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Abstract

We present a combined report on the results of three editions of the Cell Tracking Challenge, an 

ongoing initiative aimed at promoting the development and objective evaluation of cell tracking 

algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen 

datasets of various microscopy modalities, the challenge displays today’s state of the art in the 

field. We analyze the results using performance measures for segmentation and tracking that rank 

all participating methods. We also analyze the performance of all algorithms in terms of biological 

measures and their practical usability. Even though some methods score high in all technical 

aspects, not a single one obtains fully correct solutions. We show that methods that either take 

prior information into account using learning strategies or analyze cells in a global spatio-temporal 

video context perform better than other methods under the segmentation and tracking scenarios 

included in the challenge.

Introduction

Cell migration and proliferation are two important processes in normal tissue development 

and disease1. To visualize these processes, optical microscopy remains the most appropriate 

imaging modality2. Some imaging techniques, such as phase contrast (PhC) or differential 

interference contrast (DIC) microscopy, make cells visible without the need of exogenous 

markers. Fluorescence microscopy on the other hand requires internalized, transgenic, or 

transfected fluorescent reporters to specifically label cell components such as nuclei, 

cytoplasm, or membranes. These are then made visible in 2D by wide-field fluorescence 

microscopy or in 3D by using the optical sectioning capabilities of confocal, multiphoton, or 

light sheet microscopes.

In order to gain biological insights from time-lapse microscopy recordings of cell behavior, 

it is often necessary to identify individual cells and follow them over time. The bioimage 

processing community has, since its inception, worked on extracting quantitative 

information from microscopy images of cultured cells3,4. Recently, the advent of new 

imaging technologies has challenged the field with multi-dimensional, large image datasets 

following the development of tissues, organs, or entire organisms. Yet the tasks remain the 

same, accurately delineating (i.e., segmenting) cell boundaries and tracking cell movements 

over time, providing information about their velocities and trajectories, and detecting cell 

lineage changes due to cell division or cell death (Fig. 1). The level of difficulty of 

automatically segmenting and tracking cells depends on the quality of the recorded video 
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sequences. The main properties that determine the quality of time-lapse videos with respect 

to the subsequent segmentation and tracking analysis are graphically illustrated in Fig. 2, 

and expressed as a set of quantitative measures in the Online Methods (section Dataset 
quality parameters).

The image processing community has addressed the above-mentioned tasks using 

increasingly sophisticated segmentation and tracking algorithms5–7. Below we briefly 

summarize the most commonly used methods for segmentation and tracking, respectively 

(Fig. 3).

For cell segmentation, creating a ‘taxonomy of methods’ is not straightforward since the 

state-of-the-art methods usually combine different strategies to achieve improved results. We 

classify existing algorithms based on three criteria: (i) The principle upon which cells are 

detected, e.g. by finding uniform areas, boundaries, or at very low resolution by simply 

finding bright spots/maxima8; (ii) The image features that are computed to achieve the cell 

segmentation. These can be simple pixel/voxel or average region intensities, or more 

complex local image descriptors of shapes or textures; (iii) Finally, we distinguish the 

segmentation method itself that implements the principle using the features. The methods 

range from simple thresholding9,10, hysteresis thresholding11, edge detection12, or shape 

matching13,14, to more sophisticated region growing15–17, machine learning18,19, or energy 

minimization20–26 approaches.

Cell tracking methods can be broadly categorized into two groups: (i) Tracking by contour 
evolution methods21,22,24,25 start by segmenting the cells in the first frame of a video and 

evolve their contours in consecutive frames, thus solving the segmentation and tracking tasks 

simultaneously, one step at a time, under the essential assumption of unambiguous, spatio-

temporal overlap between the corresponding cell regions; (ii) Tracking by detection 
methods14, 19,26–29, in contrast, start by segmenting the cells in all frames of a video and 

later, using mostly probabilistic frameworks, establish temporal associations between the 

segmented cells. This can be done by either using a two-frame or multi-frame sliding 

window, or even for all frames at once.

The diversity of imaging modalities, cell tracking tasks, and available algorithms makes it 

difficult for biologists to decide which algorithm to use under certain conditions. Moreover, 

the developers of image processing algorithms need to objectively evaluate new cell 

segmentation and tracking solutions by comparing their performance on standardized 

datasets. We addressed these problems by organizing three Cell Tracking Challenges (CTC 

I–III) between 2013 and 2015. For these challenges, we created a diverse repository of 

annotated microscopy videos, and defined quantitative evaluation measures to allow a fair 

comparison of the competing algorithms30. Here, we present a combined report on all three 

CTC editions. We introduce the datasets and show the results obtained by the participating 

algorithms. The analysis of results provides useful guidelines for users to identify 

appropriate algorithms for their own datasets, and point developers to open challenges that 

we believe are insufficiently addressed by the competing algorithms. It is important to note 

that this is an open-source initiative that remains open online, and most of the competing 
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methods are publicly available through the challenge website (http://

celltrackingchallenge.net/).

Results

Datasets and ground truth

The dataset repository (Fig. 4, Supplementary Table 1, Supplementary Videos 1–13) consists 

of 52 annotated videos from 13 classes, occupying 92 GB of raw image data. Eleven datasets 

are contrast enhancing (PhC, DIC) or fluorescence (widefield, confocal, light sheet) 

microscopy recordings of live cells and organisms in 2D and 3D. The other two datasets are 

synthetic, generated using a cell simulator that produces realistic 2D and 3D renderings of 

chromatin-stained live cells31. Supplementary Note 1 and supporting Supplementary Figs. 

1–11 provide a detailed description of the datasets. Supplementary Note 2 and supporting 

Supplementary Fig. 12 describe the simulator used to create the synthetic datasets, applying 

the parameter configuration provided in Supplementary Data 1. Finally, Table 1 provides a 

quantitative characterization of the quality of each dataset, based on the measures described 

in the Online Methods (section Dataset quality parameters). In all tables, figures, and 

videos, we use a naming convention for datasets that identifies their microscopy modality 

(Fluorescence, DIC, PhC), the staining (Nuclear, Cellular), the dimensionality (2D, 3D), 

the resolution (Low, High), and the cell type or model organism used.

