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Purpose. Surgical site infection is one of the serious complications after lumbar fusion. Early prediction and timely intervention
can reduce the harm to patients. The aims of this study were to construct and validate a machine learning model for
predicting surgical site infection after posterior lumbar interbody fusion, to screen out the most important risk factors for
surgical site infection, and to explore whether synthetic minority oversampling technique could improve the model
performance. Method. This study reviewed 584 patients who underwent posterior lumbar interbody fusion for degenerative
lumbar disease at our center from January 2019 to August 2021. Clinical information and laboratory test data were collected
from the electronic medical records. The original dataset was divided into training set and validation set in a 1 : 1 ratio. Seven
machine learning algorithms were used to develop predictive models; the training set of each model was resampled using
synthetic minority oversampling technique. Finally, the model performance was assessed in the validation set. Results. Of the
584 patients, 33 (5.65%) occurred surgical site infection. Stepwise logistic regression showed that preoperative albumin level
(OR 0.659, 95% CI 0.563-0.756), diabetes (OR 9.129, 95% CI 3.816-23.126), intraoperative dural tear (OR 8.436, 95% CI 2.729-
25.334), and rheumatic disease (OR 8.471, 95% CI 1.743-39.567) were significant predictors associated with surgical site
infection. The performance of the AdaBoost Classification Trees model was the best among the seven machine learning
models, and synthetic minority oversampling technique improved the performance of all models. Conclusion. The prediction
model we constructed based on machine learning and synthetic minority oversampling technique can accurately predict
surgical site infection, which is conducive to clinical decision-making and optimization of perioperative management.

1. Background

Posterior lumbar interbody fusion (PLIF) is a classic opera-
tion for the treatment of lumbar degenerative diseases such
as lumbar disc herniation, lumbar spinal stenosis, and lum-
bar spondylolisthesis. Surgical site infection (SSI) is a serious
and costly complication, and the reported incidence varies
from 0.2% to 16.1% [1]. Surgical site infections can lead to
catastrophic consequences such as instrumentation failure,
osteomyelitis, pseudoarthrosis, prolonged hospitalization,

increased hospital costs, readmissions, and even sepsis or
death, increasing patient suffering and placing a heavy bur-
den on families [2]. With the aggravation of the aging pop-
ulation, the number of patients with degenerative lumbar
diseases has gradually increased, and correspondingly, the
number of those who need to perform this procedure has
also increased; at the same time, surgical site infections are
increasing; this poses a serious challenge to family and social
health systems [3]. Therefore, developing an accurate pre-
dictive model for early identification of patients at high risk
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of surgical site infection and targeted intervention is the
most cost-effective approach.

In recent years, artificial intelligence has played an
important role in the medical field, such as coronavirus dis-
ease 2019 (COVID-19) diagnosis [4], detection of gastroin-
testinal polyps [5], retinal vessel segmentation [6], image
diagnosis of lung cancer [7], diagnosis of atrophic gastritis
[8], and confidentiality management of electronic medical
records on the cloud [9]. Machine learning, a form of artifi-
cial intelligence, combined with medical big data can create
algorithms that rival those of human doctors [10]. Unfortu-
nately, few studies have applied machine learning algorithms
to predict surgical site infection after posterior lumbar inter-
body fusion. Therefore, we trained seven machine learning
prediction models to early predict the risk of surgical site
infection after PLIF using easily available preoperative and
intraoperative factors. However, given that most patients
after posterior lumbar interbody fusion do not develop sur-
gical site infections, such data structures suffer from category
imbalance (which refers to the unequal number of samples
between categories in the classification problem), and the
effectiveness of machine learning algorithms in this situation
is reduced [11]. However, synthetic minority oversampling
technique (SMOTE) is a common method to deal with
unbalanced data [12]. Therefore, this study uses SMOTE to
optimize our machine learning prediction model.

