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Adults can rapidly recognize material properties in
natural images, and children’s performance in material
categorization tasks suggests that this ability develops

slowly during childhood. In the current study, we further

examined the information children use to recognize
materials during development by asking how the use of
local versus global visual features for material
perception changes in middle childhood. We recruited
adults and 5- to 10-year-old children for three
experiments that required participants to distinguish
between shape-matched images of real and artificial
food. Accurate performance in this task requires
participants to distinguish between a wide range of
material properties characteristic of each category, thus
testing material perception abilities broadly. In two
tasks, we applied distinct methods of image scrambling
(block scrambling and diffeomorphic scrambling) to
parametrically disrupt global appearance while
preserving features in small spatial neighborhoods. In
the third task, we used image blurring to parametrically
disrupt local feature visibility. Our key question was
whether or not participant age affected performance
differently when local versus global appearance was
disrupted. We found that although image blur led to
disproportionately poorer performance in young
children, this effect was reduced or absent when
diffeomorphic scrambling was used. We interpret this
outcome as evidence that the ability to recruit
large-scale visual features for material perception may
develop slowly during middle childhood.

North Dakota State University, Fargo, ND, USA

Material perception, the ability to categorize objects
and surfaces based on what they are made of, is
a critically important aspect of high-level vision
(Fleming, 2013). Material judgments support inferences
regarding the expected tactile properties of objects
(Baumgartner, Wiebel, & Gegenfurtner, 2013), the
effects of various transformations of shape (e.g.,
ripping, folding; Schmidt & Fleming, 2018), the
freshness or ripeness of food (Arce-Lopera et al.,
2012), and many other variables. Adults are capable of
estimating material properties given brief exposure to
complex images (Sharan, Rosenholtz, & Adelson, 2009,
2014; Wiebel, Valsecchi, & Gegenfurtner, 2014), and
sensitivity to material properties emerges early in neural
responses (Baumgartner & Gegenfurtner, 2016; Jacobs,
Baumgartner, & Gegenfurtner, 2014), suggesting that
such judgments are carried out rapidly and effectively
even when visual information is impoverished (Balas,
Conlin, & Shipman, 2017). Although adults’ abilities
to categorize and estimate material properties from
natural images have been examined in many studies,
there are still little data describing the developmental
trajectory of material perception. In the current study,
we examined how children and adults use visual
information across different spatial scales to estimate
material properties. Specifically, we were interested in
determining the extent to which children between 5 and
10 years of age and adults tend to rely on small-scale,
local visual features versus larger-scale, global visual
features to estimate material properties.
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Middle childhood, in particular the target age
range described above, is a particularly interesting
developmental stage to examine in the context of
material perception for two main reasons. First, texture
perception (which we assume makes a substantial
contribution to material perception) appears to
develop slowly during these years. Children do not
exhibit adult-like texture discrimination abilities
until at least 10 years of age (Ellemberg, Hansen, &
Johnson, 2012) and also do not appear to segment
textures accurately until late in middle childhood
(Sirteneau & Rieth, 1992). In previous work,
we have also shown that regarding material
perception specifically, some aspects of material
categorization are also not adult-like during middle
childhood, although this varies by material property
(Balas, 2017). A key question regarding this slow
development of adult-like abilities is whether or not
ongoing improvements in material perception reflect
changes in how visual information is used to inform
material judgments or more general improvement in the
efficiency of processes that support material perception.
In our previous work, we found that forcing children
and adults to use visual summary statistics (Balas,
2006; Balas, Nakano, & Rosenholtz, 2009) to assess
material properties affected categorization, but not
matching, performance differently as a function of age
(Balas, 2017). We interpreted these results as evidence
that children had more or less adult-like abilities to
compare and match materials using the information
available in “mongrels” made from natural material
images but had not yet established robust mappings
between those features and category labels. More
broadly, we think this is consistent with an account
of the development of material perception in which
children do not rely on different features for material
judgments but may use the same features as adults
less effectively. An important limitation of this study,
however, is the fact that we only examined children’s
and adults’ performance subject to one manipulation
of appearance: the application of a texture synthesis
model. The issue here is that using any one model
to manipulate the visual information available for
material perception is that the model constrains what
features can and cannot be disrupted. In the case of
the Portilla-Simoncelli model (Portilla & Simoncelli,
2000) applied in our previous report, a number of joint
wavelet statistics within local image neighborhoods tend
to be preserved, whereas higher-order statistics within
those neighborhoods and relationships at scales larger
than those neighborhoods are generally not preserved.
As a result, using this model (or similar pyramid-based
models; Briand et al., 2014; Heeger & Bergen, 1995) to
study visual development represents a commitment to
examining the impact of disrupting features at large
spatial scales more than disrupting features at smaller
spatial scales.
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Considering the visual information available at
different spatial scales may be critically important
to understanding how material perception develops.
To the extent that texture features are important for
estimating material properties, a range of cues are
available across relatively small and relatively large
spatial scales—the visual perception of roughness, for
example, depends on high spatial frequency information
in some observers and low spatial frequency in others
(Bergmann & Kappers, 2007). A number of other
material properties, such as gloss, are visually judged
based on local features but also on larger-scale cues to
surface shape (Anderson & Kim, 2009). Children and
adults thus have the opportunity (and in some cases the
need) to recruit visual features across multiple scales
to estimate material properties accurately. However, in
other problem domains, children appear to rely more
heavily on local features early in childhood, eventually
relying on global information (or at information
at larger spatial scales) relatively late in childhood.
This developmental trajectory has frequently been
established via the use of Navon-like hierarchical figures
in which small shapes (e.g., letters) are arranged to
make a large shape that may or may not differ from that
of the constituent elements (a large T made up of small
xs). Relative to adults, young children exhibit superior
abilities to report the shape of local elements in such
figures as measured via drawing tasks (Dukette & Stiles,
2001), discrimination and search tasks (Kimchi et al.,
2005), and eye movements (Vurpillot, 1968). The bias
for local features continues into adolescence (Scherf
et al., 2009) and may depend on structural changes in
the developing brain (Poirel et al., 2011). These results
suggest that although there may be useful information
available for material perception at large spatial scales,
young children may not use that information as readily
as adults, leading to different patterns of performance
as visual features at local and global spatial scales are
selectively disrupted. To our knowledge, however, there
have been few studies in which the development of
local and global visual processing has been examined
using complex natural images rather than structured,
schematic stimuli.