Each dataset consists of two training and two competition videos. The training videos, along 

with their reference annotations, were provided at the time of registration for the CTC, 

allowing the participants to carry out performance-driven optimization of their algorithms. 

The competition videos, excluding the reference annotations that are kept secret, were 

provided at a later time, allowing the participants to visually fine-tune their algorithms on 

the competition videos before submitting their results.

Three independent human experts created a segmentation and a tracking solution 

(annotation) for each non-synthetic video30. The final segmentation (SEG-GT) and tracking 

(TRA-GT) ground truths were created by combining the three annotations, following a 

majority-voting scheme30. SEG-GT for the datasets of C. elegans (Fluo-N3DH-CE) embryo 

and the Drosophila melanogaster embryo (Fluo-N3DL-DRO) embryos were generated as 

described above, but in the case of Fluo-N3DL-DRO, only cells of the early nervous system 

were annotated and used as ground truth. TRA-GT of both embryonic datasets was not 

created following the description above. Instead, it was created by the groups that provided 

the datasets, using published protocols32,33. For the synthetic videos, SEG-GT and TRA-
GT were inherently created by the cell simulator used31.

Participants, algorithms, and handling of submissions

Seventeen teams from 11 countries participated in the three CTC editions, all providing 

complete tracking results for at least one of the datasets. Two teams submitted more than one 

algorithm, leading to a total of 21 competing algorithms. Tables 2 and 3 list the algorithms 

and classify respectively their segmentation and tracking strategies. Supplementary Table 2 

lists affiliations of the participating teams, and Supplementary Table 3 contains links to the 
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executable versions of most of the submitted algorithms. Their expanded description is 

presented in the Supplementary Note 3 and the parameter configurations used by each 

algorithm are listed in the Supplementary Data 2. All submissions were received by the CTC 

organizers as labeled segmentation masks and structured text files containing the cell lineage 

graphs. The CTC organizers verified the submitted results by reproducing them on a single 

computer, using the executable version of each algorithm provided by the participants.

Quantitative performance criteria

In order to quantify the performance of all submitted algorithms, we developed three 

categories of measures that quantify the (i) segmentation and tracking accuracy from the 

computer science point of view, (ii) biological relevance of the obtained tracking results, and 

(iii) practical usability of the methods. A detailed description of all measures can be found in 

the Online Methods (section Performance criteria). It is important to note that only the 

first set of measures was evaluated in the challenge and, therefore, the methods were only 

fine-tuned in this respect. The other two sets are used here to analyze aspects that are of 

relevance from the user point of view. Supplementary Table 3 contains a link to the 

evaluation software used in the challenge.

The first set measures the segmentation and tracking accuracy of the methods from the 

developer’s point of view. The segmentation accuracy measure (SEG) evaluates the 

average amount of overlap between the reference segmentation ground truth (SEG-GT) and 

the segmentation masks computed by an evaluated algorithm. The tracking accuracy 
measure (TRA) is a normalized weighted distance between the tracking solution submitted 

by the participant and the reference tracking ground truth (TRA-GT), with weights chosen 

to reflect the effort it takes a human curator to carry out the edits manually. Both SEG and 

TRA take values in the interval [0, 1], with higher values corresponding to better 

performance. For ranking the algorithms, the overall performance (OP) is computed by 

averaging SEG and TRA values for each pair of competition videos, and then averaging 

these averages (i.e., OP = 0.5·(SEGavg + TRAavg)). In summary, SEG and TRA evaluate 

results in terms of similarity to the ground truth and are particularly relevant for comparing 

algorithms with one another. Method developers use such measures to show the superiority 

of new methods over the state-of-the-art.

Biologists however, when using tracking algorithms, have specific biological questions and 

are therefore usually more interested in specific aspects of the final segmentation and 

tracking analysis. For this reason, we evaluated four additional aspects of biological 

relevance. Complete Tracks (CT) measures the fraction of ground truth cell tracks that a 

given method is capable to reconstruct in their entirety, from the frame they appear in, to the 

frame they disappear from. CT is especially relevant when a perfect reconstruction of the 

cell lineages is required. Track Fractions (TF) averages, for all detected tracks, the fraction 

of the longest continuously matching algorithm-generated tracklet with respect to the 

reference track. Intuitively, this can be interpreted as the fraction of an average cell’s 

trajectory that an algorithm reconstructs correctly, once the cell has been detected. 

Branching Correctness (BC) measures how efficient a method is at correctly detecting 

division events. Finally, the Cell Cycle Accuracy (CCA) measures how accurate an 
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algorithm is at correctly reconstructing the length of cell cycles (i.e., the time between two 

consecutive divisions). Both BC and CCA are informative about the ability of the algorithm 

to detect cell population growth. All biologically inspired measures take values in the 

interval [0,1], with higher values corresponding to better performance.

The third set of measurable quantities expresses the practical usability of the submitted 

algorithms. The first indication of an algorithm’s usability is the number of tunable 
parameters (NP) a user is required to manually set, excluding parameters visible only to 

developers. In general, a lower number of tunable parameters signifies a more usable 

algorithm. A very different but important attribute of an algorithm is its generalizability 
(GP). This measure quantifies how stable an algorithm is when being applied with the same 

parameter configuration to new videos acquired under otherwise unchanged imaging 

conditions. GP values are computed by comparing the results for a particular training and 

competition video, obtained using the same parameter configuration. This measure takes 

values in the interval [0,1], with higher values corresponding to better generalizability. The 

last value we report for each algorithm is its execution time (TIM), in seconds.