Our study is aimed at developing and validating a
machine learning prediction model for surgical site infection
after PLIF. To the best of our knowledge, our study is the
first to combine SMOTE with multiple machine learning
algorithms to develop and validate a predictive model for
surgical site infection after PILF. Clinicians can identify
high-risk patients with surgical site infection early through
this prediction model, which is helpful to optimize patient
selection and perioperative management. Early preventive
intervention in this population can reduce the occurrence
of serious complications and may prevent the occurrence
and development of surgical site infection.

2. Methods

2.1. Patients. This study was approved by the ethics commit-
tee of The First Affiliated Hospital of Chongqing Medical
University. And the informed consent was waived for the
retrospective study. From January 2019 to August 2021, a
total of 584 patients underwent posterior lumbar interbody
fusion (PLIF) at our center for degenerative lumbar disease.
Inclusion criteria were as follows: (1) age ≥ 18 years; (2)
diagnosis of lumbar degenerative diseases, including lumbar
disc herniation, lumbar spinal stenosis, spondylolisthesis,
and lumbar instability based on lumbar magnetic resonance
imaging (MRI) and clinical manifestations; (3) undergoing
primary single-level or multilevel PLIF surgery. The exclu-
sion criteria were as follows: (1) patients with a previous his-
tory of open lumbar surgery; (2) patients with preoperative
concurrent active infection of the spine or other parts of
the body, spinal deformity, and tumors.

All operations and perioperative management were per-
formed by the same experienced spine surgical team. All

procedures were performed in a standard vertical strato-
spheric operating room. We performed antibiotic prophy-
laxis 30 minutes before the start of surgery and extended it
to 72 hours after surgery, and uniform criteria were adopted
for the type, time, and dose of perioperative antibiotics. All
patients were asked to follow the same wound care and func-
tional exercise protocol.

SSI was defined according to the Centers for Disease
Control (CDC) and prevention criteria [13, 14]. Patients
who meet one of the following conditions can be diagnosed
with SSI (monitored for 90 days after surgery): (1) clinical
manifestations such as redness, swelling, heat, pain, tender-
ness, and/or purulent drainage appear in the wound; (2)
the abscess was aspirated from the wound surface, and the
culture was positive; (3) positive fluid or tissue culture col-
lected during revision surgery; (4) histopathological and
radiological examination confirmed SSI evidence; (5) SSI is
diagnosed by the surgeon and clearly recorded in the medi-
cal record. SSI can be divided into superficial infection and
deep infection according to the location of occurrence.

2.2. Data Collection. The following clinical information of
the patients was retrospectively collected through the elec-
tronic medical record system, surgical anesthesia system,
and mobile nursing system: the clinical information of the
patients, including age, the American Society of Anesthesiol-
ogists (ASA) classification, New York Heart Association
(NYHA) classification, body mass index (BMI), smoking,
drinking, whether there was a history of rheumatic disease,
whether there was osteoporosis, hypertension, diabetes,
diagnosis, and whether it was cold season or warm season
at discharge. Routine laboratory tests, including routine
blood tests, liver function tests, and renal function tests, were
collected. At the same time, we recorded surgery-related
parameters, including operation time, estimated intraopera-
tive blood loss, number of fusions, and whether there was
dural tear during the operation. Smoking status was classi-
fied as current smoking, regardless of the amount or type
of tobacco smoked, and all passive smokers and former
smokers were considered nonsmokers. The American Soci-
ety of Anesthesiologists physical status is a classification that
evaluates a patient’s physical status before surgery [15]; it is
also commonly used in preoperative risk prediction in recent
years [16], coded according to the 1963 American Society of
Anesthesiologists five-level classification system of physical
conditions (1 = a healthy individual, 2 = mild systemic dis-
ease, 3 = severe systemic disease, 4 = persistent life-
threatening severe systemic disease, and 5 = a dying person
who is not expected to survive with or without operation).
Patients with rheumatoid arthritis, ankylosing spondylitis,
psoriatic arthritis, or systemic lupus erythematosus were
considered to have a history of rheumatic diseases.