Our goal was to test the hypothesis that
children’s material perception abilities may depend
disproportionately on local (small-scale) visual features
relative to adults. To examine this question, we asked
children and adults to distinguish between images of
real food and images of fake food (plastic, fabric, or
wooden versions of real foods). We selected this task
for several reasons. In terms of material perception,
distinguishing real foods from artificial foods requires
that observers be capable of estimating many different
material properties, including glossiness, hardness,
and roughness. Using a real/artificial food judgment
thus provides a means of studying material perception
broadly as opposed to focusing on a specific material
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property. We also chose this task because we wished
to use a judgment that both young and older children
would find intuitive. Given that children of all ages
have extensive experience with real food and are
likely to have encountered artificial food in play
settings, this task was an attractive option. We are

not arguing that real/artificial material judgments of
this kind are particularly useful for examining local
and global processing but rather that this task was a
useful vehicle for examining these questions for the
reasons we described above. In separate experiments,
we asked participants to perform this task subject

to image manipulations that either disrupted local
visual features more than global (or large-scale) visual
features via image blur (Experiment 1) or disrupted
global visual features more than local ones via image
scrambling (Experiments 2 and 3). We reasoned that
if children indeed showed a greater bias toward local
visual features than adults, making those features less
available should impair performance disproportionately
for our youngest participants. Critically, manipulations
that tended to preserve local visual features should
not disproportionately affect child participants, as

the information they rely on most heavily should

still be available. Briefly, we found that limiting the
availability of local image features did impair young
children’s performance more than adults but that
weaker trends in this direction were also evident when
image scrambling was imposed. We discuss these results
in the context of other results examining how children
recruit information across spatial scales for other
recognition tasks and more broadly in terms of how
visual integration abilities may develop generally during
childhood.