Analysis of the performance of submitted algorithms

All measures described have been computed for every dataset and competing algorithm. We 

first evaluated the segmentation (SEG) and tracking (TRA) accuracy measures. Top-three 

values and participants for each dataset are listed in Figs. 5 and 6 (see Supplementary Data 3 

for the complete list of values). To determine the significance of these values, we calculated 

SEG and TRA values with respect to the ground truth also for the three manual annotations, 

since they are the best available proxies for evaluating the variability among human 

annotators. Therefore, algorithms with SEG or TRA scores within the range of the average 

manual scores (SEGa and TRAa) plus/minus one standard deviation can be considered to 

perform at the level of human annotators, and algorithms with scores above or below that 

range can be said to perform better or worse, respectively, than the human annotators.

We first examine the results trying to pinpoint the features that underlie the good and not so 

good performance of the competing methods (Fig. 5). We observe that some algorithms 

reached very good values (OP > 0.9) for datasets Fluo-N2DH-GOWT1, PhC-C2DH-U373, 

Fluo-N2DL-HeLa, Fluo-C3DH-H157, and Fluo-N3DH-CHO. In all but one of these datasets 

(Fluo-C3DH-H157), one or more algorithms reached human-quality results. Interestingly, all 

but one of these results are obtained on fluorescence data with high SNR or CR values. 

Some also show high spatial (Fluo-C3DH-H157, Fluo-N3DH-CHO) and/or temporal (Fluo-

N2DH-GOWT1, Fluo-N2DL-HeLa, Fluo-N3DH-CHO) resolution and display rather low 

cell densities (Fluo-C3DH-H157, Fluo-N2DH-GOWT1, PhC-C2DH-U373, Fluo-N3DH-

CHO).

A second group of datasets was solvable with OP values between 0.75 and 0.9 (DIC-C2DH-

HeLa, PhC-C2DL-PSC, Fluo-C3DL-MDA231, Fluo-N2DH-SIM+, and Fluo-N3DH-SIM+). 

For these datasets, the SEG and TRA values are near but below the performance of the 

human annotators, meaning that after automatic tracking some additional curation work is 

required to reach the level of the human-level solutions. The difficulty for DIC-C2DH-HeLa 
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and PhC-C2DL-PSC appears to be the low SNR and CR values and high cell density, and for 

DIC-C2DH-HeLa also the rather complex image texture within cells (see Supplementary 

Figs. 1 and 11). For Fluo-C3DL-MDA231, the low SNR and CR values are paired with low 

spatial and temporal resolution and significant photobleaching (see Supplementary Fig. 4). 

The two synthetic datasets (Fluo-N2DH-SIM+, Fluo-N3DH-SIM+) show average SNR, low 

CR, average cell density, and average to high heterogeneity within and between cells.

Three datasets (Fluo-C2DL-MSC, Fluo-N3DH-CE, and Fluo-N3DL-DRO) turned out to be 

the hardest to segment and track fully automatically (OP < 0.75). For these datasets, a 

substantial amount of manual work would be needed to curate the computed results in order 

to reach human-level annotations. Fluo-C2DL-MSC suffers mostly from low SNR and CR 
values, low temporal resolution, and significant photobleaching. This dataset is difficult to 

segment correctly also due to its prominent cell protrusions (see Supplementary Fig. 2). For 

Fluo-N3DH-CE and Fluo-N3DL-DRO, the two whole embryo datasets, the algorithms 

mostly struggle to segment and track the very noisy cell nuclei in 3D. Additionally, these 

datasets show very low spatial resolution, relatively low temporal resolution, and 

increasingly dense cells toward the end of the videos, which strongly complicates tracking of 

the segmented cells (see Supplementary Figs. 7 and 9).

Next, we examine the results from the viewpoint of the algorithms, asking which ones show 

best overall performance (Fig. 6). The algorithms KTH-SE, FR-Ro-GE, and HD-Hau-GE 

ranked first for one or more datasets. Looking more globally at the number of top-three 

occurrences, KTH-SE, FR-Ro-GE and HD-Har-GE outperform the others. Their common 

denominator is the reliance on the tracking by detection paradigm. In particular, KTH-SE 

algorithms perform extraordinarily well, being ranked among the top-three algorithms for all 

datasets. These methods rely on a simple thresholding for segmentation, the results of which 

are highly enriched by the use of global information in the tracking process. In some 

datasets, however, the tracking by contour evolution methods (LEID-NL, MU-CZ, and 

PAST-FR) reach the level of the leading tracking by detection methods. This can be 

attributed to their high segmentation performance on datasets with high temporal and spatial 

resolution (Fluo-N3DH-CHO, Fluo-N2DH-GOWT1, Fluo-N2DH-SIM+, and Fluo-N3DH-

SIM+). These results highlight how these methods rely on significant cell-to-cell overlaps 

between successive frames to work properly. Finally, it is interesting to note the exceptional 

performance of the machine learning methods (FR-Ro-GE, HD-Hau-GE) on contrast 

enhancement microscopy (PhC and DIC) datasets. Indeed, these methods obtain 

performance values on DIC-C2DH-HeLa, PhC-C2DH-U373, and PhC-C2DL-PSC that do 

not match their predicted level of complexity. This can be explained by the fact that the 

internal texture of the cells in these datasets is not detrimental for the segmentation. On the 

contrary, it seems to improve the learning capacity of the algorithms.

Interestingly, the evolution of the average of the top-three OP values during the three CTC 

editions shows progress towards the objective of reaching the level of the human expert 

annotators (Supplementary Fig. 13). On average across all datasets, the average top-three 

OP values rose by 0.03±0.03 (CTC II vs CTC I) and 0.05±0.07 (CTC III vs CTC I).
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We studied the robustness of the OP-based rankings, as described in the Online Methods 
(section Ranking robustness) and summarized in Supplementary Fig. 14, which shows that 

the rankings are indeed robust for up to 45% of possible weight changes. Furthermore, we 

have analyzed the correlation, (i.e., interdependence) of SEG and TRA scores using the 

Kendall’s τ correlation coefficient (Supplementary Table 4) to show moderate global 

correlation (0.55) with only a few cases of very high (DIC-C2DH-HeLa, Fluo-N3DH-CE) or 

high (PhC-C2DL-PSC, Fluo-C2DL-MSC) correlation.

