support the belief that as in other etiologies of sensorineural
loss, apoptosis of cochlear hair cells is important in CDDP-
radiation.

It is well established that p53 plays a key role in the cel-
lular response to nuclear DNA damage [11]. It regulates cell
cycle arrest and dictates cell fate like senescence, apoptosis,
and DNA repair. It is believed that the nature of DNA damage

enables p53 to selectively discriminate between promotors
in the induction of target genes, thereby regulating their
expression and subsequent cellular outcome [12].

In a study on HEI-OC1 cells derived from the cochlea,
CDDP caused an increase in p53 at 3 hrs prior to the
activation of Bax, cytochrome-c, and caspase 8 and 9 [13].
In the case of radiation-induced ototoxicity, the role of p53
in triggering apoptotic cell death in cochlear hair cells has
also been studied [7]. Based on microarray analysis, the p53
gene was found to be up-regulated after irradiation and p53
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Figure 4: Western blot analysis showing p53 and c-jun protein expression and phosphorylation at various time points (3 h, 24 h, 48 h, and
72 h) after 5 Gy of gamma radiation and 0.5 μg/ml pf cisplatin (CDDP). The data are representative of 3 separate experiments.

expression was confirmed by Western blotting. Although p53
plays a role in both CDDP and radiation-induced ototoxicity,
the present study showed that p53 was activated at different
time points after treatment. Posttreatment phosphorylation
of p53 occurred after 24 hrs for CDDP, whereas it occurred
as early as 3 hrs for radiation. These timings corresponded
to the times MDM2 and TP53INP1 were expressed after
treatment with CDDP and radiation respectively. Therefore,
although both CDDP and radiation-induced cochlear cell
apoptosis appear to involve activation of p53, the upstream
processes involved may well be different.

In the present study, combined CDDP-radiation treat-
ment triggered more apoptotic-related gene expressions than
those that could be accounted for by a summation of
gene expressions resulting from individual treatments. This
could explain the synergistic ototoxic effects of combined
CDDP-radiation treatment, an observation seen clinically
[1]. Interestingly, among the genes which were expressed
in combined treatment but not when these entities were
used alone was FAS, a key element involved in the extrinsic
apoptotic pathway. Although the extrinsic apoptotic pathway
has generally been regarded to play only minor role in
ototoxicity resulting from the use of CDDP or radiation
alone, it may well be important in situations when they are
used in combination [14, 15].

The OC-k3 cell line expressed the neuroepithelial pre-
cursor cell marker nestin and the inner ear cell marker
OCP2, specific auditory sensory cell markers myosin VIIa
and the acetylcholine receptor alpha-9 and the supporting
cell marker connexin 26. It had been regarded as a good
model to study the mechanisms of cell fate in the Organ
of Corti of the cochlea [4]. Therefore, the finding that
combined treatment actually led to enhanced apoptotic gene
expressions including FAS should be further investigated in

in vivo animal studies which may have implications in future
antiapoptotic treatments against ototoxicity.

5. Conclusion

Like in other etiologies of sensorineural loss, apoptosis of
cochlear hair cells appears to play a role in ototoxicity
resulting from combined CDDP-radiation therapy. Differ-
ential temporal activation of p53 suggests the possibility of
different upstream processes leading to its activation after
CDDP and radiation treatment. Enhanced apoptotic gene
expressions including that of FAS were observed in combined
treatment which could possibly explain the synergistic
ototoxic effects seen clinically.
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