In our first experiment, we examined how removing
local visual cues to material properties affected material
perception in children and adults. Specifically, we used
varying amounts of image blur to limit the availability
of fine details that children and adults could use to
classify material properties.

Methods

Participants

Our final sample comprised a total of 62 participants,
including children 5 to 7 years old (n = 21, 13 female),
children 8 to 10 years old (n = 22, 13 female), and
adult participants between the ages of 18 and 25 years
(n = 19, 11 female). Child participants were recruited
from the Fargo-Moorhead community, and adult
participants were recruited using the North Dakota
State University (NDSU) Undergraduate Psychology
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Study Pool. All participants self-reported normal or
corrected-to-normal acuity and normal color vision,
and they were naive to the purpose of the study and
the main hypotheses. Adult participants received
course credit for their participation, whereas child
participants received monetary compensation and their
choice of a book to take home. We obtained written
informed consent from all adult participants and the
parent/guardian accompanying each child participant.
Children also provided written assent to participate
prior to the beginning of the experiment session.

Stimuli

Our stimuli were created using 96 full-color images
of real and artificial food obtained via Google Images.
We selected 48 image pairs such that each image of a
real foodstuff was paired with a matching image of an
artificial item. To the extent possible, these pairs were
selected so that the shape, orientation, color, and other
appearance variables were approximately matched
within each pair (Figure 1). The original images varied
in size, so we cropped and resized all images to 512 x
512 pixels and imposed a uniform white background.
These original images served as the basis for all three
of the experiments described here. Across images
of real and artificial food, material properties varied
substantially. Artificial foods included objects made
of plastic, wood, and fabric, for example, whereas
real foods varied in glossiness, hardness, roughness,
and other material properties. We made no attempt to
balance these material categories and properties either
within or between real and artificial food categories,
and so our stimulus set does not support a detailed
examination of how specific material properties
influenced performance. Instead, these stimuli were
intended to discourage the use of a particular visual
cue to support real/artificial discrimination while
also requiring participants to consider a broad set of
material properties to achieve high levels of accuracy.
Finally, we note that in general, the foods we used in
these tasks were items that we expected children in
our target age range to be able to recognize. Using the
Kuperman et al. (2012) Age-of-Acquisition norms,
we found that the average age at which children knew
the words for our food items was approximately 4.9
years (SD = 1.47). As such, we are confident that
children in all three studies were likely to be sufficiently
familiar with these foods that they could name them
and therefore not struggle with the chance due to a lack
of prior experience with the food items depicted here.

For this experiment, we created additional stimuli by
using image blur to parametrically vary the amount of
fine spatial detail available to our observers for material
perception. We used the blur.m function implemented
in the Steerable Pyramid Toolbox for MATLAB to
create new images with low levels of blur (two levels of
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Figure 1. Example stimuli created by blurring. This artificial avocado would be paired with its counterpart real avocado during the task.

filtering and downsampling, followed by upsampling
to the original image size) and high levels of blur
(four levels rather than two). In both cases, we used

a binomial filter kernel (the default “binom5” kernel
in blur.m). The resulting images remained 512 x 512
pixels in size and were full-color (Figure 1). The full set
of stimuli used in all of our experiments is available via
the Open Science Framework (OSF) at the following
link: https://osf.io/hvmpn/.