Since segmentation and tracking are meant to answer biological questions in the hands of 

practicing biologists, we next analyze the biologically inspired and usability measures. Fig. 

7 shows the top-three biological scores: CT (Complete tracks), TF (Track fractions), BC 
(Branching correctness), and CCA (Cell cycle accuracy) and the average values obtained by 

the annotators (CTa, TFa, BCa, and CCAa). When looking at CT across datasets, we 

observe very low values overall, but especially so for DIC-C2DH-HeLa, Fluo-C2DL-MSC, 

PhC-C2DL-PSC, and the two embryonic developmental datasets (Fluo-N3DH-CE and Fluo-

N3DL-DRO). The low CT values are especially relevant for the embryonic datasets since 

tracking completeness is critical for a correct genealogical reconstruction of embryo 

development. The TF values are at a higher level, meaning that the methods are reasonably 

competent at measuring cell speeds and trajectories, but some work is still required to bring 

them to the level of the human annotators. Finally, Fluo-N2DL-HeLa, Fluo-N2DH-SIM+, 

and Fluo-N3DH-SIM+ show high BC and CCA values, meaning that the methods are able 

to correctly detect cell divisions and cell population growth, while PhC-C2DL-PSC, Fluo-

N3DH-CE, and presumably Fluo-N3DL-DRO would benefit from improved management of 

division events as revealed by their low BC and CCA values.

When analyzing the performance of the individual algorithms in terms of CT and TF (Fig. 8 

and Supplementary Data 4), we see similar but not completely matching pictures compared 

to the ranking compiled using SEG and TRA (Fig. 6). This is because TF and CT consider 

only tracking correctness, regardless of the accuracy of the segmentation, and have much 

more strict requirements on correctly reconstructed tracks. This means that solutions with a 

high TRA score but low TF and CT scores, do still contain errors that need to be fixed in 

order to enable sound biological conclusions. The KTH-SE algorithms remain the top-

ranked ones in most datasets, highlighting the importance of the inclusion of global 

information in the linking process, which yields longer, correctly reconstructed tracklets. 

However, similarly to the above-discussed SEG and TRA scores, the tracking by contour 
evolution method LEID-NL manages to break the dominance of tracking by detection 
approaches (it is top-ranked two times for TF and four times for CT). This highlights that 

tracking by contour evolution methods can be superior at following cells, once a track has 

been initiated, if the temporal resolution of the image data permits. As a final comment, 

methods that inherently (KTH-SE, HD-Hau-GE, IMCB-SG) or specifically (HD-Har-GE, 

LEID-NL) detect cell division events show higher BC and CCA values than those that do 

not use specific cell division detection routines. Especially relevant is the excellent behavior 

of HD-Har-GE that is ranked first three out of five possible times in the CCA category, and 

can therefore safely be distinguished as the best method when it comes to detecting 

complete cell cycles, and therefore, measuring cell population growth.
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Finally, since competing solutions need to be deployed by biologists normally having little 

computer science experience, we analyzed the usability, speed, and general applicability of 

all top-ranked algorithms. From the results shown in Table 4 (see Supplementary Data 5 for 

a complete list), we see that the superior performance of the KTH-SE algorithms comes, 

unfortunately, with the disadvantage of an elevated number of parameters compared to most 

other methods (in particular to the close contender FR-Ro-GE). Conversely, the KTH-SE 

algorithms are faster than most other methods including FR-Ro-GE (for which, however, a 

much faster implementation using graphics cards exists). Finally, we see that the KTH-SE 

methods generalize very well to similar data (high GP values). This indicates that, given a 

well-chosen parameter configuration, this method is likely to obtain good results also for 

previously unseen image data of the same kind.

Discussion

We have presented the results of three editions of the Cell Tracking Challenge, a 

benchmarking effort aimed at improving cell tracking in multidimensional microscopy. The 

prerequisite for our study was the compilation of a large corpus of exemplar video sequences 

of biological samples imaged with a variety of microscopy modalities and displaying a 

broad range of image qualities known to be challenging for automated segmentation and 

tracking of cells. The most important contribution of our work is the compilation of expert-

driven annotations of cell regions and trajectories in these videos. We also include artificially 

generated image data at an intermediate level of complexity, for which an absolute ground 

truth inherently exists. Together, this represents a unique and rich resource of annotated, real 

and simulated image data that distinguishes our challenge from similar events that relied 

exclusively on simulated data34. Second, we developed a set of measures that quantitatively 

evaluate the performance of submitted solutions against the ground truth data in terms of 

accuracy, biological relevance of the results, and usability for biologists. Third, over the 

course of three challenges, we assembled a diverse collection of competing solutions that 

represent all main algorithmic approaches to cell segmentation and tracking problems in 

biology. Fourth, in this report we analyze the accumulated results and provide useful 

guidelines for both users and developers of tracking software.

From the comparison of the competing algorithms, we can conclude that in most practical 

scenarios tracking by detection methods outperform tracking by contour evolution methods. 

A notable exception to this can be observed in datasets with high temporal resolutions that 

have significant inter-frame cell overlaps. Indeed, in these situations tracking by contour 
evolution methods seem to be able to track cells for longer stretches of the videos than the 

tracking by detection methods. Paradoxically, this means that even if the results of tracking 
by contour evolution methods are less similar to the ground truth solution, their biologically 

relevant performance might be sometimes higher. Another important result of this study is 

that the algorithms that make use of modern machine learning approaches perform best in 

most segmentation scenarios. For example, the methods that use machine-learning strategies 

to classify pixels as being either part of a cell or the background tend to produce better 

segmentation results than other methods. Furthermore, tracking by detection methods that 

consider larger, possibly global, spatiotemporal contexts to reason about track linking tend 

to outperform algorithms that only look at the nearest neighbors in space and time. The 
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conclusion that algorithms that use prior and contextual information perform better than 

those that do not use it was also reached in the aforementioned Particle Tracking 

Challenge34. In this study, we prove that to be true also in real datasets of moving cells with 

non-linear lineages (i.e., with division events).