2.3. Synthetic Minority Oversampling Technique [12]. We
divided the original dataset into training set and verification
set according to 1 : 1 and resampled the training set of each
model using the synthetic minority oversampling technique.
It should be pointed out that we did not resample the valida-
tion set.
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2.4. Development and Validation of Machine Learning
Models. In this study, univariate logistic regression and mul-
tivariate logistic regression were used, and then, factors that
were significant in both univariate and multivariate analyses
were included in stepwise logistic regression to determine
the important factors associated with SSI after PLIF. Next,
the dataset was randomly divided into training set and vali-
dation set, each accounting for 50% of the study cohort. In
order to solve the problem of data imbalance, SMOTE algo-
rithm was used to preprocess the training set. Machine
learning algorithms (Boosted Classification Trees [17],
Boosted Logistic Regression [18], Extreme Gradient Boost-
ing [19], Stochastic Gradient Boosting [20], Generalized Lin-
ear Model [21], AdaBoost Classification Trees [22], and
Random Forest [23]) model the training set, then the accu-
racy of the model was verified in the validation set.

2.5. Model Evaluation. To evaluate the performance of the
machine learning model, the confusion matrix, accuracy,
precision, recall, F1 score, F3 score, and the area under the
receiver-operating characteristic (AUC) value of the
machine learning model were calculated in the validation
set. Among them, accuracy, precision, recall, and Fα score
determined by the following formula: in these formulas,
TP: true positive; TN: true negative; FP: false positive; FN:
false negative. Confusion matrix is a form of summarizing
prediction results of classification prediction model in
machine learning. The rows of confusion matrix represent
predicted values, and the columns of the matrix represent
true values. Fα score is the result of comprehensive consid-
eration of precision and recall, indicating that the weight of
recall is α times of precision weight in the scoring generation
process. Fα score was, respectively, calculated when α is 1, 2,
and 3, and F3 was finally determined as the evaluation index
of the model. A good model should have high Fα scores and
AUC values when evaluating the performance of different
machine learning algorithms. Compare the predictive per-
formance of the seven machine learning models before and
after preprocessing training sets using synthetic minority
oversampling technique. The algorithm with the best perfor-
mance was taken as the final prediction model, and the
importance of variables was ranked.

Accuracy = TP + TN
TP + TN + FP + FN

,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Fα score =
1 + α2
� �

∗ Precision ∗ Recall
α2 ∗ Precisionð Þ + Recall

:

ð1Þ

2.6. Statistical Analysis. R software was used for statistical
analysis, using caret package, DMwR package, NNET pack-
age, random forest package, RSNNS package, klaR package,
fast Adaboost package, and forest plot package. For continu-
ous and normally distributed variables, t-test of two inde-

pendent samples is used to analyze and compare.
Otherwise, Mann–Whitney U-test was used for comparison
between groups. Qualitative variables were analyzed by chi-
square test. P value < 0.05 was considered statistically
significant.

3. Results

3.1. Patients’ Characteristics. After screening for inclusion
and exclusion criteria, a total of 584 consecutive patients
(54.97% female, 45.03% male) who underwent posterior
lumbar fusion for degenerative lumbar disease were included
in the study, and 33 patients (5.65%) with surgical site infec-
tion. There were significant differences in age (P < 0:001),
preoperative red blood cell count (P = 0:041), preoperative
albumin level (P < 0:001), number of surgical fusion seg-
ments (P < 0:001), intraoperative dural tears (P < 0:001),
presence of diabetes (<0.001), history of rheumatic disease
(P = 0:002), ASA grade (P = 0:01) between the infection
group and the noninfection group, but there were no signif-
icant differences in other variables between the two groups
(Table 1).

