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Transcription factor OTX2 silences the expression of cleavage embryo 
genes and transposable elements
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Abstract.  Upon mammalian fertilization, zygotic genome activation (ZGA) and activation of transposable elements (TEs) 
occur in early embryos to establish totipotency and support embryogenesis. However, the molecular mechanisms controlling 
the expression of these genes in mammals remain poorly understood. The 2-cell-like population of mouse embryonic stem 
cells (mESCs) mimics cleavage-stage embryos with transient Dux activation. In this study, we demonstrated that deficiency 
of the transcription factor OTX2 stimulates the expression of ZGA genes in mESCs. Further analysis revealed that OTX2 is 
incorporated at the Dux locus with corepressors for transcriptional inhibition. We also found that OTX2 associates with TEs 
and silences the subtypes of TEs. Therefore, OTX2 protein plays an important role in ZGA and TE expression in mESCs to 
orchestrate the transcriptional network.
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Zygotic genome activation (ZGA) occurs robustly at the 2-cell 
(2C) stage of mouse embryos, which is essential for development 

beyond the 2C stage [1]. During this process, thousands of genes 
and transposable elements are activated to replace maternally stored 
RNAs, driving embryonic programs. Among these transcripts, Dux 
gene [2], zinc finger and SCAN domain containing 4 (Zscan4) clusters 
[1], and endogenous retroviruses (ERVs) [3] are hallmarks of zygotic 
genome activation because of their expression specificity [4] and 
potential functions in totipotency establishment [5, 6]. The Dux gene, 
which encodes a double-homeodomain protein, is activated at the 
onset of ZGA in early embryos [7–9]. Although Dux is not essential 
for pre-implantation development, zygotic depletion of Dux leads to 
impaired early embryonic development and defective ZGA [10–12]. 
Despite intensive studies for decades, the regulatory network of 
ZGA genes is still largely unknown. Embryonic stem cells (ESCs), 
which are isolated from the inner cell mass (ICM) of blastocysts, can 
generate any cell type of the fetus but have extremely low efficiency 
in producing cell types of extraembryonic tissues [13]. In recent years, 
isolated mouse ESC (mESC)-derived 2C-like cells have been a useful 
model for exploring totipotency and early embryonic development 
[14–19]. The 2C-like cells express high levels of ZGA transcripts, 

including the murine endogenous retrovirus (ERV)-L (MERVL) 
family of retroviruses and Zscan4 genes. In addition, these cells 
share some key epigenetic characteristics with 2C-stage embryos, 
such as high histone mobility [20] and chromatin accessibility [21]. 
Notably, Dux was transiently activated in 2C embryos and 2C-like 
mESC populations, and Dux knockout in mESCs prevents cells from 
cycling through the 2C-like state [7, 8].

OTX2 is a member of the OTX family expressed in mouse blas-
tocysts and ESCs [22]. Otx2–/– mice exhibit embryonic lethality due 
to abnormal gastrulation, and Otx2+/– mice exhibit female-specific 
lethality and reduced male fertility [23–25]. Recently, the Otx2 gene 
has been suggested to regulate the stem cell state of the ICM and 
epiblast [22]. The OTX2 protein exhibits heterogeneous expression 
in ESCs and facilitates the transition into the early primed state 
[22, 26, 27]. Furthermore, Otx2 is required for mESC transition 
into epiblast stem cells (EpiSCs) and stabilizes the EpiSC [22]. 
However, the regulation of zygotic transcribed genes by OTX2 has 
not been reported.

mESCs are heterogeneous and contain subpopulations with distinct 
gene expression. A rare mESC subpopulation marked by the reactiva-
tion of endogenous retrovirus MERVL, called 2C-like ESCs, has 
been identified [28]. To examine the regulation of ZGA genes by 
OTX2 at the transcriptional level, we used mESCs and identified 
the upregulation of ZGA genes in the absence of the Otx2 gene. 
Further analysis showed that OTX2 acts as a transcriptional barrier 
for the zygotic transcriptional program to inhibit Dux expression 
through incorporation at the Dux locus.
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Materials and Methods

Cell culture
mESCs were cultured on irradiated MEFs in N2B27 medium 

with 2i (PD0325901, 0.4 μM [Stemgent, San Diego, CA, USA] and 
CHIR99021, 3 μM [Stemgent]) and LIF (1000 u/ml) in tissue culture 
(TC) dishes pretreated with 7.5 µg/ml poly-L-ornithine (Sigma, 
St. Louis, MO, USA) and 5 µg/ml laminine (BD Biosciences, San 
Jose, CA, USA) [26].

