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Abstract
Background: Neuroserpin, primarily localized to CNS neurons, inhibits the adverse effects of
tissue-type plasminogen activator (tPA) on the neurovascular unit and has neuroprotective effects
in animal models of ischemic stroke. We sought to evaluate the association of neuroserpin
polymorphisms with risk for ischemic stroke among young women.

Methods: A population-based case-control study of stroke among women aged 15–49 identified
224 cases of first ischemic stroke (47.3% African-American) and 211 age-matched control subjects
(43.1% African-American). Neuroserpin single nucleotide polymorphisms (SNPs) chosen through
HapMap were genotyped in the study population and assessed for association with stroke.

Results: Of the five SNPs analyzed, the A allele (frequency; Caucasian = 0.56, African-American =
0.42) of SNP rs6797312 located in intron 1 was associated with stroke in an age-adjusted dominant
model (AA and AT vs. TT) among Caucasians (OR = 2.05, p = 0.023) but not African-Americans
(OR = 0.71, p = 0.387). Models adjusting for other risk factors strengthened the association. Race-
specific haplotype analyses, inclusive of SNP rs6797312, again demonstrated significant associations
with stroke among Caucasians only.

Conclusion: This study provides the first evidence that neuroserpin is associated with early-onset
ischemic stroke among Caucasian women.
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Background
Neuroserpin is a serine protease inhibitor (serpin) that
selectively inhibits tissue plasminogen activator (tPA)
within the central nervous system (CNS) [1]. Neuroserpin
is secreted by neurons in the brain, and provides regula-
tion of tPA activity during both normal and pathological
processes including CNS development, neuronal survival,
and cerebral ischemia [2,3]. Furthermore, inhibition of
tPA activity by neuroserpin protects the barrier function of
the neurovascular unit during cerebral ischemia [4] and
also plays an important role in the development synaptic
plasticity [5-7]. In contrast to its role within the CNS, neu-
roserpin is not known to interact with tPA in blood where
the primary serpin regulating tPA's fibinolytic activity is
thought to be plasminogen activator inhibitor 1 (PAI-1;
OMIM:173360). The human neuroserpin gene
(SERPINI1; OMIM: 602445), as seen in Figure 1, spans
89.8 Kb on chromosome 3q26.1 and contains 9 exons
and 8 introns, producing an mRNA 1159 basepairs in
length. The neuroserpin protein consists of 410 amino
acids (46.4 kDa) and has 2 primary structural features: 1)
a reactive center loop that consists of 16 amino acids
which acts as a substrate for tPA, and; 2) a β-sheet that is
involved in the permanent deactivation of tPA through
the induction of an irreversible conformational change
within the tPA protein [7]. Specific mutations in the
human neuroserpin gene are known to result in a form of
autosomal dominant inherited dementia that is character-
ized by the presence of intraneuronal inclusion bodies,
called Familial Encephalopathy with Neuroserpin Inclu-
sion Bodies (FENIB; OMIM: 604218) [8-10].

A growing body of evidence indicates that the interaction
between tissue-type plasminogen activator (tPA) and neu-
roserpin regulates not only the permeability of the neu-
rovascular unit but also the fate of the ischemic tissue in
response to the ischemic insult [2-4,11,12]. Indeed, fol-
lowing experimental middle cerebral artery occlusion
(MCAO) there is a rapid increase in tPA activity and neu-

roserpin expression in the astrocyte-endothelial cell inter-
face [2,4]. Either genetic deficiency of tPA or its inhibition
with neuroserpin results in a significant decrease not only
in the volume of the ischemic lesion but also in the per-
meability of the blood-brain barrier [4]. Furthermore, it
has been demonstrated that treatment with neuroserpin
following ischemic stroke, or overexpression of the neuro-
serpin gene, results in a significant decrease in the volume
of the ischemic area as well as in the number of apoptotic
cells [2,3]. Thus, it is highly plausible that endogenous
neuroserpin may influence whether or not transient
ischemia results in an ischemic stroke.

These findings led us to hypothesize that specific variants
in the neuroserpin gene may provide improved or dimin-
ished protection with respect to the risk of ischemic
stroke. To test this hypothesis, we genotyped several com-
mon neuroserpin single nucleotide polymorphisms
(SNPs) and tested genotypic and haplotypic association
with stroke in a previously collected case-control sample
of ischemic stroke among young women.