3.2. Logistic Regression. Univariate analysis showed that the
factors with statistical significance (P < 0:05) were age, num-
ber of fusion levels, intraoperative dural tear, diabetes, his-
tory of rheumatic disease, preoperative red blood cell
count, preoperative albumin level, and ASA grade
(Figure 1). Multivariate analysis showed that factors with
statistical significance (P < 0:05) included intraoperative
dural tear, diabetes, history of rheumatic disease, and preop-
erative albumin level (Figure 2(a)). Stepwise logistic regres-
sion identified the best variables for inclusion in the
machine learning model, including intraoperative dural tear
(OR 8.436, 95% CI 2.729-25.334), diabetes (OR 9.129 3.816-
23.126), history of rheumatic disease (OR 8.471, 1.743-
39.567), and preoperative albumin level (OR 0.659 0.563-
0.756) (Figure 2(b)).

3.3. Machine Learning Predictive Model Performance. The
comparison of the prediction performance of the seven
machine learning models in the validation set is shown in
Figures 3–5. AdaBoost Classification Trees model has the
best performance, with AUC of 0.8726, recall of 0.6250, pre-
cision of 0.3333, accuracy of 0.9107, and F3 of 0.5747 for the
model without synthetic minority oversampling technique.
The confusion matrix shows that only the AdaBoost Classi-
fication Trees model can accurately identify the patients with
high risk of infection in the validation set (correctly identify
10 of the 16 high-risk patients in the validation set) before
the combination of synthetic minority oversampling tech-
nique. Although other models had high accuracy and AUC
values, they failed to identify patients at high risk of surgical
site infection. The AdaBoost Classification Trees model
combined with synthetic minority oversampling technique
showed better prediction performance, which correctly iden-
tified 15 of the 16 high-risk patients of infection in the vali-
dation set. Its AUC was 0.906, recall was 0.9375, precision
was 0.2308, accuracy was 0.8247, and F3 was 0.7177. The
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Table 1: Baseline characteristics of all patients included in the study.

Total Non-SSI SSI P value

Number of patients 584 551 (94.35%) 33 (5.65%)

Age (years) 58:36 ± 13:76 57:86 ± 13:86 66:70 ± 8:60 <0.001
Operation time 145:56 ± 40:48 144:81 ± 40:06 158:06 ± 45:77 0.095

EBL 151:23 ± 81:04 150:22 ± 80:95 168:18 ± 81:79 0.125

Pre WBC 5:94 ± 1:71 5:94 ± 1:72 5:86 ± 1:50 0.937

Pre RBC 4:44 ± 0:55 4:45 ± 0:54 4:25 ± 0:59 0.041

Pre Hb 134:76 ± 16:33 134:92 ± 16:30 132:15 ± 16:96 0.229

Pre erythrocyte volume 40:94 ± 4:38 41:00 ± 4:36 39:94 ± 4:67 0.179

Pre PLT 205:67 ± 55:58 205:21 ± 54:98 213:33 ± 65:29 0.619

Pre neutrophil percentage 58:03 ± 9:47 58:10 ± 9:56 56:84 ± 7:98 0.490

Pre lymphocyte percentage 31:09 ± 8:42 31:10 ± 8:50 30:89 ± 6:96 0.795

Pre Alb 42:56 ± 3:47 42:80 ± 3:34 38:64 ± 3:24 <0.001
Pre globulin 24:34 ± 3:65 24:29 ± 3:66 25:15 ± 3:29 0.137

Pre ALT 22:47 ± 17:56 22:66 ± 17:83 19:39 ± 12:02 0.658

Pre AST 20:40 ± 9:82 20:39 ± 9:96 20:55 ± 7:34 0.342

Pre creatinine 68:66 ± 17:69 68:47 ± 17:65 71:82 ± 18:19 0.208

BMI 24:22 ± 3:33 24:20 ± 3:34 24:59 ± 3:16 0.456

Sex (%) 0.342

Female 321 (54.97) 306 (55.54) 15 (45.45)

Male 263 (45.03) 245 (44.46) 18 (54.55)

Diagnosis (%) 0.625

Lumbar disc herniation 284 (48.63) 269 (48.82) 15 (45.45)

Lumbar spinal stenosis 137 (23.46) 127 (23.05) 10 (30.3)

Lumbar instability/spondylolisthesis 163 (27.91) 155 (28.13) 8 (24.24)