From the user perspective, complete and perfect unsupervised tracking remains a distant 

dream. When a certain level of remaining errors or manual post-processing is acceptable, the 

top-scoring algorithms offer good performance. However, due to a large number of tunable 

parameters, practical deployment of the software on new data may prove to be cumbersome. 

Potentially, long runtimes of complex algorithmic solutions can be offset by running them 

on graphics hardware whenever such implementation is feasible/available. The good news is 

that once parameters have been optimized, manually or using automatic supervised or 

unsupervised algorithms, and the software runs on decent hardware, the best methods will 

perform well on all similar microscopy recordings. Finally, we acknowledge that due to the 

combinatorial explosion of colliding factors (biological, imaging, algorithmic) that affect the 

results of segmentation and tracking, there is no simple way to point out the right algorithm 

for a given dataset. This is supported by the fact that none of the presented problems were 

solved completely when judged from a biologist’s viewpoint.

For algorithm developers, the results of the challenge indicate that their job is far from being 

complete. Despite the very good results the submitted algorithms achieved on many datasets, 

additional method development is crucially required for scenarios with low SNR or CR or 

for tracking cells with more complex shapes or textures. Large 3D datasets, such as those of 

developing embryos, bear additional challenges. Not only do such videos show very high 

cell densities in later frames, the size of the image data itself causes very long runtimes. 

Tracking by detection approaches fail on these datasets because they crucially depend on 

high quality segmentation results, something difficult in these challenging datasets. Tracking 
by contour evolution approaches often fail on them due to their low temporal resolution.

In most circumstances, tracking is contingent on segmentation and the submitted algorithms 

mix and match different segmentation and tracking strategies. By equally weighting both 

segmentation and tracking accuracy when calculating the overall performance of the 

methods, we assign equal importance to both tasks, although, as we show, the resulting 

ranking is robust against changes in those weights. Furthermore, the overall correlation of 

both measures is moderate, with only a few exceptions in datasets where the performance of 

a tracking solution seems to be heavily influenced by the performance of the segmentation 

approach.

Although the challenge was broadly taken on by the community and many algorithms 

competed, it is important to stress that the voluntary nature of participation necessarily 

resulted in significant omissions. This affected, in particular, the submissions attempting to 

meaningfully solve the 3D tracking problems in embryos that are the most challenging 

datasets and for which potent methods are published and available32,33.

The Cell Tracking Challenge, which remains open for online submissions, is a powerful 

resource for algorithm developers and users alike. Along with the datasets, we offer the 
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evaluation suite, capable of computing the technical and biologically oriented measures as 

well as the dataset quality parameters we have introduced, as an open-source Fiji plugin35, 

and provide executable versions of most of the participants’ algorithms. Furthermore, we 

will encourage past and future participants to make their submitted algorithms available to 

biologists via easy to install and intuitive graphical user interfaces. In the future, new 

datasets of existing and new microscopy modalities will be incorporated to the dataset 

repository. It will be particularly important to collect and annotate complex tissue, organ, 

and whole embryo image data. Finally, we intend to add new synthetic datasets that closely 

mimic the variety of cell types and microscopy scenarios. These synthetic image data will 

model different cell labeling, cell shapes, and cell behaviors and migration patterns in 2D 

and 3D. Since artificially generated datasets implicitly bear absolute ground truth, they can 

be tuned to challenge algorithms to improve specific aspects of the problem (e.g., how to 

deal with increasing noise or signal heterogeneity levels), or provide training data for 

segmentation and tracking approaches based on promising machine learning methods.

Online Methods

Dataset quality parameters

In order to assess the quantitative video parameters (see Table 1), we had to calculate those 

parameters –ideally- on a complete ground truth of the competition datasets, meaning having 

appropriate cell masks and tracking information for all the cells in the videos. The ground 

truth used to evaluate the performance of the algorithms (SEG-GT and TRA-GT) was 

obtained manually from three annotators. TRA-GT indeed contains the manually annotated 

tracks of all the cells in the videos. However, due to the monumental task that it would have 

required, SEG-GT includes a subset of complete segmentation masks per video, which 

constitutes a representative amount for the evaluation of segmentation performance. To 

extend the manual ground truth to cover as many as possible of the cells in the videos, we 

first combined the manual tracking ground truth (TRA-GT) with the segmentation masks 

provided by the participants. For any marker in TRA-GT, we automatically merged the top-

performing participants’ segmentation masks that overlap the majority of this tracking 

marker. The number of masks used was determined manually for each video. On average, a 

majority of the total number of available masks were used. The process led occasionally to 

colliding situations, that is, when obtained segmentation masks for two different tracking 

markers were overlapping. If the overlap was less than 10% of the mask area/volume, the 

intersecting pixels/voxels were removed from both colliding masks in an expectation that 

10% loss will not significantly influence the measured quantities. Otherwise, both entire 

masks were discarded. In this way, a rich consensus-based segmentation with reliable 

linking was obtained for all real challenge videos. The synthetic datasets did not require this 

process, since they are accompanied with the absolute segmentation and tracking ground 

truth, inherently generated during the simulation process.

Next, a mask for the background region of each video was established as the complement to 

the union of all objects’ consensus segmentation masks taken over all frames of the given 

video. This results in a constant -stationary over the video- background mask that fits to all 

images of that video. A background mask for synthetic datasets was established also like 
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this. For Fluo-N3DH-CE and Fluo-N3DL-DRO datasets, however, the background masks 

had to be established on per-frame basis, encompassing interior region of the embryos as 

well as the surrounding medium.