Methods
Study subjects
The Stroke Prevention in Young Women Study 2 (SPYW2)
is a population-based case-control study that was
designed to examine genetic risk factors for ischemic
stroke in young women. The term "population-based"
indicates that the cases and their comparison group are
representative of the general population and were identi-
fied from the same defined population, which included
all of Maryland (except the far Western panhandle),
Washington DC, and the southern portions of both Penn-
sylvania and Delaware. Cases included 239 female
patients 15 to 49 years of age with a first cerebral infarc-
tion as identified by discharge diagnosis at 52 regional
hospitals and through direct referral by regional neurolo-
gists. The methods for discharge surveillance, chart
abstraction, and case adjudication have been described

Neuroserpin gene (SERPINI1) gene structure demonstrating locations of the SNPs evaluatedFigure 1
Neuroserpin gene (SERPINI1) gene structure demonstrating locations of the SNPs evaluated.
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Neuroserpin gene (SERPINI1)
Chromosome 3 
Start Exon 1 – 168936617 bp End Exon 9 – 169026048 bp

Exons 1                                                              2 3 4   5                  6         7 8 9

5’ 3’

bp Location 168937699                 168969997          168973594 169013200      169060921

SNP rs # rs2420034                  rs6797312           rs6775296 rs2055028     rs1027242
Page 2 of 7
(page number not for citation purposes)



BMC Neurology 2007, 7:37 http://www.biomedcentral.com/1471-2377/7/37
previously [13-15]. The adjudication of stroke cases was
performed blinded to genetic information. Stroke cases
were classified as having a probable, possible or undeter-
mined etiology as per prior description [13,14]. We
excluded fifteen subjects from our analyses based on a
modification of the exclusion criteria used in the Siblings
With Ischemic Stroke Study (SWISS) [16] protocol: sickle
cell disease (1), CNS vasculitis by angiogram and clinical
criteria (3), post-radiation arteriopathy (1), endocarditis
(3), neurosyphillis (1), mechanical prosthetic heart valves
(2), left atrial myxoma (1), and cocaine use in the 48
hours prior to their stroke (3). Control subjects were 212
women without a history of stroke, identified by random-
digit-dialing and were frequency matched to the cases by
age and geographic region of residence. One control was
excluded from analyses based on a history of sickle cell
disease. Thus, the sample for genetic analyses consisted of
224 cases and 211 controls.

Cases and controls were grouped into the following race
and ethnic categories: Caucasian (non-Hispanic) (n = 95
cases and 99 controls), African-American (n = 105 cases
and 91 controls), and other (including Hispanic, Asian,
American-Indian, etc.) (n = 24 cases and 21 controls).
Because of the small size and heterogeneity of the latter
group, it was not analyzed separately, but was included in
analyses on the combined total study group (n = 224 cases
and 211 controls). Haplotypic association analyses were
conducted on only the Caucasian (non-Hispanic) and the
African-American groups. Strokes were further classified
by subtype; the atherosclerotic group included 27 cases
with either probable or possible atherosclerotic mecha-
nism; the cardiac group included 14 cases with a probable
cardiac source of embolism; the probable dissection
group included 13 cases confirmed by neuroimaging; the
lacunar group included 45 cases of symptomatic small
deep lesions on neuroimaging studies or classic lacunar
syndromes regardless of other potential causes; and the
probable hematologic group included 9 cases. These cate-
gories were not mutually exclusive. There were 125 non-
lacunar stroke cases of undetermined etiology.

Ethical approval for the study was obtained from the Uni-
versity of Maryland School of Medicine Institutional
Review Board.