RNA-seq dataset analysis
Raw reads [4, 26, 29] were processed with cutadapt v1.16 to remove 

adapters and perform quality trimming with default parameters, 
except for quality cutoff and minimum length, which were set at 20 
each (GSE56138 and GSE22182). Cufflinks were used to calculate 
the FPKM values. The ZGA gene list was obtained from a previous 
report [21], and ZGA genes with abundance in MuERVL+ versus 
MuERVL– populations of mESCs [4] above 1.5 fold were used for 
further analysis. Dot and box plots, heatmaps, and bar plots were 
generated using R. Processed RNAseq datasets of mESC transcriptome 
before and after Dux overexpression were also used [30].

ChIP-seq and ATAC-seq dataset analyses
Raw reads were processed with cutadapt v1.8.1 to remove adapters 

and perform quality trimming. Trimmed reads were mapped to 
the UCSC mm10 assembly using Bowtie with default parameters, 
and only uniquely aligned sequences were retained. The reported 
ChIP-seq and ATAC-seq results were obtained from GSE56138 [26], 
GSE17642 [31], GSE76823 [32], and GSE99746 [33].

Statistical analysis
The Wilcoxon rank sum test with continuity correction was used 

to calculate P-values and statistical significance was set at P < 0.05.

Results and Discussion

The transcription factor Otx2 has been shown to act as a nega-
tive switch in the regulation of the transition from naive to primed 
pluripotency in mouse pluripotent stem cells [22, 26, 27]. Thus, we 
carefully examined the transcriptome of Otx2 knockout mESCs [26]. 
Many typical ZGA genes were significantly upregulated upon Otx2 
depletion, including Zscan4d, Sp110, Zfp560, and Zfp352 (Fig. 1A). 
In early mouse development, the Zscan4 gene family is restrictedly 
enriched in the 2C stage, and these genes are typical ZGA genes that 
play important roles in driving the expression of cleavage embryo 
genes [34]. Here, we show that Zscan4 gene family members are 
significantly activated when Otx2 is deficient in mESCs (Fig. 1B). 
We then showed the enrichment of the genes in our ZGA gene list 
in the MuERVL+ ESC population (Fig. 1C), and we found that the 
overall expression of ZGA genes was activated after Otx2 depletion 
(Fig. 1D).

To identify how ZGA genes are activated in the absence of the 
Otx2 gene in mESCs, multiple reported ZGA gene regulators were 
examined, including ZGA activators and repressors [4, 16, 30, 35, 36] 
(Fig. 1E). For example, a recent study using overexpression screening 
showed that the maternal factors Dppa2 and Dppa4 activate Dux 

to drive the expression of downstream ZGA genes [36]. Notably, 
only the expression of Dux and Zscan4 increased significantly in 
Otx2 knockout mESCs, while Zscan4 family genes are downstream 
targets of Dux. Therefore, Otx2 removal in mESCs leads to specific 
upregulation of Dux, the master activator of ZGA genes.

We next examined the expression of representative maternal 
factors that were highly enriched in oocytes (Fig. 1F), and we did 
not find significantly different gene expression after Otx2 depletion. 
Otx2 has been reported to be an early factor in the differentiation of 
mESCs, and its activation was correlated with the downregulation 
of Nanog and Oct4 during ESC differentiation [22]. Otx2, which is 
required for ESC transition into EpiSCs, stabilizes the EpiSC state 
by suppressing the mesendoderm-to-neural fate switch together with 
BMP4 and FGF2 in pluripotent cells [22]. Specifically, OTX2 binding 
was reported to be significantly enriched in the promoter/enhancer 
regions of Oct4, Sox2, and Nanog in EpiSCs [37]. Therefore, we 
also tested the expression of representative pluripotent regulators 
in mESCs (Fig. 1G) and found limited expression changes in these 
pluripotent regulators when Otx2 was depleted. Taken together, our 
analysis showed that Otx2 depletion did not significantly affect the 
maternal or pluripotency network.

To examine whether Otx2 regulates ZGA regulators and ZGA 
genes directly, we analyzed the OTX2 ChIP-seq results in mESCs 
(Fig. 2A). We noticed significant enrichment of OTX2 occupancy at 
the Dux locus and no signal at Zscan4 or other ZGA gene loci. We 
also identified similar binding patterns of two corepressors, SETDB1 
[18] and RYBP [38], which were reported to inhibit ZGA genes 
(Fig. 2B). ATAC-seq results at the Dux locus in mESCs (Fig. 2B) 
also showed a peak at the Dux locus in mESCs. Taken together, our 
analysis indicates that the Dux locus is bound by OTX2-containing 
repressing complexes for transcriptional silencing, thereby blocking 
the activation of Dux-targeted ZGA genes.