Number of fusion segments 0.040

1-2 549 (94) 521 (94.56) 28 (84.8)

≥3 35 (6) 30 (5.44) 5 (15.2)

Allograft bone 0.081

No 554 (94.86) 525 (95.28) 29 (87.9)

Yes 30 (5.14) 26 (4.72) 4 (12.1)

Weather 0.408

Cold 315 (53.94) 300 (54.45) 15 (45.45)

Warm 269 (46.06) 251 (45.55) 18 (54.55)

Dural tear <0.001
No 557 (95.38) 532 (96.55) 25 (75.76)

Yes 27 (4.62) 19 (3.45) 8 (24.24)

Hypertension 0.107

No 417 (71.4) 398 (72.23) 19 (57.58)

Yes 167 (28.6) 153 (27.77) 14 (42.42)

Diabetes <0.001
No 483 (82.71) 467 (84.75) 16 (48.48)

Yes 101 (17.29) 84 (15.25) 17 (51.52)

CHD 0.073

No 555 (95.03) 526 (95.46) 29 (87.88)

Yes 29 (4.97) 25 (4.54) 4 (12.12)

RD 0.002

No 573 (98.12) 544 (98.73) 29 (87.88)
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Table 1: Continued.

Total Non-SSI SSI P value

Yes 11 (1.9) 7 (1.27) 4 (12.12)

Smoking 0.174

No 454 (77.74) 432 (78.40) 22 (66.67)

Yes 130 (22.26) 119 (21.60) 11 (33.33)

Alcohol 0.613

No 471 (80.65) 446 (80.94) 25 (75.76)

Yes 113 (19.35) 105 (19.06) 8 (24.24)

Osteoporosis 0.519

No 476 (81.51) 451 (81.85) 25 (75.76)

Yes 108 (18.49) 100 (18.15) 8 (24.24)

ASA 0.010

1-2 394 (67.47) 379 (68.78) 15 (45.45)

3 190 (32.53) 172 (31.22) 18 (54.55)

NYHA 0.639

≤2 560 (95.89) 529 (96.01) 31 (93.94)

3 24 (4.11) 22 (3.99) 2 (6.06)

EBL: estimated intraoperative blood loss; Pre WBC: preoperative white blood cell count; Pre RBC: preoperative red blood cell count; Pre Hb: preoperative
hemoglobin; Pre erythrocyte volume: preoperative erythrocyte volume; Pre PLT: preoperative platelets; Pre neutrophil percentage: preoperative neutrophil
percentage; Pre lymphocyte percentage: preoperative lymphocyte percentage; Pre Alb: preoperative albumin; Pre globulin: preoperative globulin; Pre ALT:
preoperative alanine aminotransferase; Pre AST: preoperative aspartate aminotransferase; Pre creatinine: preoperative creatinine; BMI: body mass index;
CHD: coronary heart disease; ASA: American Society of Anesthesiologists; NYHA: New York Heart Association Class; SSI: surgical site infection; RD:
rheumatic disease.

Uni v ariate logistic regression forestplot

Variable
Age
Sex (female)
Diagnosis (LSS)
Diagnosis (LSO)
Ope ration time
Number of fusion segments (=3)
Allograft bone
EBL
Weather (warm)
DT
Hypertension
Diabetes
CHD
RD
Smoking
Alcohol
Osteoporosis
Pre WBC
Pre RBC
Pre Hb
Preerythrocyte volume
Pre PLT
Pre neutrophil percentage
Pre lymphocyte percentage
Pre Alb
Pre globulin
Pre ALT
Pre AST
Pre creatinine
ASA (3 level)
NYHA(3 level)
BMI