SNP selection
In an effort to eliminate redundancy in the information
provided by the SNPs genotyped, a set of haplotype tag-
ging SNPs were identified through HapMap [17] for both
African-Americans and Caucasians. To represent our Cau-
casian population we identified SNPs that capture 80% of
haplotype diversity among European Caucasians. These
SNPs were then "force included" to determine the addi-
tional tagging SNPs needed fromYorubans to capture 80%

of haplotype diversityin our African-American popula-
tion. A minor allele frequency of >.05 was required. After
removing markers with minor allele frequency <0.05, we
prioritized the remaining markers by: 1) non-redundant
haplotype tagging coverage among both races, 2) distribu-
tion throughout the gene, and 3) maximizing the allele
frequencies for both SNP alleles. On this basis six SNPs
were genotyped in our stroke cohort, including:
rs2420034, rs6797312, rs6775296, rs2055028,
rs1027242, and rs13090569. Complete HapMap coverage
was not attained.

Genotyping methods for the case/control population
Genotyping was conducted using DNA isolated from
whole blood using the QIAamp DNA Blood Maxi Kit
(Qiagen, Valencia, CA). SNP genotyping was performed
by the Taqman method (Applied Biosystems, Foster City,
CA). This method is based on four primers, two flanking
the SNP that are used to amplify the DNA surrounding the
SNP and two that were labeled with different fluorescent
dyes, one for each alternative allele. The original form of
the labeled primer has a quencher in close proximity to
the dye. When the 5'→3' exonuclease activity of DNA
polymerase disrupts the primer hybridized to the single
strand DNA during the PCR, the quencher and dye are
released, producing a measurable level of fluorescence.
The reaction protocol was specified in manufacturer's
instructions included with each individual primer set.

Analyses
All statistical analyses were performed using SAS®, Version
9.1 (SAS Institute, Cary, NC). We compared means by
two-sided t-tests and proportions by χ2 tests. For those
SNPs that satisfied Hardy-Weinberg equilibrium, addi-
tive, dominant and recessive models were used to test the
effect of genotype on stroke risk. Analyses were conducted
in the total population, and also in the African-American
and Caucasian women separately. Single SNP association
analyses were not adjusted for multiple comparisons
because so few SNPs were evaluated and our study was
considered to be hypothesis-generating.

Adjusted odds ratios from logistic regression were used to
determine whether the presence of the risk allele was asso-
ciated with an increased risk for stroke after controlling for
potential confounders. The minimally adjusted model
included age and race. The environmental model
included age, race, current cigarette smoking, and oral
contraceptive pills (OCP) use. In addition to the covari-
ates of the environmental model, the environmental/vas-
cular risk factor model was adjusted for hypertension,
diabetes mellitus, and history of angina or myocardial inf-
arction (angina/MI). Age, race, current cigarette smoking
status, and OCP use were based on self-report by subjects
(or proxies, if a participant was unable to answer). Hyper-
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tension and diabetes mellitus were determined by asking
study participants (or a proxy) if a physician had ever told
them they had the condition.

Within each ethnic group, analyses were stratified by
standard risk factors (age, OCP use, current cigarette
smoking, hypertension, diabetes mellitus, and history of
angina or myocardial infarction) and stroke subtype
(atherosclerotic, cardiac, dissection, lacunar, hematologic,
and stroke of undetermined etiology (all other stroke)).

Patterns of linkage disequilibrium (LD) were determined
for each race group (African-Americans and Caucasians)
using pairwise estimates of D' as implemented in Haplov-
iew [18]. Race-specific haplotypic association analyses
were performed using Haplo.stats [19] in the statistical
software package [20]. Individual haplotypes were esti-
mated in the HaploStats package using the haplo.em pro-
gram, which infers haplotypes and makes haplotype
assignments using a progressive insertion algorithm based
on an Expectation-Maximization approach, as imple-
mented in the "SNPHAP" software package [21]. Haplo-
types first underwent race-specific non-adjusted analyses
to evaluate for association with stroke using the
haplo.score program. Consistent with the SNP analyses,
significant haplotypes were analyzed using age-adjusted,
environmental and environmental/vascular models, as
well as analyses stratified by stroke subtype using the
haplo.glm program. Empirical p-values were estimated
for haplotypic association tests in haplo.score using a sim-
ulation-based approach, thus correcting for multiple com-
parisons.

Results
Subject characteristics
Demographic and risk factor characteristics by case-con-
trol status are described in Table 1. The mean age of the
cases was 41.7 years and the mean age of control subjects
was 39.6 years. Cases were significantly more likely to
have a history of hypertension (p < 0.0001), diabetes (p =
0.0002), angina/MI (p = 0.0005), to currently smoke cig-
arettes (p < 0.0001), and to report the use of oral contra-

ceptive pills (OCP) within the month (31 days) prior to
their stroke (p = 0.032).

