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Abstract: The application of proximal hyperspectral sensing, using simple vegetation indices, offers
an easy, fast, and non-destructive approach for assessing various plant variables related to salinity
tolerance. Because most existing indices are site- and species-specific, published indices must be
further validated when they are applied to other conditions and abiotic stress. This study compared
the performance of various published and newly constructed indices, which differ in algorithm
forms and wavelength combinations, for remotely assessing the shoot dry weight (SDW) as well as
chlorophyll a (Chla), chlorophyll b (Chlb), and chlorophyll a+b (Chlt) content of two wheat genotypes
exposed to three salinity levels. Stepwise multiple linear regression (SMLR) was used to extract
the most influential indices within each spectral reflectance index (SRI) type. Linear regression
based on influential indices was applied to predict plant variables in distinct conditions (genotypes,
salinity levels, and seasons). The results show that salinity levels, genotypes, and their interaction
had significant effects (p ≤ 0.05 and 0.01) on all plant variables and nearly all indices. Almost all
indices within each SRI type performed favorably in estimating the plant variables under both
salinity levels (6.0 and 12.0 dS m−1) and for the salt-sensitive genotype Sakha 61. The most effective
indices extracted from each SRI type by SMLR explained 60%–81% of the total variability in four plant
variables. The various predictive models provided a more accurate estimation of Chla and Chlt content
than of SDW and Chlb under both salinity levels. They also provided a more accurate estimation
of SDW than of Chl content for salt-tolerant genotype Sakha 93, exhibited strong performance for
predicting the four variables for Sakha 61, and failed to predict any variables under control and Chlb
for Sakha 93. The overall results indicate that the simple form of indices can be used in practice to
remotely assess the growth and chlorophyll content of distinct wheat genotypes under saline field
conditions.

Keywords: biomass; contour maps; leaf pigments; multiple linear regression; phenotyping; salinity
stress; spectral reflectance indices

1. Introduction

The scarcity of freshwater in arid and semiarid countries requires the use of brackish
water as an alternative source for irrigation in agriculture sectors, consuming approximately
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75% of the available water supply in these countries [1]. For example, in the Kingdom of
Saudi Arabia, which represents an ideal model of arid countries, brackish groundwater
represents approximately 90% of the water used in agriculture [2]. Previous studies have
reported the feasibility of irrigating several field crops, including wheat, with brackish
water once or twice during the crop’s life cycle [3–5]. However, continuously irrigating
crops with brackish water leads to salinization of the soil. In addition, salinity stress
adversely affects crop production. Thus, feasible strategies are urgently needed to sustain
growth and productivity of wheat crops under salinity stress. Enhancing the salt tolerance
of wheat genotypes is one of the most feasible strategies to address this challenge [6,7].

Salinity stress limits the growth and productivity of plants by negatively impacting
several morphological, biochemical, and physiological variables. It does so mainly through
osmotic stress, ion toxicity, and essential nutrient deficiency. The first response of a plant to
salinity stress is inhibition of plant growth, resulting from the trade-off between the use of
its energy and metabolic precursors for the activation of salt tolerance mechanisms and
biomass accumulation [5,6,8]. Exposing plants to salinity stress leads to excessive gener-
ation of reactive oxygen species (ROS) in plant cells such as hydrogen peroxide (H2O2),
hydroxyl radicals (OH), singlet oxygen (O2), and superoxide (O2

−) [9,10], which eventually
results in the acceleration of chlorophyll decomposition and decreases photosynthesis
efficiency [11,12]. Therefore, accurate estimation of biomass and chlorophyll (Chl) content
are crucial for improving salt tolerance of wheat genotypes in breeding programs. Precise
estimation of dry matter and Chl contents is critical for providing crucial information to elu-
cidate salt tolerance mechanisms, photosynthesis potential, plant stress, and physiological
status at the whole plant level [8,13–15].

While the direct estimation of dry biomass and Chl content by traditional laboratory
methods (oven-drying and solvent extraction followed by spectrophotometric determina-
tion, respectively) is highly accurate, these methods preclude the possibility for tracking
the dynamic changes that take place in the leaf Chl content as well as real-time detection
of dry matter accumulation. In addition, these methods are time-consuming, expensive,
labor-intensive, and destructive, which makes data collection over numerous genotypes
impractical [13,16,17]. The Chl content can be assessed in a fast and non-destructive manner
using a SPAD-502 chlorophyll meter. This uses the light transmittance at specific wave-
lengths (650 and 940 nm) to indirectly estimate leaf Chl content. However, this device
determine Chl content of the whole plant canopy based on measurements of a single leaf at
two or three points and disregards the vertical variability in the leaf Chl content within the
plant canopy. As has been well established, the positions and ages of leaves within the plant
canopy are associated with distinct variations in Chl content. Therefore, measurements
of Chl content based on single leaf do not accurately reflect the Chl content of an entire
canopy [18–21]. In addition, the relationship between SPAD measurement and Chl content
is not universal and is usually affected by plant species (sometimes even crop cultivars
within the same species) and specific environmental conditions [16,21,22]. Consequently, a
cost- and time-efficient, and non-destructive alternative tool is urgently required to address
the aforementioned drawbacks associated with the traditional laboratory method and
SPAD meter and track the changes in biomass and Chl content at the whole canopy level
more effectively.

Researchers have attempted to exploit the signatures of spectral reflectance from the
plant canopy to develop a non-destructive optical tool for accurate and simultaneous
indirect assessment of several plant properties under various environmental conditions.
The method involves utilizing the signatures of spectral reflectance at several wavelengths
of the light spectrum. The signatures are strongly associated with several biophysical and
biochemical crop variables such as chlorophyll and associated pigments, lignin, cellulose,
leaf structure, photosynthetic efficiency, leaf area index (LAI), leaf dry matter content, and
leaf water content [23–28]. For example, the spectral reflectance signatures from canopy at
the visible region (VIS, 400–700 nm) are closely associated with the contents of chlorophyll,
anthocyanins, and carotenoids, with a low spectral reflectance in the blue and red regions
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because of absorption by chlorophyll [29–32]. Leaf dry matter content is highly associated
with spectral reflectance of canopy in the near-infrared (NIR, 700–1300 nm) region, because
of the multiple intercellular scattering of light by different leaf tissues [30,33]. Leaf water
content is mostly associated with spectral reflectance in the NIR and shortwave-infrared
(SWIR, 1300–2500 nm) regions, with the weak and strong water absorption wavebands
located in the NIR and SWIR regions, respectively [34–36]. This correlation between canopy
spectral signatures and specific plant characteristics has been exploited to extract specific
wavelengths from the three parts of the light spectrum (VIS, NIR, and SWIR) and applied
using simple mathematical formulas to develop specific spectral reflectance indices (SRIs).
In this study, the different types of SRI were used to measure several plant variables such
as plant biomass and Chl content.

Until now, several types of SRI that include 2–3 wavelengths have been developed
to assess the Chl content and biomass of plants. Most of these SRIs are based on specific
wavelengths within the green (550 nm), red (660–670 nm), red-edge (680–750 nm), and NIR
(750–870 nm) regions [24,26,37–41]. These specific wavelengths have been incorporated in
simple mathematical formulas to eliminate the sensitivity of these wavelengths to other
factors that also influence the spectral reflectance but not the plant variables of interest [42].
Formulas used for SRIs can be categorized according to distinct types such as simple
difference (SD), simple ratio (SR), modified simple ratio (MSR), derivative indices (DI),
normalized difference (ND), and integrated form (IF), serving to assess plant variables,
especially Chl content regions [23,43–46]. However, no consensus exists regarding which
types of SRI are effective for assessing plant biomass and Chl content, especially under
environmental stress. For instance, Wu et al. [31] found that the MSR index and IF indices
such as modified chlorophyll absorption ratio index (MCARI), transformed chlorophyll ab-
sorption reflectance index (TCARI), and optimized soil-adjusted vegetation index (OSAVI)
were more efficient than SR and ND in estimating the Chl content of different genotypes of
corn, because the former types of SRI consider the effects of the LAI. Lu et al. [26] reported
that the Modified Datt (MDATT) index ((R721 − R744)/(R721 − R714), which is in ND type
but incorporates three wavelengths from the red-edge region, was more effective than other
types (SD, SR, and ND) and incorporated only two wavelengths for remote estimation
of Chl content across several plant species at various growth stages. This is because the
wavelengths and formulas of the MDATT index are effective in removing the internal and
surface structural effects of the leaf surface on the spectral reflectance. A derived index,
incorporating NIR wavebands, in the form of ([(Rλ)−1 − (RNIR)−1]× RNIR) enables a highly
accurate estimation for Chl content, because it ignores the differences in leaf structure in
the leaves of various plant species [39]. Because the spectral reflectance at wavelengths of
approximately 700 nm is the most sensitive indicator for Chl content, the SRIs incorporating
this wavelength in either SR (R750/R700) or ND type (R750 − R705)/(R750 + R705) are effective
for estimating Chl content. However, the correlation between both indices and the Chl
content becomes weaker when applied across a wide range of species. When these indices
were modified in form and incorporated a third waveband (RNIR − R705)/(RNIR + R705 −
2R445), this modified index produced a substantially higher correlation with Chl content,
because it eliminated the variability effects of surface reflectance between species [45,46].