P value
<0.001⁎⁎⁎

0.261
0.414
0.863
0.069
0.03⁎
0.072
0.219
0.316
<0.001⁎⁎⁎

0.075
<0.001⁎⁎⁎

0.062
<0.001⁎⁎⁎

0.12
0.465
0.383
0.792
0.041⁎⁎

0.344
0.178
0.415
0.459
0.89
<0.001⁎⁎⁎

0.188
0.297
0.93
0.291
0.007⁎⁎

0.564
0.506

OR (95% CI)
1.055 (1.024–1.088)
0.667(0.33–1.351)
1.412(0.617–3.23)
0.926(0.384–2.233)
1.007(0.999–1.015)
3.101(1.118–8.602)
2.785(0.911–8.511)
1.002(0.999–1.006)
1.434(0.708–2.904)
8.96(3.577–22.445)
1.917(0.938–3.918)
5.907(2.872–12.149)
2.902(0.947–8.892)
10.719(2.968–38.709)
1.815(0.856–3.849)
1.359(0.596–3.099)
1.443(0.632–3.294)
0.972(0.788–1.2)
0.479(0.237–0.969)
0.99(0.969–1.011)
0.946(0.873–1.026)
1.003(0.996–1.009)
0.986(0.95–1.024)
0.997(0.956–1.04)
0.685(0.606–0.773)
1.065(0.97–1.171)
0.985(0.956–1.014)
1.002(0.967–1.037)
1.009(0.992–1.026)
2.644(1.302–5.37)
1.551(0.349–6.898)
1.035(0.934–1.147)

0.2 0.5 1 5 11

OR

Figure 1: Univariate logistic regression. LSS: lumbar spinal stenosis; LSO: lumbar spondylolisthesis; EBL: estimated blood loss; DT: dural
tear; RD: rheumatic disease; CHD: coronary heart disease; Pre WBC: preoperative white blood cell count; Pre RBC: preoperative red
blood cell count; Pre Hb: preoperative hemoglobin; Pre erythrocyte volume: preoperative erythrocyte volume; Pre PLT: preoperative
platelets; Pre neutrophil percentage: preoperative neutrophil percentage; Pre lymphocyte percentage: preoperative lymphocyte percentage;
Pre Alb: preoperative albumin; Pre globulin: preoperative globulin; Pre ALT: preoperative alanine aminotransferase; Pre AST:
preoperative aspartate aminotransferase; Pre creatinine: preoperative creatinine; ASA: American Society of Anesthesiologists physical
status; NYHA: New York Heart Association Class; BMI: body mass index. ∗P value < 0.05; ∗∗P value < 0.01; ∗∗∗P value < 0.001.
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prediction performance of the remaining models for patients
at high risk of infection was also significantly improved by
synthetic minority oversampling technique, as shown in
Figure 4.

3.4. Variable Importance. In the AdaBoost Classification
Trees model, the relative importance of variables is shown
in Figure 6, in descending order of importance as follows:

preoperative albumin level, diabetes, intraoperative dural
tear, and history of rheumatic disease.

4. Discussion

In this study, we developed and validated a predictive model
for surgical site infection after posterior lumbar interbody
fusion using multiple machine learning algorithms and

Multivariate logistic regression forestplot

Variable

Age

Number of fusion segments (=3)

DT

Diabetes

RD

PreRBC

PreAlb

ASA

P value

0.551

0.43

<0.001⁎⁎⁎

<0.001⁎⁎⁎

0.007⁎⁎

0.834

<0.001⁎⁎⁎

0.264

OR (95% CI)

0.987(0.948−1.030)

1.666(0.425−5.573)

8.742(2.757−26.889)

9.069(3.533−24.926)

8.701(1.717−42.168)

0.913(0.382−2.086)

0.659(0.559−0.762)

1.729(0.661−4.576)

0.2 0.5
1 5 10

OR

(a)

Stepwise logistic regression forestplot

Variable

DT

Diabetes

RD

Pre Alb

P value

<0.001⁎⁎⁎

<0.001⁎⁎⁎

0.006⁎⁎

<0.001⁎⁎⁎

OR (95% CI)

8.436(2.729−25.334)

9.129(3.816−23.126)

8.471(1.743−39.567)

0.659(0.563−0.756)

0.20.5 1 5 10
OR

(b)