SNP association analyses
Table 2 lists the genotyped SNPs as ordered by their phys-
ical position within the gene, and additionally provides
the allelic variants, gene region and minor allele frequen-
cies among cases and controls as stratified by race. The five
SNPs listed in Table 2 were in Hardy-Weinberg equilib-
rium. SNP rs13090569 was not in Hardy-Weinberg equi-
librium and was therefore excluded from further analyses.

SNPs associated with stroke
Analyses of the overall study population implementing
the 3 inheritance models adjusted for only age and race
did not demonstrate any SNP to be associated with stroke
(results not shown). However, the A allele (frequency;
Caucasian = 0.56, African-American = 0.42) of SNP
rs6797312 located in intron 1 (see Figure 1) was associ-
ated with stroke in an age-adjusted dominant model (AA
and AT vs. TT) among Caucasians (OR = 2.05, p = 0.023)
but not African-Americans (OR = 0.71, p = 0.387). Adjust-
ing for other risk factors demonstrated an increased
strength of association among Caucasians in both the
environmental (OR = 2.53, p = 0.007) and environmen-
tal/vascular models (OR = 2.50, p = 0.012). No associa-
tion was seen among African-Americans in either of the
more rigorously adjusted models. These results are sum-
marized in Table 3. Stratifying SNP rs6797312 by risk fac-
tors and stroke subtypes revealed no significant
associations.

Haplotype analyses
Figure 2 shows the LD pattern observed among African-
Americans and Caucasians. Within both race groups, a
haplotype block including SNPs rs6797312 and
rs6775296 was observed. Additionally, relatively strong
linkage disequilibrium was seen among Caucasians
between SNPs rs6797312 and rs2420034. Based upon
these observations, we chose to perform race-specific hap-
lotype analyses among Caucasians to include two two-
SNP haplotype blocks including rs6797312–rs6775296
and rs24240034–rs6797312, and the three SNP haplo-

Table 1: Characteristics by case-control status.

Cases (N = 224) Controls (N = 211) p-value

Mean age (years) 41.7 39.6 0.0026
African-American (%) 47.3 43.1 0.579

Hypertension (%) 41.1 14.2 <.0001
Diabetes mellitus (%) 17.9 6.2 0.0002
Current smokers (%) 47.8 23.7 <.0001

Angina/MI (%) 11.6 2.8 0.0005
OCP (%)* 12.2 6.2 0.032

* Two cases and one control could not recall their last OCP use, therefore cases N = 222 and controls N = 210.
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type block rs24240034–rs6797312–rs6775296. Among
African-Americans, the two-SNP haplotype block
rs6797312–rs6775296 was evaluated.

Among Caucasians, the 3 SNP haplotype rs24240034(A)-
rs6797312(A)-rs6775296(A) (haplotype frequency =
25%) was associated with stroke (p = 0.021) in an unad-
justed model when evaluating all strokes combined.
These associations persisted after controlling for other vas-
cular risk factors in age-adjusted (p = 0.019), environmen-
tal (p = 0.004), and environmental/vascular (p = 0.015)
models respectively. The stroke of undetermined etiology
subgroup demonstrated a trend toward association when
analyzed in the unadjusted model (p = 0.10), age-
adjusted (p = 0.10), environmental (p = 0.032), and envi-
ronmental/vascular (p = 0.032) models respectively. Nei-
ther of the 2 SNP haplotypes demonstrated associations
with stroke.

Among African-Americans, no rs6797312–rs6775296
haplotype demonstrated an association.