To determine how Dux activity contributes to Otx2-mediated 
repression of ZGA, we compared the changes in the expression 
of ZGA genes in Otx2 knockout and Dux-overexpressing mESCs 
(Fig. 2C). Generally, higher upregulation of ZGA genes upon Otx2 
knockout correlates with higher upregulation upon Dux overexpres-
sion. Therefore, we propose that Dux overexpression is the leading 
reason for the activation of ZGA genes in the absence of Otx2.

Transposable elements (TEs) help establish gene regulatory 
networks both in ESCs and embryonic development, including the 
long interspersed nuclear elements (LINEs), long terminal repeat 
(LTR) elements, and short interspersed nuclear elements (SINEs) [4, 
39]. Our results showed that the number of reads of some TE subtypes 
was increased in Otx2 KO mESCs compared to the control (Figs. 
3A and B). According to OTX2 ChIP-seq data in mESCs, OTX2 
was enriched in TE elements (Fig. 3C). Remarkably, reads at the 
ERV-K family and LTR retrotransposon (MaLR) in LTR elements 
accounted for most positions at LTR loci, and L1 accounted for most 
positions at LINE loci (Fig. 3C). Interestingly, the transition from 
the 2-cell stage and the development progression to the blastocyst 
stage depend on LINE-1 expression [14, 40]. In addition, we found 
that the changes in the L1 family in Otx2 knockout mESCs are not 
associated with the evolutionary year of L1 (Fig. 3D). These results 
indicate that OTX2 is also associated with TEs and regulates TE 
expression.
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OTX2 is regarded as a factor that facilitates ESC differentiation. 
Our results suggest that OTX2 may participate in ESC differentiation 
by increasing the transient totipotency state of stem cells, which were 
reported to have higher chromatin opening. During the transition of 
stem cell conditions, the appearance of transient totipotency status with 
activated ZGA genes and overall enhanced chromatin accessibility 
across the genome [21] may be important regulatory factors.

The OTX family of homeobox genes is a vertebrate ortholog of 
the Drosophila orthodenticle homeobox gene [41]. It is expressed 
in both early embryos and ESCs in mice (Supplementary Fig. 1: 
online only) [22, 29, 37]. Otx2 is first detected in the murine blastula 
[42] and is then restricted to ICM with Nanog expression [37]. Otx2 
expression is gradually downregulated in the epiblast, where it is 
virtually absent from E3.7 to E4.5 [37]. The RNA-seq data showed 

Fig. 1. Otx2 depletion leads to upregulation of cleavage embryo genes in mouse embryonic stem cells (mESCs). A: Heatmap showing the abundance 
of representative ZGA genes in control and Otx2 knockout (Otx2-KO) mESCs. B: Heatmap of abundance showing the upregulation of Zscan4 
family genes after Otx2 knockout (Otx2-KO) in mESCs. C: Dot-and-box plot depicting the abundance of ZGA genes in MuERVL– and MuERVL+ 
populations of mESCs. D: Dot-and-box plot depicting the abundance of ZGA genes in control and Otx2 KO mESCs. E: Barplot indicating the 
log-ratio RNA abundance of reported ZGA genes in Otx2 knockout (Otx2-KO) versus control mESCs. Orange indicates ZGA activators and 
aqua indicates ZGA repressors. Note that Dux is significantly upregulated after Otx2 knockout in mESCs. F: Barplot indicating the log-ratio 
RNA abundance of representative maternal factors in Otx2 knockout (Otx2-KO) versus control mESCs. G: Barplot indicating the log-ratio RNA 
abundance of representative pluripotent factors in Otx2 knockout (Otx2-KO) versus control mESCs.
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that Otx2 was undetectable in mouse 2-cell embryos, whereas Otx1 
could be detected at this stage. However, Otx2 was detected in ESCs 
instead of Otx1. This indicates that other OTX family proteins may 
be essential during development. At late embryonic stages, the 
expression of Otx1, although more restricted, is detected in the 
same areas as those of Otx2 [42]. Based on the different expression 
patterns of OTX family genes, we propose that orthologous genes 
Otx1 and Otx2 regulate ZGA and TE in early mouse embryos and 
mESCs, respectively.

Until now, the roles of OTX-family genes in early mouse embryos 
have been poorly understood. Our finding that the transcription factor 
Otx2 regulates Dux and TE expression in mESCs provides new clues 
for the developmental functions of OTX family genes.

Collectively, our analysis shows that Otx2 represses the activation 
of ZGA genes and subfamilies of TE expression by directly binding 
to genomic loci of the Dux gene and TE elements (Fig. 4).
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Fig. 4. Scheme of how Otx2 regulates cleavage embryo genes and TE in 
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