Therefore, the types of an SRI and the wavelengths incorporated play a key role in the
efficiency of vegetation indices for accurate estimating plant variables. The most effective
type should function to eliminate the effects of other factors on spectral reflectance rather
than the target plant variables. Consequently, current work concerns the development of
algorithms for SRIs that minimize their sensitivity to leaf structure and avoid the necessity
for site- and species-specific calibration. Otherwise, most existing forms of SRI still need to
be further validated regarding their ability for indirectly estimating plant variables under
contrasting environmental conditions and for different plant species. If the simple forms of
SRI that incorporate 2–3 wavelengths are proven to be effective in accurately estimating
plant variables such as Chl content under a wide range of environmental conditions and for
several plant species, developing a new lightweight proximal sensor for remote estimation
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of plant variables at the whole plant canopy level is possible. This new proximal sensor
would enable faster estimation of plant variables in the field than existing heavy and costly
devices (spectroradiometer) such as that used in this study. In addition, the limitations of
the SPAD meter, which is based on single leaves, could be overcome.

Most studies on the evaluation of salt tolerance of genotypes have been conducted
under ideal controlled conditions (greenhouse or growth chamber) using homogenous
growth media such as sand or hydroponic systems [5,7]. Studies conducted under field
conditions with natural saline soils are limited because of substantial horizontal and vertical
variations in the salt concentrations within the field [47,48]. This variability in the salinity
leads to considerable heterogeneity in plant growth within the field even within short
distances. This affects the reliability of the measurements of either plant variables or
spectral reflectance from the canopy [49,50]. Therefore, in this study, saline field conditions
were simulated using a subsurface water retention technique (SWRT). Our previous studies
have detailed the relevant advantages and installation of this technique [7,24,50,51].

The primary objectives of this study were to (1) examine the potential of different
types of published and newly constructed indices for remotely assessing growth and Chl
contents (Chla, Chlb, and Chlt) under various conditions (salinity levels, genotypes, and
seasons); (2) extract the most influential indices within each SRI type that explain most
variability in each plant variables via stepwise multiple linear regression (SMLR); and (3)
examine the performance of these influential indices in predicting the plant variables under
various conditions.

2. Materials and Methods
2.1. Field Experimental Description

This study was conducted during the 2017/2018 and 2018/2019 growing seasons
at the Experimental Research Station of the College of Food and Agriculture Sciences,
King Saud University, Riyadh, Saudi Arabia (24◦25′ N, 46◦34′ E; elevation 400 m) using
two spring wheat genotypes with distinct salt tolerance: the salt-tolerant Sakha 93 and
the salt-sensitive Sakha 61 [52,53]. These two genotypes were evaluated in this study
with a simulated close-to-field platform using SWRT. When comparing the conditions
of the SWRT with natural saline field or pot experiment conditions, the SWRT was able
to overcome the spatial and temporal variations in salt concentration and water content
in the root zone, which are common under natural saline field conditions. In addition,
SWRT provided a sufficient measurement area for directly detecting canopy spectral
reflectance and a representative plant sample sizes for plant growth measurement, which
is difficult to achieve with a pot experiment. When employing this technique in open field
conditions, plants are exposed to typical fluctuations in macro-environmental conditions
(e.g., humidity, light, and temperature) during their distinct growth stages. The setup of
SWRT in this study was based on El-Hendawy et al. [7,50] and El-Hendawy et al. [24,51].

The open field condition was characterized by a typical arid climate. During the
growing season of spring wheat (from November to April), the temperature, humidity, and
rainfall were 12.9–32.2 ◦C, 10.7–47.5%, and 8.0–25.0 mm, respectively. The experimental
soil texture was classified as sandy loam by electrical conductivity, pH (soil paste 1:5),
organic matter, and calcium carbonate of 2.89 dS m−1, 7.85, 0.46%, and 29.42%, respec-
tively. The bulk density, field capacity, and wilting point were 1.48 g cm−3, 0.215 m3 m−3,
and 0.101 m3 m−3, respectively. The available of N, P2O5 and K2O were 45.15 mg kg−1,
2.443 mg kg−1, and 186.91 mg kg−1, respectively.

2.2. Salinity Treatments, Experimental Design, and Agronomic Practices

The two wheat genotypes were evaluated under three salinity levels, namely control
(0.35 dS m−1), moderate salinity (6.0 dS m−1), and high salinity (12.0 dS m−1). The control
treatment was irrigated with normal water during all life cycles of the wheat plants. The
treatments of moderate and high salinity were irrigated with normal water for the first
2 weeks to ensure successful germination and complete seedling establishment. Subse-



Plants 2021, 10, 101 5 of 26

quently, they were irrigated with artificial saline water containing 3.51 and 7.02 g NaCl L−1,
respectively, until the final irrigation. In both salinity treatments, soil samples from the root
zone were collected every 2 weeks to enable monitoring the increase of salt concentrations
and ensure the application of salinity levels of each treatment. The irrigation water was
applied using a low-pressure surface irrigation system. This system consists of a main line
that is connected to the source of irrigation water and branches off to the sub-main hoses at
each plot. The main line and sub-main hoses were equipped with manual control valves to
enable controlling the amount of water delivered to each plot. In each growing season, the
irrigation was applied six times for all treatments with the cumulative amount of irrigation
water totaling approximately 5000 m3 ha−1, which equivalent to 500 mm.

The experiment was laid out in a split-plot design and replicated three times. The
salinity treatments and wheat genotypes were assigned to the main plots and subplots,
respectively. The genotypes were distributed randomly in subplots. Each subplot consisted
of six rows. The rows were 6 m long and spaced 20 cm apart. The seeds of two genotypes
were planted at a seeding rate of 15 g m−2 on the first week of December in both growing
seasons.

The two genotypes were fertilized with 60, 60, and 180 kg ha−1 of P2O5, K2O, and N,
respectively. The entire doses of phosphorus and potassium were applied prior to sowing.
The nitrogen fertilizer was applied in three equal doses at seeding, stem-elongation, and
booting stages. Phosphorus, potassium, and nitrogen fertilizers were applied as calcium
superphosphate (18.5% P2O5), potassium chloride (50% K2O), and ammonium nitrate
(33.5% N), respectively.

2.3. Hyperspectral Reflectance Measurements

Spectral reflectance from the wheat canopy was measured after 75 days (at the middle
anthesis growth stage) from sowing from the internal rows in each subplot at five random
places with excluding the first meter of these rows to avoid border effects. The measure-
ments were taken under cloud-free conditions using a portable ASD spectroradiometer
(Fieldspec4, Analytical Spectral Devices Inc., Boulder, CO, USA). This device is able to
detect the canopy reflectance in the range between 350 to 2500 nm with a band interval of
1.4 nm for the 350–1000 nm region and 2.2 nm for the 1000–2500 nm region. However, the
band interval was finally calculated automatically to 1.0 nm continuous bands for the entire
spectral range (350–2500 nm). Before field canopy spectral reflectance measurements, the
device was calibrated using a Spectralon reflectance panel (Labsphere, Inc., North Sutton,
NH, USA) (40 cm × 40 cm) covered with a mixture of barium sulfate (BaSO4) and white
paint. This calibration was repeated when required during the measurements. Because
the optical fiber probe of the device had a 25◦ field of view, the probe could detect the
spectral reflectance from a circular area of canopy with a 23.0 cm diameter when it was held
vertically at approximately 0.8 m above the canopy in the nadir orientation. The average of
five sequential measurements and 10 scans for each measurement was finally taken as the
canopy spectrum for a subplot and used to calculate the different published SRIs as well as
the newly constructed SRIs.

2.4. Photosynthetic Pigments and Plant Dry Weight Measurements

After the spectral reflectance of the wheat canopy was detected, all parts (stem,
leaves, and spike) of 20 plants from each subplot and within the spectral collection area
were collected randomly, oven-dried at 75 ◦C for 72 h, and then weighed to determine
the average of shoot dry weight (SDW) per plant. In addition, the three youngest fully
expanded leaves were also excised randomly from the spectral collection area and used for
the measurements of photosynthetic pigment contents: chlorophyll a (Chla), chlorophyll b
(Chlb), and total chlorophyll (Chlt). The pigments were extracted from 0.2 g fresh weight
using 80% acetone (v/v). The mixture was kept in the dark at room temperature until the
leaf tissue was completely bleached. After complete extraction, the extract was centrifuged
for 5 min at 5000× g and then brought up to a final volume of 15 mL using 80% acetone.
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The absorbance of the extracts was read spectrophotometrically at 645 and 663 nm using
a spectrophotometer (UV-2550, Shimadzu, Japan). Finally, the concentrations of each
pigment in mg g−1 fresh weight (FW) were calculated according to the method previously
described by Arnon [54] and Lichtenthaler and Wellburn [55].