Discussion
Although several studies have demonstrated that neuros-
erpin plays a role in cerebral ischemia [2-4,22], our study

is the first to demonstrate that specific neuroserpin SNPs
and haplotypes are associated with the risk of ischemic
stroke. While the primary function of neuroserpin appears
to be inhibition of tPA in both diseased and non-diseased
states [1], increasing evidence indicates that the tPA-neu-
roserpin axis plays a major role in the regulation of neu-
rovascular unit permeability during cerebral ischemia [2-
4,22]. Hence, the beneficial or detrimental role of tPA in
cerebral ischemia is location dependent, with intravascu-
lar tPA promoting fibrinolysis, and extravascular tPA pro-
moting blood-brain barrier disruption and/or
neurotoxicity as regulated by neuroserpin. Furthermore,
animal studies of induced ischemic brain injury have
demonstrated that the administration of exogenous neu-
roserpin decreases these effects, hence playing a neuropro-
tective role, as evidenced by smaller stroke volumes [4].
Thus, it is logical to hypothesize that specific variants in
the neuroserpin gene may influence whether or not tran-
sient ischemia results in ischemic stroke.

Our study indicates that a specific neuroserpin SNP
(rs6797312), and haplotypes including this SNP, are asso-
ciated with ischemic stroke risk in Caucasian women. The
haplotype associations seen in the race-stratified all
ischemic stroke groups and the stroke of undermined eti-

Table 3: SNP rs6797312 – Stratified by race in dominant model. Age-adjusted, environmental, and environmental/vascular models 
demonstrating adjusted odds ratios, 95% confidence intervals, and p-values

Race Age-Adjusted Environmental Model * Environmental/Vascular Model **

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

African-American 0.71 0.33–1.54 0.387 0.71 0.33–1.56 0.265 0.43 0.18–1.06 0.065
Caucasians 2.05 1.10–3.80 0.023 2.53 1.29–4.95 0.007 2.50 1.22–5.05 0.012

* Adjusted for age, smoking, and oral contraceptive (OC) use.
** Adjusted for age, smoking, OC use, hypertension, diabetes, and angina.
Note: For both the environmental and environmental/vascular models two cases and one control could not recall their last OCP use, therefore 
cases N = 222 and controls N = 210.

Table 2: SNPs analyzed in complete case-control study population including allelic variants, position, gene region, genotype call rate, 
and minor allele frequencies as stratified by race and case/control status.

SNP rs number – Alleles Position* – Region Call Rate Allele Frequency**/N

African-American Caucasians

Cases Controls Cases Controls

rs2420034 – A/T 168937699 – Intron 1 85% 0.17/99 0.11/85 0.49/69 0.45/85
rs6797312 – A/T 168969997 – Intron 1 98% 0.43/104 0.42/89 0.64/93 0.56/89
rs6775296 – A/G 168973594 – Intron 1 92% 0.14/94 0.19/82 0.10/93 0.07/89
rs2055028 – A/G 169013200 – Intron 6 98% 0.24/106 0.23/88 0.10/92 0.14/96
rs1027242 – C/T 169060921-3' untranslated 83% 0.48/86 0.44/76 0.47/78 0.47/83

* Relative position (168936217–168936617 exon 1; NCBI Build 35).
** As listed by minor allele frequency in African-Americans (bolded in first column above)
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ology subtype, suggest that neuroserpin variants may offer
varying detrimental or protective effects on ischemia that
may be global in nature. Therefore, one could cautiously
interpret our results to indicate that SNP rs6797312, or
more likely that a nearby SNP in linkage disequilibrium
with SNP rs6797312, acts to tilt the tPA-neuroserpin axis
towards a less favorable state regarding stroke risk or neu-
roprotection.

Our study has several limitations. First, our study does not
provide any mechanistic information regarding stroke risk
or protection. Specifically, we did not determine if our
SNPs were associated with increased or decreased neuros-
erpin activity. Secondly, our study population is relatively
small and could be underpowered to detect modest
effects, particularly in the stroke subtype analyses. Addi-
tionally, even though we evaluated a small set of tagging
SNPs identified using LD patterns in HapMap data; the
tagging SNPs did not capture all variation in the gene
among both race subgroups. Lastly, although we per-
formed numerous analyses, no correction was made for
multiple comparisons among the single SNP association
analyses, allowing for the possibility that our results could
be attained through chance alone. However, the estima-
tion of empirical p-values for haplotypic association tests
involving SNP rs6797312 accounts for the issue of multi-
ple comparisons, making a false positive association in
haplotype analyses less likely.

Conclusion
This study provides the first evidence that neuroserpin is
associated with early-onset ischemic stroke among Cauca-
sian women.
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