Figure 2: Multivariate logistic regression and stepwise logistic regression. DT: dural tear; RD: rheumatic disease; Pre RBC: preoperative red
blood cell count; Pre Alb: preoperative albumin; ASA: American Society of Anesthesiologists physical status. ∗P value < 0.05; ∗∗P value <
0.01; ∗∗∗P value < 0.001.
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Figure 3: Area under the curve of receiver-operating characteristic curve by machine learning models in the validation cohort. (a) Machine
learning; (b) SMOTE + machine learning. AUC: area under the receiver-operating characteristic curve; SMOTE: synthetic minority
oversampling technique; ada: Boosted Classification Trees; LogitBoost: Boosted Logistic Regression; xgbLinear: Extreme Gradient
Boosting; gbm: Stochastic Gradient Boosting; glm: Generalized Linear Model; adaboost: AdaBoost Classification Trees; rf: random forest.
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Figure 4: Continued.
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SMOTE. We found that SMOTE used in the training set
improved the performance of the prediction model, and
the AdaBoost Classification Trees model combined with
SMOTE provided the best performance compared to other
models. This predictive model based on SMOTE and
machine learning can help early identify patients at high risk
for surgical site infection, optimize perioperative manage-
ment, and facilitate clinical decision-making.

Surgical site infection has always been a concern for spi-
nal surgeons; the surgical site infection rate after posterior
lumbar interbody fusion was 5.65%, which was consistent
with previous studies [1]. Although studies have reported
risk factors for surgical site infection after lumbar interbody
fusion [24], however, these studies only described risk fac-
tors as relative risk (RR) or odds ratio (OR), which is not
sufficient to comprehensively assess the risk of surgical site
infection after PLIF for individual patients. Therefore, we
used machine learning algorithms to develop a predictive
model for surgical site infection after posterior lumbar inter-

body fusion, which is the first prediction model to predict
surgical site infection after PILF using synthetic minority
oversampling techniques and machine learning algorithms
in imbalanced datasets.

Synthetic minority oversampling technique is an algo-
rithm that combines oversampling of minority classes with
undersampling of majority classes. It is a common method
to deal with data imbalance. It can construct new minority
samples rather than directly copy the minority samples, that
is, the data constructed by the algorithm is new samples and
does not exist in the original dataset [25]. It selects two or
more similar samples under the small category based on
the distance measure, then selects one of the samples, and
randomly selects a certain number of adjacent samples to
add noise to an attribute of the selected sample, so as to con-
struct more new data [12].

Unbalanced data refers to the unequal number of sam-
ples between categories in classification problems [25]. In
our study, patients with SSI accounted for 5.65%, while
patients without SSI accounted for 94.35%. Therefore, data
imbalance existed in this study. When dealing with the clas-
sification problem of imbalanced data, machine learning
prediction models tend to predict all results into most classes
to achieve high accuracy [26]. However, when minority cat-
egories are more important (in this case, identifying patients
at high risk for surgical site infection is more important),
imbalanced data often leads to poor predictive performance.
The synthetic minority oversampling technique and ensem-
ble learning method are commonly used to deal with data
imbalance [27]. Therefore, we used SMOTE to oversampling
the minority (abnormal) classes and undersampling the
majority (normal) classes in the training set to overcome this
problem (class imbalance) and optimize our machine learn-
ing algorithm [12]. Previous studies have also shown that
synthetic minority oversampling technique helps improve
model accuracy without compromising research results
[26, 28]. Our study confirmed that applying synthetic
minority oversampling technique to the training set can
improve the performance of machine learning prediction
models when we need to improve the sensitivity of the
model without losing too much specificity.