From the consensus segmentation and tracking ground truth, we calculated quantitative 

parameters as follows. Let FGi,t and BGt represent the sets of image elements that form i-th 

cell and (single) background mask, respectively, in t-th image of the video. Furthermore, let 

avg(S) and std(S) denote average and standard deviation of intensities found at image 

elements in the set S, and let dist(a, b) be a chamfer distance36 between image elements a 
and b in their coordinate units (pixels/voxels in 2D/3D). The reported values of the signal-

to-noise ratio (SNR), contrast ratio (CR), internal signal heterogeneity of the cells (Heti), 
resolution (Res), regularity of the cell shape (Sha), cell density (Den), and level of cell 

overlap in consecutive frames (Ove) were established as averages of SNRi,t, CRi,t, HETii,t, 
Resi,t, Shai,t, Deni,t,and Ovei,t values, respectively, calculated for every object in every 

image in both competition videos:

where |S| is the size of the set S and I(t) is the set of indices of all cells or nuclei segmented 

in the t-th image. The heterogeneity of the signal between cells (Hetb) is calculated as the 

standard deviation of HETbi,t values for every object in every image in both competition 

videos. Shai,t is the circularity37 for 2D objects, which is given as the normalized ratio of 

perimeter of a circle having the same area as the object to the actual area of the object, and 

sphericity37 for 3D objects, which is given as the normalized ratio of the surface area of a 

sphere having the same volume as the object to the actual surface area of the object. Note 

that in the latter case the actual (anisotropic) voxel size was taken into account. The Deni,t 

was evaluated only up to the distance of 50 image elements away from i-th object. The 

distance tells how many (background) pixels/voxels there are between two nearby objects. 

Clearly, higher number expects separating nearby objects easier. To calculate Cha, the 

absolute difference between the average object intensity at the end and the beginning of a 

video was divided by the number of its frames minus one and averaged over both videos in a 

dataset. The number of division events (Mit) is computed as average of Mitt taken over 

images from both videos, where Mitt is the number of objects whose tracks end in the t-th 

image because of subsequent division events (which are marked in the tracking ground truth 
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TRA-GT). The remaining qualitative parameters, synchronization of division events (Syn), 

cells entering or leaving the field of view (Ent/Leav), apoptotic cells (Apo), and the presence 

of moving debris (Deb), were set after manual inspection of the datasets.

Performance criteria

Technical measures

Segmentation accuracy (SEG): We quantify the amount of overlap between the reference 

annotations and the computed segmentation results using the Jaccard similarity index, 

defined as:

where R is the reference segmentation of a cell in SEG-GT and S is its corresponding cell 

segmentation. The Jaccard index always falls in the [0, 1] interval, where 1 means total 

overlap and 0 means no overlap. The final SEG value for a particular video is calculated as 

the mean Jaccard index over all reference cells in the video.

Tracking accuracy (TRA): To evaluate the ability of an algorithm to track cells in time, the 

tracking results are first represented as acyclic oriented graphs, as trees that capture the 

genealogy of the cells during the duration of the video. We then assess how difficult it is to 

transform a computed tracking graph into the corresponding reference graph, TRA-GT, 

using a normalized version of the Acyclic Oriented Graph Matching (AOGM) measure38:

where AOGM0 is the AOGM value required for creating the reference graph from scratch 

(i.e., it is the AOGM value for empty tracking results). The minimum operator in the 

numerator prevents from having a final negative value when it is cheaper to create the 

reference graph from scratch than to transform the computed graph into the reference graph. 

TRA always falls in the [0, 1] interval, with higher values corresponding to better tracking 

performance.

Overall Performance (OP): For each algorithm and dataset, SEG and TRA are first 

averaged over the two competition videos. Then, the averaged values, SEGavg and TRAavg, 

are averaged again (i.e., OP = 0.5 · (SEGavg + TRAavg)), and the result is used to compile 

the final ranking.

Biologically inspired measures

Complete Tracks (CT)39: CT examines how good a method is at reconstructing complete 

reference tracks (i.e., the tracks in TRA-GT). A reference track is considered completely 

reconstructed if and only if each of its track points has an assigned track point in the 

corresponding computed track, and both tracks have the same temporal support. The final 
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CT value for a particular video is computed as the F1-score of completely reconstructed 

reference tracks, defined as:

where Trc is number of completely reconstructed reference tracks, Tgt is number of all 

reference tracks, and Tc is the number of all computed tracks.

Track Fractions (TF): TF targets the longest, correctly reconstructed, continuous fraction 

of a detected reference track. The final TF value for a particular video is computed by 

averaging these fractions over all detected reference tracks.

Branching Correctness (BC(i))28,29: BC(i) examines how good a method is at 

reconstructing mother-daughter relationships. Division events often happen during several 

frames, thus complicating matching of the provided result and the ground truth. Therefore, 

for two division events to be considered matching29,30 (i.e., one provided by the method and 

one in the ground truth), they are allowed to be separated by no more than i frames. More 

specifically, we allowed the reconstruction of division events using a tolerance window of 

(2.i+1) frames. The tolerance value i used for each dataset was fixed by analyzing how the 

performance of the participating methods depends on i. Namely, the value i was selected as 

the minimum value that was large enough to ensure that the BC(i) values of all competitive 

methods remain constant. The actual i values used for individual datasets were: Fluo-N2DL-

HeLa (i=1, corresponding to a 30-minute tolerance window), Fluo-N3DH-CE (i=1, 1 min), 

PhC-C2DL-PSC (i=2, 20 min), Fluo-N2DH-SIM+ (i=3, 87 min), and Fluo-N3DH-DIM+ 

(i=3, 87 min). The final BC(i) value for a particular video is computed as the F1-score of 

correctly reconstructed division events in the corresponding reference graph.