2.5. Published and Newly Constructed Spectral Reflectance Indices (SRIs)

In this study, 49 previously published and 11 newly constructed SRIs were applied
to assess SDW and Chl content parameters. The newly constructed SRIs were used in
the type of simple ratio indices (CSR), whereas the published SRIs were used in the
type of published simple ratio (PSR), published modified simple ratio (PMSR), published
normalized difference (PND), and published integrated forms (PIFs). The full names and
formulas of all indices in each type are listed in Table 1. Generally, the published SRIs
can be divided into two main categories. The first category includes the Chl-SRIs that
incorporate wavelengths related directly to changes in photosynthetic pigment content in
green vegetation leaves. The second category includes the multiple-bioparameter SRIs,
which can be used to estimate multiple vegetation parameters in addition to pigment
content such as photosynthetic efficiency, aboveground biomass, and LAI.

Table 1. Full names, abbreviation, and formulas of different types of newly constructed and published
vegetation indices used in this study.

NO. SRIs Formula

Constructed simple ratio type (CSR)
1 Simple ratio (400 and 478 nm) R400/R478
2 Simple ratio (810 and 550 nm) R810/R550
3 Simple ratio (970 and 564 nm) R970/R564
4 Simple ratio (554 and 572 nm) R554/R572
5 Simple ratio (1100 and 700 nm) R1100/R700
6 Simple ratio (740 and 710 nm) R740/R710
7 Simple ratio (754 and 568 nm) R754/R568
8 Simple ratio (762 and 722 nm) R762/R722
9 Simple ratio (1250 and 560 nm) R1250/R560
10 Simple ratio (1650 and 482 nm) R1650/R482
11 Simple ratio (2250 and 2296 nm) R2250/R2296

Published simple ratio type (PSR)
12 Simple ratio pigment index-1 (SRPI-1) R430/R680
13 Simple ratio pigment index-2 (SRPI-1) R750/R556
14 Blue/Green pigment Index-1 (BGI-1) R450/R550
15 Blue/Red pigment Index-1 (BRI-1) R400/R690
16 Red/green pigment Index-1 (RGI-1) R690/R550
17 Red/blue pigment Index (RBI) R695/R445
18 Gitelson and merzlyak index 1 (GM-1) R750/R550
19 Gitelson and merzlyak index-2 (GM-2) R750/R700
20 Ratio analysis of reflectance spectra-a (PARS-a) R750/R710

21 Ratio analysis of reflectance spectra-a developed
(PARS-a-D) R780/R720

22 Ratio analysis of reflectance spectra-c (PARS-c) R760/R500

23 Ratio analysis of reflectance spectra-c developed
(PARS-c-D) R760/R515

24 Pigment Specific Simple ratio-a (PSSR-a) R800/R675
25 Pigment-specific simple ratio-b (PSSR-b) R800/R650
26 Pigment-specific simple ratio-c (PSSR-c) R800/R470

Published modified simple ratio type (PMSR)
27 Red edge chlorophyll index (ClRed-edge) (R750/R710) − 1

28 Red edge chlorophyll index –developed
(Cl-DRed-edge) (R760/R710) − 1

29 Green chlorophyll index (ClGreen) (R800/R550) − 1
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Table 1. Cont.

NO. SRIs Formula

30 Ratio analysis of reflectance spectra-a (PARS-b) R675/(R650*R700)
31 Chlorophyll reflectance index-a (Chl-a) R776 (1/R673 − 1)
32 Chlorophyll reflectance index-b (Chl-b) R776 (1/R625 − 1/R673)

33 Carotenoid reflectance index (CRI) (1/R507 − 1/R603 −
0.65*(1/R530))*R776

34 Anthocyanin (Gitelson) (AntGitelson) R780 (1/R550 − 1/R700)
35 Plant senescence reflectance index (PSRI) (R680 − R500)/R750
36 Red-edge vegetation stress index (RVSI) 0.5 (R722 + R763) − R733

Published normalized difference type (PND)
37 Normalized phaeophytinization index (NPQ) (R415 − R435)/(R415+R435)

38 Normalized phaeophytinization index
developed (NPQ-D) (R482 − R350)/(R482+R350)

39 Photochemical reflectance index (PRI) (R531 − R570)/(R531+R570)

40 Photochemical reflectance index developed
(PRI-D) (R531 − R580)/(R531+R580)

41 Modified simple ratio of reflectance-1 (MSR-1) (R750 − R445)/(R705-R445)
42 Modified simple ratio of reflectance-2 (MSR-2) (R780 − R710)/(R780-R680)
43 Normalized difference vegetation index (NDVI) (R750 − R680)/(R750+R680)

44 Normalized difference vegetation index
developed (NDVI-D) (R780 − R715)/(R780+R715)

45 Structure insensitive pigment index (SIPI) (R800 − R445)/(R800-R680)

46 Pigment specific normalized difference-a
(PSND-a) (R800 − R680)/(R800+R680)

47 Pigment specific normalized difference-b
(PSND-b) (R800 − R635)/(R800+R635)

48 Pigment specific normalized difference-c
(PSND-c) (R800 − R460)/(R800+R460)

49 Pigment specific normalized difference-c
developed (PSND-c-D) (R800 − R482)/(R800+R482)

Published integrated form type (PIF)

50 Chlorophyll absorption ratio index (CARI) [(R700 − R670) − 0.2 × (R700 −
R550)]

51 Modified chlorophyll absorption ratio index
(MCARI)

[(R700 − R670) − 0.2 × (R700 −
R550)] × (R700/R670)

52 Transformed chlorophyll absorption reflectance
index (TCARI)

3 × ((R700 − R670) − 0.2 × (R700
− R550)] × (R700/R670)

53 Optimized soil-adjusted vegetation index
(OSAVI)

1.16(R800 − R670)/(R800 + R670 +
0.16)

54 Triangular vegetation index (TVI) 1.2 × (R700 − R550) − 1.5 × (R670
− R550) × (R700/R670)1/2]

55 Modified triangular vegetation index (MTVI) 1.2 [1.2(R800 − R550) − 2.5(R670 −
R550)]

56 Enhanced vegetation index (EVI) 2.5 (R782 − R675)/(R782 + 6 × R675
− 7.5 × R445 + 1))

57 Red edge inflection point (REIP) REIP = 700 + 40 × {[(R670 +
R780)/2 − R700]/(R740 − R700)}

58 Salinity and water stress index-1 (SWSI-1) (R803 − R681)/root(R905 − R972)
59 Salinity and water stress index-2 (SWSI-2) (R803 − R681)/root(R1326 − R1507)
60 Salinity and water stress index-3 (SWSI-3) (R803 − R681)/root(R972 − R1174)

The new SRIs were constructed on the basis of contour maps. The contour map was
established for each plant variable using the pooled data of salinity levels, genotypes,
replications, and seasons of the canopy spectral reflectance for each plant variable (n = 36)
(Figure 1). These contour maps show the coefficients of determination (R2) of the relation-
ships between SRIs calculated from all possible combinations of dual wavelengths of binary
wavelengths in the full spectral region (350–2500) and the values of each plant variable.
The new SRIs were selected on the basis of the hotspot region of R2, which determines the
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most favorable relationships between plant variables and SRIs. The R package “lattice”
from the software R statistics v.3.6.1 (R foundation for Statistical Computing 2013) was
used to establish the contour maps for each plant variable.
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Figure 1. Contour maps show the coefficients of determination (R2) for the relationships between values of plant variables
(shoot dry weight (SDW), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt)) measured at the anthesis
growth stage and the spectral reflectance indices calculated from all possible combinations of dual wavelengths of binary in
the entire spectrum range (from 350 to 2500 nm) using the pooled data of salinity levels, genotypes, replications, and seasons.

2.6. Data Analysis

The effects of year, salinity level, genotype, and their possible interaction on various
plant variables (SDW and Chl contents) and SRIs were tested using the analysis of variance
(ANOVA), which is appropriate for a randomized complete block split split-plot design,
with the year, salinity level, and genotype considered as the main factor, sub-factor, and
the sub sub-factor, respectively. Salinity level and genotype were considered fixed effects,
whereas year and replicate were considered random effects. The differences between
the mean values of plant variables and SRIs between salinity levels and genotypes were
compared using Fisher’s least significant difference (LSD) test at a p ≤ 0.01 and 0.05
significance level. Relationships between plant variables and SRIs under specific conditions
(salinity levels, genotypes, and seasons) were examined by means of a coefficient of
correlation (r).
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To identify the most influential indices accounting for the most variability in each
plant variable, the indices of each SRI type and plant variables (SDW and Chl content)
of pooled data (n = 36) were applied to SMLR as independent and dependent variables,
respectively. The different models of the best indices of each SRI type were used to predict
distinct plant variables under specific conditions. The model with the highest values of R2

and the lowest values of root mean square error (RMSE) of the linear regression between the
observed and predicted values of each plant variable was designated the model with the
higher prediction accuracy. The different statistical analysis and plotting were performed
using R software v. 3.6.1 (R Core Team 2017) and Sigma Plot for Windows (Version 12.0,
SPSS, Chicago, IL, USA).

3. Results
3.1. Influence of Salinity Level, Genotype, and Their Interaction on Biomass, Chlorophyll Content,
and Spectral Reflectance Indices

An F-test from the analysis of variance revealed that the main effects of the salinity
levels and genotypes as well as salinity level by genotype interaction were significant (p ≤
0.05 and 0.01) for SDW, Chl content (Chla, Chlb, and Chlt), and nearly all SRIs. The main
effect of the years was also significantly different for SDW and Chl content variables, but
not for almost all SRIs. The year by salinity level or by genotype interactions as well as the
interaction between year, salinity level, and genotype had no significant effect on SDW, Chl
content, and all SRIs, with a few exceptions (Tables 2 and 3).