Since the purpose of the prediction model proposed in
this study is to identify patients at risk for surgical site infec-
tion, the sensitivity of the model is more important than the
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specificity. In this study, the AdaBoost Classification Trees
model combined with synthetic minority oversampling tech-
nique successfully predicted 15 patients at high risk of infec-
tion in the validation set, but at the cost of misidentifying 50
(17%) patients at low risk of infection as high risk. For
patients predicted to be at high risk of infection, clinicians
can apply more stringent glycemic control, close monitoring
of albumin levels, and more rigorous wound care. If patients
have multiple high-risk risk factors, clinicians may adjust the
type and duration of antibiotic use as appropriate. These
measures are an acceptable burden for patients predicted
to be at high risk of infection, while reducing the rate of
missed diagnosis and reducing the incidence of SSI in the
overall population.

Fα score is a model evaluation index that comprehen-
sively considers precision and recall, indicating that the
weight of recall is α times of precision when generating
scores. α < 1 indicates that the precision of the model is
more important. A > 1 indicates that the recall of the model
is more important. In clinical practice, early identification
and stratification of patients at high risk of infection may
be beneficial for better prevention of surgical site infection.
We did not want to miss any patients at high risk of postop-
erative infection, that is, we wanted to emphasize the recall
rate of the model over the precision. We calculated Fα scores
when α values were 1, 2, and 3, respectively, and finally
determined F3 as the most important index to evaluate the
model performance. The results of this study also prove that
it is necessary to appropriately expand the α value in the
study of severe and infrequent complications.

Our study further confirms that low preoperative albu-
min levels, diabetes, history of rheumatic disease, and intra-
operative dural tear are risk factors for surgical site infection
after posterior lumbar interbody fusion, which is consistent
with previous findings [24, 29]. Therefore, preoperative opti-
mization of nutritional status, perioperative monitoring of
albumin, and careful intraoperative operation to avoid dural
injury may help prevent surgical site infection.

To the best of our knowledge, this study is the first to use
SMOTE combined with machine learning algorithms to

develop and validate a predictive model for surgical site
infection after PILF. Clinicians can use this prediction model
to preliminarily identify the high-risk population for SSI and
conduct early preventive intervention to reduce the inci-
dence of serious complications. Examples include correction
of hypoproteinemia and careful intraoperative procedures to
avoid dural tears. In addition, since most lumbar degenera-
tive diseases are elective surgeries, clinicians can preliminar-
ily judge the risk of surgical site infection through the
prediction model proposed in this study, grasp the timing
of surgery, weigh the advantages and disadvantages of sur-
gery, and answer the consultation of patients about infection
complications. The synthetic minority oversampling tech-
nique is an effective method to improve the prediction per-
formance of machine learning prediction models for
unbalanced datasets. Similar imbalanced data exist for many
diseases and postoperative complications [30]; synthetic
minority oversampling technique used in this study can be
applied to study of other diseases. Synthetic minority over-
sampling technique may be a feasible method to improve
the performance of machine learning prediction model as a
data pretreatment process.

5. Conclusion

Our prediction model based on machine learning and
SMOTE can successfully predict patients at high risk of
infection. It is helpful for clinicians to optimize patient selec-
tion and timing of surgery (such as elective surgery after cor-
recting hypoalbuminemia in high-risk patients) and answer
patients’ consultation on infection complications; early iden-
tification and early intervention can reduce the occurrence
of serious complications and may prevent the occurrence
of surgical site infections. The method adopted in this study
also provides reference for the study of other diseases and
complications. The limitation of this study is that the
single-center retrospective study may introduce selection
bias and limit its generalization, which needs to be verified
in more and broader populations in the future. Meanwhile,
in addition to the methods used in this study, we are looking
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Figure 6: Variable importance. Pre Alb: preoperative albumin; DT: dural tear; RD: rheumatic disease.
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forward to more future research using some of the most rep-
resentative computational intelligence algorithms which can
be used to solve the problems, like monarch butterfly opti-
mization (MBO) [31], earthworm optimization algorithm
(EWA) [32], elephant herding optimization (EHO) [33],
moth search (MS) algorithm [34], slime mould algorithm
(SMA) [35], hunger games search (HGS) [36], Runge Kutta
optimizer (RUN) [37], colony predation algorithm (CPA)
[38], and Harris hawks optimization (HHO) [39].
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