Cell Cycle Accuracy (CCA): CCA reflects the ability of an algorithm to discover true 

distribution of cell cycle lengths in a video, considering only those tracks that are both 

initiated and terminated by a branching event. Each such track witnesses the development of 

a cell from its birth until its next division, and its length, therefore, corresponds to the cell 

cycle length of that cell. The CCA measure is defined as:

where CDFr and CDFgt are cumulative distribution functions of cell cycle length occurrence 

probabilities in the reference annotation and the computed result, respectively, adopting a 

common non-parametric approach to discovering dissimilarities between two sample 

distributions40.

It is important to note that CT, TF, BC(i) and CCA always fall into the [0, 1] interval, with 

higher values corresponding to better performance.
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Usability Measures

Number of required tunable parameters (NP): NP corresponds to the number of 

parameters that need to be provided, and possibly tuned, to obtain the evaluated results. 

Although there are methodologies that allow for automatic tuning of the parameters, having 

to do so adds a level of complexity to the task that might prevent a very efficient algorithm 

from being used by a user non-proficient in those methods.

Generalizability (GP): GP examines how stable the algorithm is when being applied to 

similar image data using the set of parameters provided. Being evaluated for all 21 

algorithms, we ran the algorithms on the training videos using the same parameters provided 

for the competition videos and evaluated how much the results for the training videos differ 

from those for the competition videos in terms of the technical measures:

where  and  are average absolute differences in the SEG and TRA scores, 

respectively, between the results obtained for the competition and training videos. Note that 

GP always fall into the [0, 1] interval, with higher values corresponding to higher 

generalizability.

Execution time (TIM): For each dataset, we accumulated the time (in seconds) that was 

required to analyze each competition video.

Ranking robustness

For each dataset, we ranked all methods based on their SEG and TRA scores using the 

formula 0.5 · (a · SEG + b · TRA), a,b ∈ {0, 0.001, 0.002, …, 1}, and calculated the number 

of changes between each such ranking and the one compiled using OP (i.e., when a equals 

to b). Supplementary Fig. 14 plots the number of changes for every combination of weights. 

As can be seen, 45 % of the area (i.e. of possible weight configurations) causes no more than 

two changes in the rankings across all datasets.

Data availability

All the datasets used in the challenge (referred to in Fig. 4, Supplementary Figs. 1–11, 

Supplementary Videos 1–13, and described in Table 1 and Supplementary Table 1 and 

Supplementary Note 1), along with the annotations of the training datasets, are available 

through the challenge website: http://celltrackingchallenge.net/datasets.html. Access to the 

datasets is granted after free registration for the challenge.

The set of parameters used for the generation of the synthetic datasets (referred to in Fig. 4, 

Supplementary Fig. 12, Supplementary Videos 12–13, and described in Table 1 and 

Supplementary Table 1) is given in Supplementary Data 1.

The entire set of evaluation measures obtained and used to compare the algorithms (used to 

produce Figs. 5–8, Table 4, Supplementary Figs. 13 and 14 and Supplementary Table 4) is 
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provided with this article as Supplementary Data 3 (SEG, TRA, and OP), 4 (CT, TF, BC, 

and CCA), and 5 (NP, GP, and TIM).

Code availability

All the code used to produce the results reported in this article, namely a Fiji plugin that 

implements the entire evaluation suite (used to produce the numbers listed in Tables 1 and 4, 

Figs. 5–8, and Supplementary Figs. 13 and 14), is freely available through the link to the 

CTC website given in Supplementary Table 3, along with the links to the executable versions 

of individual algorithms of those participants who agreed to share their tools. The 

parameters used by the participants to produce their submitted results are listed in 

Supplementary Data 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Concept of cell segmentation and tracking
A. Top row: Artificial sequence that simulates six consecutive frames of a time-lapse video. 

The gray circles represent cells moving on a flat surface. Middle row: The goal of a 

segmentation algorithm is to accurately determine the regions of each individual cell in 

every frame, constructing a set of binary segmentation masks that correspond to the cells and 

locate them on a flat background. Bottom row: A tracking algorithm finds correspondences 

between the masks, i.e., the cells, in consecutive frames. If properly designed, a tracking 

algorithm is able to detect a moving cell (e.g., C1 or C3) while being within the field of 

view, determining when the cell enters and leaves the field of view. From the location of the 

cells in consecutive frames, it is possible to determine the trajectory of each cell and its 

velocity. A tracking algorithm should also be able to detect lineage changes due, for instance 

to a cell division event (e.g., cell C2 divides into two daughter cells, C2-1 and C2-2) or 

apoptosis. B. Graph-based representation of the cell tracks found by a tracking algorithm in 

the sequence shown at the top of panel A. Such an acyclic oriented graph contains, for each 

cell, the time when the cells enters and leaves the field of view, along with its division or 

apoptotic events. In a real case scenario, these graphs show the complete genealogy of the 

cells displayed in the frame of the video, all through the length of the video. Please note that 

the direction of the graph follows the temporal sequence starting at t=0 and moving toward 

t=5.
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Figure 2. Concept of the main factors that determine the quality of cell images and videos
a–f. Signal to Noise Ratio (SNR) and Contrast Ratio (CR) measure the relationship 

between the signal captured from the cells and the unwanted noise or signal captured at the 

same time. Decreasing SNR is shown using a cell with 250 intensity units (iu) and no 

background (0 iu) in three scenarios of increasing standard deviation (std, in iu) of 

background Gaussian noise: 0 (a); 50 (b); 200 (c). The effect of decreased CR is displayed 

using a simulated cell in high background (200 iu) with increasing noise std: 0 (d); 50 (e); 

200 (f). The effect is shown for three increasing noise: 0 noise (a vs. d); 50 noise std (b vs. 