Table 2. Statistical analysis including analysis of variance (degrees of freedom (df), F-values, and
significance level) of the effect of year, salinity level, genotype, and their interaction on shoot dry
weight (SDW), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt) measured at the
anthesis growth stage (about 75 days from sowing).

F-Values

Source of
Variance df SDW

(g plant−1)

Chla
(mg g−1

Fresh
Weight)

Chlb
(mg g−1 Fresh

Weight)

Chlt
(mg g−1

Fresh
Weight)

Year (Y) 1 119.8 ** 32.8 * 905.3 ** 88.7 *
Salinity (S) 2 574.9 *** 315.2 *** 73.3 *** 323.1 ***

S*Y 2 0.38 ns 2.65 ns 2.16 ns 0.26 ns

Genotypes (G) 1 119.6 *** 30.3 *** 54.1 *** 37.9 ***
G*Y 1 1.28 ns 0.029 ns 0.91 ns 0.15 ns

G*S 2 19.8 *** 12.3 ** 9.59 ** 12.1 **
G*S*Y 2 1.04 ns 0.64 ns 0.29 ns 0.57 ns

Mean values of the main factor ± standard deviation

Salinity
Control 7.70a ± 0.50 2.65a ± 0.22 0.844a ± 0.11 3.49a ± 0.31

6 dS
m−1 5.34b ± 0.82 2.34b ± 0.25 0.692b ± 0.14 3.03b ± 0.38

12 dS
m−1 3.67c ± 0.91 1.93c ± 0.37 0.580c ± 0.13 2.51c ± 0.50

Genotypes
Sakha

93 6.04a ± 1.55 2.48a ± 0.21 0.784a ± 0.12 3.26a ± 0.34

Sakha
61 5.10b ± 2.02 2.14b ± 0.47 0.626b ± 0.17 2.76b ± 0.64

*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels, respectively, and ns: not significant.
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Table 3. F-test for the effect of year (Y), salinity level (S), genotype (G) and their possible interaction on 60 distinct spectral reflectance indices (SRIs) at the anthesis growth stages (about 75
days from sowing). Data are averaged over two seasons.

SRIs Y S S × Y G G × Y G × S G × S × Y SRIs Y S S × Y G G × Y G × S G × S × Y

Constructed
simple ratio
type (CSR)

1 ns *** ns *** ns *** ns
Published
modified

simple ratio
type (PMSR)

31 ns *** ns *** ns *** ns
2 ns *** ns *** ns * ns 32 ns * ns *** * ** ns
3 ns *** ns *** ns * ns 33 ns *** ns ** ns ns ns
4 ns *** ns *** ns *** ns 34 ns ns ns * ns ns ns
5 ns *** ns *** ns ** ns 35 ns *** ns *** * *** ns
6 ** *** ns *** ns *** ns 36 ns *** ns *** ns ns ns

7 ns *** ns *** ns ** ns

Published
normalized
difference
type (PND)

37 ns *** * *** ns ** *
8 ns *** ns *** ns ** ns 38 ns *** ns *** ns *** *
9 * *** ns ** ns ns ns 39 ns *** ns *** ns *** ns

10 ns *** *** *** ns ns ns 40 ns *** ns *** ns *** ns
11 ns *** ns *** ns ** ns 41 ns *** ns *** ns ** ns

Published
simple ratio
type (PSR)

12 ns ** ns *** ns ** ns 42 ns *** ns ** ns ns ns
13 ns *** ns *** ns ** ns 43 ns *** ns *** * *** ns
14 ns ns ns ns ns ns ns 44 * *** ns *** ns *** ns
15 ns *** ns *** ns ** ns 45 ns ** ns *** ns ** ns
16 ns *** ns *** * *** ns 46 ns *** ns *** * *** ns
17 ns *** ns *** ns * ns 47 ns *** ns *** * *** ns
18 ns *** ns *** ns * ns 48 ns *** ns *** ns ** ns
19 * *** ns *** ns *** ns 49 ns *** ns *** ns ** ns

20 ** *** ns *** ns *** ns

Published
integrated
form type

(PIF)

50 ns * ns ns ns ns ns
21 ns *** ns *** ns ** ns 51 ns ns ns ** ns * ns
22 ns *** * *** ns ** ns 52 ns ns ns ** ns * ns
23 ns *** ns *** ns ** ns 53 ns *** ns *** * *** ns
24 ns *** ns *** ns ** ns 54 ns ns ns * ns * ns
25 ns *** * *** ns *** ns 55 ns ** ns *** * *** ns
26 ns *** ** *** ns * ns 56 ns *** ns *** * *** *

27 ** *** ns *** ns *** ns 57 ns *** ns ** ns ns ns
28 * *** ns *** ns *** ns 58 ns ns ns ns ns ns ns
29 ns *** ns *** ns * ns 59 ns *** ns *** ns ** ns
30 * *** ns *** ns *** ns 60 ns ns ns ** ns ns ns

*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels, respectively, and ns: not significant. The name and abbreviation of each number for different types of SRI are listed in Table 1.
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Fisher’s protected LSD test at p ≤ 0.05 revealed that the mean values of SDW and Chl
content variables significantly decreased with increasing salinity levels, and the reduction
in these variables was lower in the salt-tolerant genotype Sakha 93 than in the salt-sensitive
genotype Sakha 61 (Table 2). In addition, the mean values of almost all SRIs (54 out
of 60 SRIs) revealed a continuous decrease from the control to the high salinity level
(12.0 dS m−1) treatments, with Sakha 93 always exhibiting higher values for these SRIs
than Sakha 61 does (Table 4).

Table 4. Comparison of the mean values of 60 spectral reflectance indices (SRIs) among the two genotypes and three salinity
levels (data are averaged over two seasons).

SRIs

Genotypes Salinity Levels

SRIs

Genotypes Salinity Levels

S93 S61 C 6 dS
m−1

12
dS

m−1
S93 S61 C 6 dS

m−1
12 dS
m−1

Constructed
simple

ratio type
(CSR)

1 0.79a 0.64b 0.84a 0.67b 0.62b
Published
modified

simple
ratio type
(PMSR)

31 10.56a 6.18b 14.32a 5.95b 4.84b
2 5.62a 4.25b 7.01a 4.25b 3.55c 32 −1.82b −0.77a −1.90b −0.95a −1.03a
3 5.81a 4.33b 7.39a 4.25b 3.57c 33 −2.04b −1.24a −2.90b −1.17a −0.86a
4 1.19a 1.08b 1.25a 1.09b 1.07c 34 0.40b 0.70a 0.31a 0.69a 0.65a
5 5.11a 3.49b 6.49a 3.51b 2.90c 35 0.009b 0.11a 0.004b 0.084a 0.091a
6 2.50a 1.94b 2.92a 1.99b 1.75c 36 0.032a 0.021b 0.039a 0.024b 0.016c

7 5.95a 4.28b 7.64a 4.23b 3.48c

Published
normal-

ized
difference

type
(PND)

37 −0.057a −0.088b −0.046a −0.081b −0.090b
8 1.92a 1.60b 2.14a 1.66b 1.49c 38 −0.014b 0.14a −0.091b 0.11a 0.17a
9 4.87a 3.76b 6.09a 3.68b 3.17c 39 0.023a −0.028b 0.045a −0.024b −0.029b

10 6.23a 4.98b 7.84a 4.69b 4.28c 40 0.083a −0.001b 0.119a 0.007b −0.002b
11 1.17a 1.13b 1.18a 1.14b 1.12b 41 4.87a 3.28b 6.08a 3.40b 2.75c

Published
simple

ratio type
(PSR)

12 0.83a 0.56b 0.89a 0.61b 0.60b 42 0.74a 0.68b 0.79a 0.70b 0.65c
13 5.13a 3.85b 6.38a 3.84b 3.24c 43 0.80a 0.57b 0.85a 0.62b 0.59b
14 0.48a 0.47a 0.47a 0.47a 0.47a 44 0.43a 0.30b 0.49a 0.33b 0.27c
15 0.57a 0.38b 0.64a 0.41b 0.38b 45 1.02b 1.24a 1.01b 1.17a 1.22a
16 1.00a 0.65b 0.94a 0.94a 0.60b 46 0.81a 0.60b 0.86a 0.65b 0.61b
17 2.47a 1.79b 2.40a 2.36a 1.64b 47 0.79a 0.59b 0.86a 0.63b 0.59b
18 5.10a 3.87b 6.32a 3.87b 3.27c 48 0.84a 0.76b 0.87a 0.78b 0.74c
19 4.73a 3.22b 6.03a 3.22b 2.66c 49 0.84a 0.74b 0.87a 0.76b 0.73c

20 2.85a 2.14b 3.38a 2.21b 1.90c

Published
integrated
form type

(PIF)

50 0.083a 0.074a 0.094a 0.080ab 0.062b
21 2.11a 1.73b 2.37a 1.79b 1.59c 51 0.186a 0.132b 0.145a 0.149a 0.182a
22 10.91a 7.67b 14.14a 7.48b 6.25b 52 0.558a 0.395b 0.436a 0.448a 0.547a
23 8.56a 6.16b 11.1a 6.02b 4.96c 53 0.803a 0.599b 0.845a 0.646b 0.613b
24 11.23a 6.82b 14.81a 6.67b 5.60b 54 0.186a 0.147b 0.142b 0.163ab 0.195a
25 11.20a 7.02b 15.55a 6.49b 5.28b 55 1.103a 0.778b 1.079a 0.880b 0.862b
26 12.08a 8.80b 15.38a 8.66b 7.29c 56 0.999a 0.654b 1.023a 0.736b 0.720b

27 1.85a 1.14b 2.38a 1.21b 0.99c 57 722.31a 720.01b 723.98a 720.61b 718.88c
28 2.01a 1.25b 2.60a 1.32b 0.97c 58 3.06a 2.84a 3.13a 2.92a 2.80a
29 4.60a 3.23b 5.99a 3.23b 2.53c 59 1.17a 0.99b 1.17a 1.05b 1.03b
30 6.81a 5.09b 9.53a 4.66b 3.65c 60 2.11a 1.86b 2.06a 1.98b 1.91b

Means followed by the same letter are not significantly different from one another based on Fisher’s least significant difference (LSD) test
at p ≤ 0.05. S93 and S61 indicate genotypes Sakha 93 and Sakha 61, respectively. C indicate control. The name and abbreviation of each
number for different type of SRIs are listed in Table 1.

3.2. Relationship between Measured Variables and Different Types of Spectral Reflectance Index

The relationships of measured variables (SDW and Chl content) with the 11 indices
constructed in this study as SR as well as the four different types indices published in the
literature (15 published SR indices, PSRs; 10 published MSR indices, PMSRs; 13 published
ND indices, PNDs; and 11 published integrated forms, PIFs) under each salinity level
(n = 12) and genotype (n = 18) as well as for all the pooled data (n = 36) are presented
in Figures 2–4. Under the control treatment, none of the SRIs correlated with Chla and
Chlt, with only very few SRIs (a maximum of three and four out of the 60 SRIs) exhibiting
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a moderate correlation with SDW and Chlb, respectively (Figure 2). Under moderate
salinity (6.0 dS m−1), all indices within the CSR type exhibited strong correlation with
Chla and Chlt (r = 0.72–0.93) and moderate to strong correlation with SDW and Chlb (r =
0.59–0.84). In addition, almost all indices within PSR, PMSR, and PND types exhibited
strong correlations with all variables (r values ≥ 0.70), whereas a sufficient number of
indices within the PIF form (approximately half) exhibited a weak and non-significant
correlation with all variables (Figure 2). Under high salinity (12.0 dS m−1), all CSR indices
exhibited highly significant correlations with the four variables (r values ≥ 0.65). Almost
all SRIs of the four published types exhibited strong significant correlation coefficients with
the four variables, with only a few SRIs exhibiting weak to moderate correlations with the
four variables (Figure 2).

Figure 3 shows that all the distinct types of SRI failed to correlate with Chlb for Sakha
93, whereas the majority of indices within each type exhibited strong correlation coefficients
with Chlb for Sakha 61 (r ranged from 0.66 to 0.87). All indices within CSR, PSR (except
BGI), PMSR, and PND types exhibited strong significant correlations (r values ≥ 0.65)
with the other three variables (SDW, Chla, and Chlt) for Sakha 61, whereas almost all of
them exhibited moderate to strong correlations with the same three variables for Sakha 93.
The indices within the PIF form that exhibited significant correlations with Chla and Chlt,
exhibited a higher correlation for Sakha 61 than they did for Sakha 93 (Figure 3).

When all the data of salinity levels, genotypes, and seasons were pooled together, all
indices within CSR, PSR, PMSR, and PND types exhibited strong correlation coefficients
with four variables (r values ≥ 0.65), with the exception of BGI from PSR and AntGitelson
from PMSR, which exhibited non-significant and moderate correlations, respectively. A
sufficient number of indices within PIF type (approximately half) showed a weak and
non-significant correlation with all variables (Figure 4).

3.3. Relative Importance of Spectral Reflectance Indices in Predicting Measured Variables

To identify the most influential SRI from each type of SRI that contributed the major
variation of each measured variable, a stepwise multiple linear regression (SMLR) was per-
formed using the measured variables (SDW and Chl content) across all data as a dependent
variable and the SRI of each type of SRI as independent variables. The summary statistics
and equations of the SMLR calibration for each variable and SRI type are presented in
Table 5. For the CSR type of SRIs, the SRI based on SWIR/VIS (SRI(1250,560)) was determined
the most effective CSR index and explained 80% of the variation in SDW. Whereas, the
SRI based on red-edge/red-edge (SRI(740,710)) and red-edge/NIR (SRI(700,1100)) accounted
for 66%, 62%, and 67% of the variation in Chla, Chlb and Chlt, respectively (Table 5). For
the PSR type of SRI, the GMI, PARS-a, PARS-D-a, and PARS-a explained 79%, 65%, 60%,
and 66% of the variability in SDW, Chla, Chlb and Chlt, respectively. For the PMSR type of
SRI, the PARS-b and CIRed-edge accounted for 81% and 65% of the variation in SDW and
Chla, respectively, whereas the combination of both indices accounted for 68% and 70%
of the variation in Chlb and Chlt, respectively (Table 5). The NDVI-D was determined the
best index among the PND type of SRI for accurately estimating the four variables and
explained 75%, 68%, 63%, and 69% of the total variability in SDW, Chla, Chlb and Chlt,
respectively. For the final type of SRI (PIF type), a combination of both OSAVI and REIP
explained 69% of the variability in SDW or Chlt, whereas the combination of both TCARI
and OSAVI, and EVI-1 and REIP explained 68% and 65% of the variability in Chlb and Chlt,
respectively (Table 5).
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Figure 2. Correlation coefficients (r) for the relationships between different spectral reflectance indices (SRIs) and shoot dry
weight (SDW), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt) under each salinity level (n = 12). r
values ≤ −0.58 and r values ≥ 0.58 are significant at alpha = 0.05. CSR, PSR, PMSR, PND, PIF indicate constructed simple
ratio type, published simple ratio type, published modified simple ratio type, published normalized difference type, and
published integrated form type, respectively. The name and abbreviation of each number for different types of SRI are listed
in Table 1.
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weight (SDW), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt) for each genotype (n = 18). r values ≤
−0.47 and r values ≥ 0.47 are significant at alpha = 0.05. CSR, PSR, PMSR, PND, PIF indicate constructed simple ratio type,
published simple ratio type, published modified simple ratio type, published normalized difference type, and published
integrated form type, respectively. The name and abbreviation of each number for different types of SRI are listed in Table 1.
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Figure 4. Correlation coefficients (r) for the relationships between different spectral reflectance indices (SRIs) and shoot
dry weight (SDW), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt) for pooled data (n = 36).
r values ≤ −0.35 and r values ≥ 0.35 are significant at alpha = 0.05. CSR, PSR, PMSR, PND, PIF indicate constructed
simple ratio type, published simple ratio type, published modified simple ratio type, published normalized difference type,
and published integrated form type, respectively. The name and abbreviation of each number for different types of SRI are
listed in Table 1.

Table 5. Extraction of the most influential spectral reflectance indices (SRIs) from each type of SRIs accounting for the major
variation for shoot dry weight (SDW) and content of chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt)
using stepwise multiple linear regression (SMLR) analysis and based on pooled data (n = 36).

SRIs Groups Measured Variables Influential
SRI Best Fitted Equation Model R2 Model RMSE

Constructed
simple ratio type

(CSR)

SDW SRI(1250,560)
SDW = 0.909 +1.08

(SRI(1250,560))
0.80 0.836

Chla SRI(740,710)
Chla = 1.139 + 0.526

(SRI(740,710))
0.66 0.242

Chlb SRI(700,1100)
Chlb = 0.974 − 0.928

(SRI(700,1100))
0.62 0.105

Chlt SRI(740,710)
Chlt = 1.358 + 0.732

SRI(740,710)
0.67 0.331

Published simple
ration type (PSR)

SDW GMI SDW = 1.006 + 1.017 (GMI) 0.79 0.846

Chla PARS-a Chla = 1.268 + 0.416
(PARS-a) 0.65 0.244

Chlb PARS-D-a Chlb = 0.114 + 0.308
(PARSD-a) 0.60 0.107

Chlt PARS-a Chlt = 1.566 + 0.579 (PARS-a) 0.66 0.334
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Table 5. Cont.