e); 200 noise std (c vs. f). g–h. Intra-cellular signal heterogeneity that can lead to cell 

over-segmentation when the same cell yields several detections is simulated by a cell with 

non-uniform distribution of the labeling marker or non-label retaining structures (g). Signal 

texture can also be linked to the process of image formation, in this case shown using a 

simulated cell image imaged by Phase Contrast microscopy (h). i. Signal heterogeneity 
between cells, shown by simulated cells with different average intensities can be due, for 

instance, to different levels of protein transfection, non-uniform label uptake, or cell cycle 

stage or chromatin condensation, when using chromatin-labeling techniques. j–l. Spatial 
resolution that can compromise the accurate detection of cell boundaries is displayed using 

a cell captured with increasing pixel size, i.e., with decreasing spatial resolution: full 

resolution (j); half resolution (k); one fourth of the original full resolution (l). m–n. 
Irregular shape that can cause over/under-segmentation, especially when the segmentation 

methods assume simpler, non-touching objects, is displayed using a simulated cell with 

highly irregular shape under two background noise std situations: 0 (m); 100 (n).This is 
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especially a problem in high-noise situations (n). o. High density of cells, also frequent 

cause of incorrect segmentation is shown by a cluster of simulated cells. p–r. Fluorescence 
temporal decay that can bring the SNR or CR below detection levels, thus complicating 

both segmentation and tracking, is simulated by a cell in a time series, showing increasing 

fluorescence decay due to bleaching or quenching of the fluorochrome, and same noise 

conditions (std of 50 iu): original cell at the beginning of the experiment (p); cell with 100 iu 

decay (q); cell with 200 iu decay (r). s–u. Cell overlap between consecutive frames is key 

for correctly tracking the cells since many algorithms rely on this overlap. Here it is shown 

using three simulated cells at the beginning of a video (t=0) (s) and two possible alternative 

scenarios for the following time point (t=1): t=1 in a scenario of high temporal resolution 

and/or low cell speed, allowing relatively simple identification of the correspondence 

between the cells (t); t=1 in a scenario of low temporal resolution and/or high cell speed, 

complicating the identification of the correspondence between the cells (u). v–x. Number 
and synchronization of mitoses also complicates cell tracking, since tracking a mitotic cell 

requires correctly assigning the mother to its daughter cells in consecutive frames. This is 

simulated by cells at the beginning of the video (t=0) (v) and two possible alternative 

scenarios for the following time point (t=1): t=1 in a scenario where only one of the cell 

divides asynchronously allowing a simple lineage assignment of mother and daughter cells 

(w); t=1 in a scenario of multiple, synchronized division events rendering a complicated 

lineage assignment of mothers and daughters (x).
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Figure 3. 
Taxonomy of cell segmentation and tracking methods.
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Figure 4. Sample images of the challenge datasets
(a) DIC-C2DH-HeLa; (b) Fluo-C2DL-MSC; (c) Fluo-C3DH-H157; (d) Fluo-C3DL-

MDA231; (e) Fluo-N2DH-GOWT1; (f) Fluo-N2DL-HeLa; (g) Fluo-N3DH-CE; (h) Fluo-

N3DH-CHO; (i) Fluo-N3DL-DRO; (j) PhC-C2DH-U373; (k) PhC-C2DL-PSC; (l) Fluo-

N2DH-SIM+ & Fluo-N3DH-SIM+.
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Figure 5. 
Top-three technical performance values (SEG, TRA, and OP) obtained by the competing 

algorithms. Both the SEG and TRA sections start respectively with SEGa and TRAa, which 

are the average values of the measures obtained by three manual annotations used to create 

the ground truths (SEG-GT and TRA-GT), considered as if they were also regular 

submissions. The color code below correlates with the values in the [0, 1] interval for the 

SEG, TRA and OP scores.

NA: Not applicable because only one tracking annotation exists (Fluo-N3DH-CE and Fluo-

N3DL-DRO, see main text) or because no manual annotation was necessary due to the 

existence of an absolute ground truth (simulated datasets Fluo-N2DH-SIM+ and Fluo-

N3DH-SIM+).
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Figure 6. 
Top-three performing methods. For each dataset, the table shows the OP and its 

corresponding average SEG and TRA scores computed over the two competition videos. 

Note that the methods submitted by the same participant are displayed in the same color, 

with super-indices denoting the particular method of the respective participant.
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Figure 7. 
Top-three biological performance values (CT, TF, BC(i), and CCA) measures obtained by 

the competing algorithms. All four CT, TF, BC(i), and CCA sections start respectively with 

CTa, TFa, BC(i)a, and CCAa, which are the average values of the measures obtained by 

three manual annotations used to create the ground truths (SEG-GT and TRA-GT), 

considered as if they were also regular submissions. If not available, the values are labeled 

(NA). The color code below correlates with the values in the [0, 1] interval. The BC(i) 
measure was not calculated for the datasets that do not feature any division event (NA) or a 

minimum number of 50 division events in each video (UC). The tolerance parameters i used 

for each dataset were: Fluo-N2DL-HeLa (i=1, corresponding to a 30-minute tolerance 

window), Fluo-N3DH-CE (i=1, 1 min), PhC-C2DL-PSC (i=2, 20 min), Fluo-N2DH-SIM+ 

(i=3, 87 min), and Fluo-N3DH-SIM+ (i=3, 87 min). The CCA measure was not calculated 

for the datasets where no evidence of entire cell cycles was found (NA).
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Figure 8. 
Top-three performing methods of the three challenge editions in terms of the CT, BC(i), and 

TF scores. Note that the methods submitted by the same participant are displayed in the 

same color, with super-indices denoting the particular method of the respective participant. 

The BC(i) measure was not calculated for the datasets that do not feature any division event 

(NA) or at least a minimum number of 50 division events in each video (UC). The dataset 

Fluo-N2DL-HeLa, Fluo-N3DH-CE, PhC-C2DL-PSC, Fluo-N2DH-SIM+, and Fluo-N3DH-

DIM+ was evaluated with i=1 (corresponding to a 30-minute tolerance window), i=1 (1 

min), i=2 (20 min), i=3 (87 min), and i=3 (87 min), respectively. The CCA measure was not 

calculated for the datasets where no evidence of entire cell cycles was found (NA).
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