SRIs Groups Measured Variables Influential
SRI Best Fitted Equation Model R2 Model RMSE

Published
modified simple

ratio type (PMSR)

SDW PARS-b SDW = 2.258 + 0.557
(PARS-b) 0.81 0.806

Chla CIRed-edge
Chla = 1.684 + 0.416

(CIRed-edge) 0.65 0.244

Chlb CIRed-edge, PARS-b
Chlb = 0.50 + 0.43

(CIRed-edge) − 0.007
(PARS-b)

0.68 0.098

Chlt CIRed-edge, PARS-b Chlt = 2.23 + 1.22
(CIRed-edge) − 0.18 (PARS-b) 0.70 0.318

Published
normalized

difference type
(PND)

SDW NDVI-D SDW = 0.950+12.718
(NDV3-D) 0.75 0.928

Chla NDVI-D Chla = 1.326 + 2.701
(NDVI-D) 0.68 0.234

Chlb NDVI-D Chlb = 0.320 + 1.06
(NDVI-D) 0.63 0.103

Chlt NDVI-D Chlt = 1.646 + 3.76 (NDVI-D) 0.69 0.318

Published
integrated form

type (PIF)

SDW OSAVI, REIP SDW = −211.45 + 4.48
(OSAVI) + 0.30 (REIP) 0.69 1.051

Chla TCARI, OSAVI Chla = 1.076 − 0.602
(TCARI) + 2.165 (OSAVI) 0.68 0.238

Chlb EVI-1, REIP Chlb = −15.074 + 0.316
(EVI-1) + 0.002 (REIP) 0.65 0.102

Chlt OSAVI, REIP Chlt = −49.277 + 1.72
(OSAVI) +0.007 (REIP) 0.69 0.325

The full name of the abbreviation of each spectral reflectance indices are listed in Table 1.

3.4. Validation of Predictive Models for Measured Variables Based on Influential SRIs in Each SRI
Type

The different models of SMLR based on the influential SRIs in each SRIs form (Table 5)
were calibrated using the pooled data (n = 36) and used to predict the measured variables
for each salinity level (Table 6), genotype, (Table 7), and season (Table 8). The results show
that the distinct predictive models for each SRIs type failed to predict any variable under
the control treatment. By contrast, they performed well in predicting four variables under
moderate (R2 ranged from 0.47 to 0.88) and high (R2 ranged from 0.53 to 0.71) salinity
levels. In addition, the predictive models provided a more accurate estimation of Chla and
Chlt than they did of SDW and Chlb (Table 6).
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Table 6. Function of linear validations between the observed and predicted values, coefficient of determination (R2), and root mean square error (RMSE) of linear regression models based
on an individual selected spectral index (Table 5). These models were calibrated using a dataset of 2 seasons. Subsequently, the equations of calibration of distinct models (Table 5) were
used to predict the shoot dry weight (SDW) and content of chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chlt) for each salinity level.

SRI Type Measured
Variables

Control Moderate Salinity Level (6 dS m−1) High Salinity Level (12 dS m−1)

Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE

Constructed
simple ratio
type (CSR)

SDW y = 0.7885x + 1.411 0.23 0.732 y = 1.1424x − 1.208 0.65 0.809 y = 0.476x + 2.587 0.55 0.889
Chla y = −0.0549x + 2.789 0.04 0.230 y = 1.0082x − 0.151 0.67 0.212 y = 0.5552x + 0.995 0.68 0.250
Chlb y = −0.0432x + 0.866 0.11 0.113 y = 0.6707x + 0.199 0.58 0.095 y = 0.6103x + 0.269 0.53 0.098
Chlt y = −0.0564x + 3.649 0.11 0.317 y = 1.0317x − 0.267 0.66 0.272 y = 0.628x + 1.144 0.64 0.357

Published
simple ration

type (PSR)

SDW y = 0.5635x + 3.0961 0.16 0.708 y = 1.1356x − 1.121 0.57 0.880 y = 0.6262x + 2.034 0.59 0.868
Chla y = −0.1091x + 2.963 0.07 0.248 y = 1.0194x − 0.199 0.82 0.190 y = 0.398x + 1.290 0.69 0.268
Chlb y = −0.0754x + 0.911 0.04 0.122 y = 0.5676x + 0.273 0.55 0.097 y = 0.3971x + 0.374 0.58 0.091
Chlt y = −0.1208x + 3.946 0.09 0.350 y = 0.8905x + 0.145 0.77 0.261 y = 0.4049x + 1.649 0.67 0.353

Published
modified simple

ratio type
(PMSR)

SDW y = 0.3545x + 4.833 0.08 0.655 y = 1.0647x − 0.831 0.59 0.852 y = 0.5072x + 2.430 0.63 0.829
Chla y = −0.1091x + 2.963 0.07 0.248 y = 1.0194x − 0.199 0.82 0.190 y = 0.398x + 1.290 0.69 0.268
Chlb y = 0.1155x + 0.727 0.06 0.109 y = 0.8061x + 0.118 0.68 0.083 y = 0.6485x + 0.239 0.61 0.087
Chlt y = −0.0231x + 3.543 0.00 0.338 y = 1.0921x − 0.424 0.80 0.248 y = 0.5797x + 1.230 0.71 0.321

Published
normalized

difference type
(PND)

SDW y = 0.1511x + 6.037 0.06 0.705 y = 1.3114x − 1.892 0.55 0.992 y = 0.9458x + 0.929 0.62 0.979
Chla y = −0.0796x + 2.864 0.07 0.235 y = 1.109x − 0.388 0.88 0.194 y = 0.5149x + 1.064 0.69 0.249
Chlb y = −0.0529x + 0.886 0.05 0.115 y = 0.6297x + 0.231 0.66 0.096 y = 0.5149x + 0.309 0.56 0.089
Chlt y = −0.0811x + 3.778 0.07 0.329 y = 0.9726x − 0.075 0.73 0.264 y = 0.524x + 1.350 0.66 0.331

Published
integrated form

type (PIF)

SDW y = 0.1053x + 6.239 0.03 0.830 y = 1.2462x − 1.491 0.47 1.076 y = 0.9116x + 1.153 0.56 1.091
Chla y = −0.038x + 2.743 0.03 0.222 y = 1.1193x − 0.415 0.78 0.198 y = 0.5564x + 0.999 0.64 1.504
Chlb y = 0.0103x + 0.819 0.00 0.110 y = 0.7442x + 0.150 0.62 0.091 y = 0.6731x + 0.233 0.61 0.091
Chlt y = −0.0648x + 3.685 0.06 0.324 y = 1.0211x − 0.218 0.73 0.274 y = 0.6243x + 1.131 0.68 0.331



Plants 2021, 10, 101 18 of 26

Table 7. Function of linear validations between the observed and predicted values, coefficient of determination (R2), and
root mean square error (RMSE) of linear regression models based on an individual selected spectral index (Table 5). These
models were calibrated using a dataset of 2 seasons. Subsequently, the equations of calibration of distinct models (Table 5)
were used to predict the shoot dry weight (SDW) and content of chlorophyll a (Chla), chlorophyll b (Chlb), and total
chlorophyll (Chlt) for each genotype.

SRI Type Measured
Variables

Salt-Tolerant Genotype Sakha 93 Salt-Sensitive Genotype Sakha 61

Equation R2 RMSE Equation R2 RMSE

Constructed
simple ratio
type (CSR)

SDW y = 0.6537x + 2.836 0.84 1.388 y = 0.725x + 1.271 0.80 0.907
Chla y = 0.4303x + 1.403 0.30 0.203 y = 0.6552x + 0.745 0.69 0.257
Chlb y = 0.2178x + 0.607 0.22 0.103 y = 0.6688x + 0.214 0.64 0.102
Chlt y = 0.3355x + 2.175 0.34 0.271 y = 0.66x + 0.931 0.67 0.357

Published
simple ration

type (PSR)

SDW y = 0.7019x + 0.858 0.73 1.223 y = 0.7786x + 0.976 0.82 0.850
Chla y = 0.537x + 1.122 0.32 0.214 y = 0.6259x + 0.824 0.69 0.259
Chlb y = 0.328x + 0.507 0.18 0.115 y = 0.6721x + 0.226 0.73 0.091
Chlt y = 0.5062x + 1.564 0.30 0.310 y = 0.6569x + 0.994 0.71 0.338

Published
modified

simple ratio
type (PMSR)

SDW y = 0.7391x + 1.585 0.79 0.688 y = 0.8311x + 0.851 0.81 0.868
Chla y = 0.537x + 1.122 0.32 0.214 y = 0.6259x + 0.824 0.69 0.259
Chlb y = 0.374x + 0.500 0.32 0.096 y = 0.6289x + 0.224 0.72 0.091
Chlt y = 0.5043x + 1.645 0.34 0.276 y = 0.6235x + 1.012 0.73 0.331

Published
normalized
difference

type (PND)

SDW y = 0.5115x + 3.273 0.73 0.930 y = 0.7846x + 0.775 0.83 0.873
Chla y = 0.479x + 1.288 0.34 0.197 y = 0.6514x + 0.747 0.70 0.259
Chlb y = 0.2923x + 0.542 0.20 0.107 y = 0.6961x + 0.203 0.70 0.094
Chlt y = 0.4536x + 1.767 0.32 0.286 y = 0.6805x + 0.898 0.72 0.332

Published
integrated
form type

(PIF)

SDW y = 0.4501x + 3.650 0.68 1.007 y = 0.7153x + 1.121 0.77 1.006
Chla y = 0.453x + 1.356 0.37 0.189 y = 0.6467x + 0.753 0.68 0.262
Chlb y = 0.2622x + 0.579 0.25 0.101 y = 0.6766x + 0.202 0.69 0.094
Chlt y = 0.3802x + 2.029 0.32 0.276 y = 0.6676x + 0.911 0.70 0.342

Table 8. Function of linear validations between the observed and predicted values, coefficient of determination (R2), and
root mean square error (RMSE) of linear regression models based on an individual selected spectral index (Table 5). These
models were calibrated using a dataset of 2 seasons. Subsequently, the equations of calibration of distinct models (Table 5)
were used to predict the shoot dry weight (SDW) and content of chlorophyll a (Chla), chlorophyll b (Chlb), and total
chlorophyll (Chlt) for each season.

SRI Type Measured
Variables

First Season Second Season

Equation R2 RMSE Equation R2 RMSE

Constructed
simple ratio
type (CSR)

SDW y = 0.9072x + 0.326 0.82 0.777 y = 0.7325x + 1.609 0.80 0.847
Chla y = 0.6009x + 0.996 0.69 0.256 y = 0.8293x + 0.302 0.79 0.203
Chlb y = 0.7281x + 0.250 0.74 0.102 y = 0.7802x + 0.093 0.84 0.102
Chlt y = 0.6186x + 1.270 0.68 0.351 y = 0.8533x + 0.288 0.84 0.279

Published
simple ration

type (PSR)

SDW y = 0.8832x + 0.437 0.84 0.754 y = 0.7534x + 1.533 0.78 0.886
Chla y = 0.6209x + 0.932 0.64 0.262 y = 0.7465x + 0.518 0.74 0.211
Chlb y = 0.7786x + 0.212 0.70 0.103 y = 0.6996x + 0.161 0.80 0.105
Chlt y = 0.6751x + 1.090 0.67 0.348 y = 0.3955x + 1.421 0.76 0.595

Published
modified

simple ratio
type (PMSR)

SDW y = 0.8981x + 0.372 0.85 0.712 y = 0.7721x + 1.412 0.79 0.849
Chla y = 0.6209x + 0.932 0.64 0.262 y = 0.7465x + 0.518 0.74 0.211
Chlb y = 0.73x + 0.230 0.68 0.096 y = 0.8121x + 0.088 0.82 0.092
Chlt y = 0.6396x + 1.158 0.66 0.377 y = 0.8358x + 0.395 0.81 0.269
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Table 8. Cont.

SRI Type Measured
Variables

First Season Second Season

Equation R2 RMSE Equation R2 RMSE

Published
normalized
difference

type (PND)

SDW y = 0.7573x + 1.126 0.81 0.836 y = 0.8031x + 1.341 0.75 0.963
Chla y = 0.6154x + 0.949 0.66 0.256 y = 0.8245x + 0.329 0.80 0.194
Chlb y = 0.7773x + 0.215 0.73 0.101 y = 0.7583x + 0.114 0.84 0.100
Chlt y = 0.671x + 1.107 0.70 0.378 y = 0.8217x + 0.400 0.83 0.278

Published
integrated
form type

(PIF)

SDW y = 0.7105x + 1.3684 0.72 0.985 y = 0.7319x + 1.745 0.71 1.027
Chla y = 0.5726x + 1.047 0.65 0.261 y = 0.8698x + 0.218 0.81 0.190
Chlb y = 0.7721x + 0.209 0.69 0.099 y = 0.7603x + 0.121 0.82 0.096
Chlt y = 0.6558x + 1.147 0.67 0.346 y = 0.8282x + 0.383 0.84 0.271

The predictive models for each SRI type failed to predict only Chlb for Sakha 93. In
addition, the predictive models of different SRI types provided a more accurate estimation
of SDW (R2 ranged from 0.68 to 0.84) than they did for Chl content (R2 ranged from 0.30 to
0.37) for Sakha 93. They exhibited strong and comparable performance for predicting the
three variables of Chl content (R2 ranged from 0.64 to 0.82) as did SDW (R2 ranged from
0.71 to 0.80) for Sakha 61 (Table 7). Similarly, the predictive models of different SRI types
performed adequately in predicting four variables for the first (R2 ranged from 0.64 to 0.85)
and second (R2 ranged from 0.71 to 0.84) seasons (Table 8).

4. Discussion

The content of leaf photosynthetic pigments is an indirect indicator for the photo-
synthetic capacity. In combination with plant growth measurements such as SDW, it has
been found to be an effective and critical proxy for crop productivity under salinity stress
and useful for understanding salt tolerance mechanisms over the whole plant vegeta-
tion [7,16,56]. The reduction in photosynthetic pigment levels under salinity stress could
be attributable to the toxic ions (Na+ and Cl−) interfering with the activity of numerous
enzymes associated with chlorophyll biosynthesis and increasing the production of ROS,
which ultimately leads to fast degradation of chlorophyll [11,12]. In addition, the first
response of plants to salinity stress is the trade-off between the use of their photosyn-
thetic energy for the activation of adaptation mechanisms and biomass production, which
eventually causes a substantial reduction in biomass accumulation [5,6,8]. Therefore, a
reduction in the levels of Chl content and shoot biomass accumulation are a typical symp-
tom of salinity stress on plants. This was also observed in this study with the two wheat
genotypes and three salinity levels (Table 2). In this study, the different Chl contents (Chla,
Chlb, and Chlt) and SDW gradually decreased with increasing salinity levels, with the
reduction in these variables being higher in the salt-sensitive genotype Sakha 61 than in
the salt-tolerant genotype Sakha 93 (Table 2). This suggests the relevance of studying
the variables related to biomass accumulation and leaf Chl content under salinity stress.
Furthermore, the incorporation of these variables into genetic salinity studies is likely to
become increasingly crucial for increasing the chances of identifying wheat genotypes that
are well-adapted to salinity stress. However, accurate real-time measurement of these
variables remains a challenge, and incorporating them into genetic salinity studies aimed
at evaluating numerous genotypes under actual saline field conditions is crucial.

As previously stated, the alternations in biomass accumulation and the level of Chl con-
tent under salinity stress in turn lead to substantial changes in the spectral signatures that
are reflected from the plant canopy. These changes in the canopy spectral reflectance, which
can be measured in real-time by ground spectroradiometer in a rapid, non-destructive,
cost-effective manner, have been exploited to extract the sensitive wavelengths that are
closely associated with salinity-induced changes that occur in biomass and Chl content.
These sensitive wavelengths have been used to develop a large number of specific SRIs,
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which ultimately could be used for large-scale phenotyping of biomass as well as in studies
on the status of photosynthetic pigments under varying conditions [24,49–51,57,58].

Because the canopy spectral reflectance is affected by several factors such as growth
conditions, growth stage, plant species, stress level, and soil background conditions, deter-
mining sensitive wavelengths incorporated in the SRIs and suitable types formulated from
these wavelengths to make the SRIs more available for a range of conditions and sensors
is challenging [23,24,36,59,60]. For example, Lu et al. [60] reported that the MDATT index
in a normalized difference index type (NDI: R719 − R726)/(R719 − R743), correlated more
favorably with the leaf chlorophyll content of white poplar and Chinese elm leaves than
did SD, SR, and ND types, because it is insensitive to the effects of abaxial and adaxial leaf
surface structures. However, Yue et al. [59] showed that the integrated form indices such
as TCARI, enhanced vegetation index (EVI), MCARI, and OSAVI, which are insensitive to
a variety of vegetation cover and soil background types, were more accurate for remotely
assessing the Chl content of soybean at canopy level than were the types of ND and SR
indices. By contrast, Babar et al. [61] found that the SR and ND forms of water-based
indices generally produced a similar correlation with biomass and Chl content of wheat
under irrigation conditions. Therefore, in this study, we compared the performance of
distinct SRIs, differing in their formula forms and combination of wavelengths, to assess
variation in SDW and Chl content variables of wheat under distinct growing conditions
(salinity levels, genotypes, and seasons).

4.1. Performance of Different Types of Spectral Reflectance Index under Different
Growth Conditions

In this study, the different indices within each type of SRI exhibited significant differ-
ences (p ≤ 0.01 and 0.05) between salinity levels and wheat genotypes, with the exception
of PIF-SRIs for which approximately half of the indices within this type exhibited non-
significant differences between salinity levels (Table 3). In addition, the interaction between
salinity and genotype was highly significant for all the indices, except for very few indices
within each SRI type (a maximum of four indices within PIF-SRIs) (Table 3). This result
indicates that all types of SRIs, especially the simple type ones, such as constructed or
published SR, MSR, and ND, seem to be effective for phenotyping the variation in SDW and
Chl content between salinity levels and are able to differentiate between wheat genotypes
under salinity stress. The reduction in biomass and the degradation of chlorophyll are real
phenomena under salinity stress and for salt-sensitive genotypes because of the build-up
of toxic ions (Na+ and Cl−) in the leaf tissue combined with deficits of essential ions (K+

and Mg2+) [5,7,56,62]. In this study, this may be a primary reason explaining why almost
all indices within all different types of SRI tested exhibited significant differences between
salinity levels and genotypes (Table 3).

The results of this study also show that the values of almost all indices within all
types of SRI exhibited a continuous decrease from the control to high salinity treatments,
with Sakha 93 always exhibiting higher values for these indices than did Sakha 61 (Table 4).
This may be because an increment in the levels of salinity generally tends to induce a
substantial increase in the spectral reflectance of wheat canopy in the VIS region of the
spectrum and a decrease in the NIR region as well as a shift in the red-edge region to
shorter wavelengths. This behavior of spectral reflectance is associated with a decrease in
Chl content (low chlorophyll absorption in the VIS region) and plant biomass (multiple
scattering of NIR region by different leaf tissues) because of salinity stress. Previous studies
have reported that when the Chl content decreases, the spectral reflectance in the VIS region
increases especially in the main absorption bands of chlorophyll (blue: 400–500 nm and red:
660–690 nm) of the VIS spectrum [13,63–65]. In addition, decreased biomass accumulation
and substantial changes in several leaf structures because of ion toxicity and imbalance
of salinity stress leads to decreased spectral reflectance in the NIR region, because of a
multiplicative effect on the wavebands in the NIR region [30,59,65]. In this study, the
decreases in SDW and Chl content with increasing salinity (Table 2) were expected, and this
explains why the values of almost all indices, which are based mainly on VIS, red-edge,
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and NIR wavelengths, decreased significantly with increasing salinity levels (Table 4).
In addition, because these indices are indicators for biomass and Chl content, the higher
the values of these indices, which were shown under the control treatment and with the
salt-tolerant genotype Sakha 93, the greater was the amount of biomass and Chl content
retained by the canopy.

The accuracy of distinct indices in different types of SRI in estimating SDW and
Chl content under various growth conditions was further tested through the correlation
between indices within each form and these variables (Figures 2–4). In general, the results
of the relationships between indices and variables demonstrated the ability of indices
for assessing the four variables dependent on salinity levels, genotypes, and the type
of these indices. Regarding salinity levels, almost all indices within each type failed
to estimate the four variables under the control condition. However, they performed
favorably in estimating the four variables under moderate and high salinity levels. In
addition, almost all indices within all SRI types, except the PIF type, were slightly more
effective in estimating the Chla and Chlt under moderate salinity than under high salinity
level (Figure 2). All these findings reveal that, methodologically, crop growth conditions
play a vital role in the efficiency of indices for estimating the biomass and Chl content. The
primary reason for this could be that the high LAI as well as the saturation of most of the
vegetation indices, attributable of the high Chl content and dense vegetation (high biomass
accumulation), could be sufficient enough to make most vegetation indices unsuitable
to assess biomass and Chl content under control conditions. In general, most vegetation
indices within each SRI type are usually saturated when the values of LAI are larger than
3 in wheat crops [66,67]. However, decreases in Chl content, necrosis, and senescence of
photosynthetic organs, which are natural phenomena on canopies attributable to the ionic
and osmotic stresses of salinity, may explain why the correlations between indices and four
variables become stronger under moderate and high salinity levels. Furthermore, certain
vegetation indices are saturated also at low Chl content [31,68]. This may explain why the
association of some indices with Chla and Chlt was generally high under moderate salinity
level, when compared to their association under a high salinity level.

Regarding genotypes, the correlation between almost all indices and four variables
was higher for the salt-sensitive genotype Sakha 61 than it was for the salt-tolerant genotype
Sakha 93, and this was more evident for Chl content variables than it was for SDW (Figure 3).
This finding indicates that because the salt tolerance of two genotypes may be attributable
to distinct adaption mechanisms, the degree of change in biomass and Chl content may
also differ between two genotypes under salinity stress (Table 2), which indicates that
the efficiency of spectral indices for estimating plant variables under salinity stress may
be highly genotype-dependent. Furthermore, the efficiency of spectral indices may also
depend on a combination of the magnitude of the effects of salinity levels and the degree
of salt tolerance of genotypes as well as the degree of the changes in plant variables (SDW
and Chl content variables in this study) under salinity stress. The results presented in
Figure 4 further confirm this finding and reveal that the pooled data of salinity levels
and genotypes provide additional improvement in the accurate estimation of biomass
and Chl content under salinity stress. This is suggested by previous studies that have
reported the significant variations in plant variables that occur between salinity levels and
genotypes may also influence the efficiency of indices in estimating these variables, and
this efficiency was improved significantly when the variation between plant variables was
obvious between treatments [50,51,69,70].

Regarding the types of SRI, the results reveal that the simple type of indices (CSR, PSR,
PMSR, and PND) was slightly more effective than the integrated type (PIF) in estimating the
four variables under distinct conditions (Figures 2–4). These findings reveal that all types of
SRI were effective in assessing biomass and Chl content of wheat crop under salinity stress.
The primary reason for this may be that the indices within each SRI type use different
robust wavelength combinations that are most closely associated with biomass and Chl
content, such as a combination between wavelengths in the red, red-edge, and NIR regions.
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Similarly, previous studies have found that the indices based on the red- and NIR-bands
performed most favorably for estimating above-ground biomass of winter wheat [70,71].
Sims and Gamon [29], Gitelson et al. [38], and Lu et al. [23] reported that the wavelengths
in the red-edge region constitute superior indicators for leaf Chl content compared to those
in other regions, because they are most closely associated with chlorophyll content and are
scarcely influenced by other leaf pigments. Main et al. [72] assessed the performance of 73
published indices in different SRI types for estimating leaf Chl content and showed that the
indices containing off-chlorophyll absorption center wavebands (690–730 nm) exhibited
a superior performance compared to those containing in-chlorophyll center wavebands
(640–680 nm).

The results presented in Table 5 confirm this and show that the most effective indices
for accurately assessing the four variables under salinity stress and extracted from each
type of SRI by the SMLR model were those that incorporated a combination of wavelengths
within the red (650, 670, and 675 nm) and red-edge (700, 710, 715, 720, 740, 750, and 780
nm) regions, and very few wavelengths from the VIS (550 nm) and NIR (800 and 1100 nm)
regions. These effective indices explained 60–81% of the total variability in four variables
(Table 5). The reflectance around 550 nm was found to be highly sensitive to Chl content
especially Chla and Chlb [73]. Because of the weak absorption by chlorophyll in the green
(500–600 nm) and red-edge (700–780 nm) regions, the wavelengths within both regions
can be used for developing leaf chlorophyll content estimation algorithms [46,65,74]. In
addition, because of the strong absorption by chlorophyll in the middle of the red depres-
sion region (650–685 nm), the indices containing a combination of the wavelengths from
such regions with some wavelengths from green and red-edge regions could improve the
efficiency of these indices for accurate estimation of biomass and Chl content [51,60,75,76].
Combined, this evidence may explain why all indices extracted by SMLR from each form
were effective for accurately estimating SDW and Chl content variables in this study.

4.2. Validation of Predictive Models for Assessing Variables under Different Growth Conditions

The predicted SDW and Chl content variables based on the influential indices extracted
from each SRI type exhibited moderate to strong relationships with the observed values
under moderate and high salinity levels, with the prediction of Chla and Chlt being more
accurate than that of SDW and Chlb. However, these distinct predictive models failed
to predict any variable under the control treatment (Table 6). These findings further
confirm that the efficiency of indices for predicting the measured variables depended on
the magnitude of the impacts of salinity stress on these variables as well as the degree of
change in these variables under salinity stress [50,51,68,69].

The predicted SDW based on all types of SRI exhibited strong relationships with
the observed values for both genotypes, whereas the predicted Chl content variables still
exhibited strong relationships with the observed values for the salt-sensitive genotype
Sakha 61, while they exhibited low to moderate relationships for the salt-tolerant genotype
Sakha 93 (Table 7). This result indicates that the salt-tolerant genotype might have special
salt tolerance mechanisms that protect the chlorophyll from degradation by salinity stress,
while such mechanisms might be absent in the salt-sensitive genotype. Therefore, the
ability of any indices and types of SRI for predicting Chl content under salinity stress is
likely to be genotype-dependent.

5. Conclusions

This study evaluated the potential use of 60 spectral indices, including 49 published
and 11 newly constructed indices, for assessing SDW and Chl content (Chla, Chlb, and Chlt)
of two wheat genotypes differing in their salt tolerance and exposed to three salinity levels:
control, 6 dS m−1, and 12 dS m−1. The indices were used in the types of CSR, PSR, PMSR,
PND, and PIF. The results demonstrate significant differences (p < 0.01 and 0.05) in all
plant variables and nearly all SRIs between salinity levels, genotypes, and their interaction.
The distinct plant variables could be successfully assessed using several indices within
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each SRI type, but they were restricted to the moderate and high salinity levels, whereas
these indices failed to do so under control conditions. The relationships between these
indices and plant variables delivered closer fits for the salt-sensitive genotype Sakha 61
than they did for the salt-tolerant Sakha 93, and this was more evident for Chl content
variables than for SDW. The most influential indices that were extracted by SMLR explained
60–81% of the variability in four plant variables. All predictive models based on influential
indices within each SRI type exhibited moderate to strong relationships with the observed
values under moderate and high salinity levels and for Sakha 61. Finally, the results of this
study provide critical insights into the remote assessment of growth and Chl content under
salinity stress and for distinct wheat genotypes. This information will be useful in the
support of on-going efforts at developing lightweight proximal sensors for assessing key
breeding plant variables at the whole plant canopy level for breeding purposes of wheat
genotypes under salinity stress.
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