Procedure

Real/artificial food task

We asked our participants to complete a 2-alternative
forced choice (2AFC) food/nonfood task using the
stimuli described above. On each trial of this task,
participants were presented with a real/artificial image
pair (e.g., a real avocado and its matching plush
counterpart) displayed to the left and right of the
screen. Participants were asked to indicate which of
these two images depicted a real food using two large
response buttons placed near their left and right hands.
The images remained onscreen until participants made
a response, but participants were asked to respond as
quickly as possible while being accurate. Specifically,
we instructed all participants as follows: “Please tell us
which of the two pictures is a real food that someone
could eat. To choose the left picture, press the left
button, and to choose the right picture, press the right
button. Please try to go as quickly as you can while
being careful to pick the right picture!” The left/right
position of real food images varied pseudorandomly
across trials. Image blur also varied pseudorandomly
across trials, and every image pair appeared once at
each level of blur (no blur, low blur, and high blur) for a
grand total of 144 trials in the entire task. Participants
did not receive feedback regarding accuracy during the
task.

Participants completed the task seated approximately
40 cm away from a MacBook Pro laptop with a
1,200-pixel x 800-pixel display. Food images were

presented offset to the left and right of center by 300
pixels and subtended approximately 4 to 5 degrees

of visual angle. All stimulus display and response
collection routines were executed using custom routines
written using the Psychtoolbox v3.0 extensions for
MATLAB (Kleiner et al. 2007).

Baseline response latency task

Because we were interested in comparing response
latencies across child and adult participants, we
included an additional task designed to provide a
baseline measure of response latency differences
across these participant groups. Before completing
the real/artificial food task described above, we asked
each participant to complete a short 2AFC color
categorization task using the same experimental setup.
Specifically, on each trial of this task, we presented
participants with a red circle and a green circle, offset to
the left and right of center, with the left/right position
of the two circles pseudorandomly varied across trials.
Participants were asked to use the two response buttons
to indicate where the red circle was on each of 32 trials.
As in the task described above, we asked participants to
respond as quickly as possible while remaining accurate.

Results

We analyzed participants’ accuracy and response
latency across blur levels as a function of age group
using a 3 x 3 mixed analysis of variance (ANOVA)
implemented in JASP (JASP Team, 2018). All
aggregate data files and raw MATLAB files from each
participant are available via OSF at the following link:
https://osf.io/hvmpn/.

Accuracy

For each participant, we calculated the proportion
of correct trials per blur condition. The results of an
ANOVA run using these values yielded main effects
of blur level [F(2, 118) = 101.7, p < 0.001, partial
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Figure 2. Average accuracy as a function of age group (5- to
7-year-olds: Group 1, 8- to 10-year-olds: Group 2, and adults:
Group 3) and blur level (none, low, and high). Error bars
indicate 95% confidence intervals.

n> = 0.63] and age group [F(2, 59) = 7.5, p = 0.001,
partial n° = 0.20]. We examined both of these main
effects using post hoc two-tailed paired-samples ¢

tests implemented in JASP, with Bonferroni-corrected
p values. The main effect of blur level was driven

by significantly lower accuracy for high blur images
relative to low blur images (1 = 12.98, Cohen’s
d=1.65, p < 0.001) and unblurred images ( = 11.61,
Cohen’s d = 1.47, p < 0.001). The main effect of age
was driven by significant differences between 5- to
7-year-olds and adults (z = 3.88, Cohen’s d = 0.49, p

< 0.001). Besides these main effects, we also observed
a significant interaction between blur level and age
group, F(4, 118) = 3.53, p = 0.009, partial n> = 0.11.
Upon inspection, this result appeared to be driven

by the disproportionately poor performance of 5- to
7-year-old children in response to high-blur images.

To investigate this further, we carried out a post

hoc analysis of the size of the blur effect across

age groups: We calculated a difference score by
subtracting performance in the “high-blur” condition
from performance in the “low-blur” condition for
each participant and then analyzed those difference
scores using a one-way ANOVA with age group as a
between-subjects factor. This yielded a significant effect
of age group, F(2, 59) = 3.59, p = 0.034, which further
post hoc testing revealed was the result of significant
differences in the size of this difference score between
adults and young children (post hoc Tukey’s test,

t = 2.48, p = 0.042). This suggests that increased image
blur hurts performance in general but appears to hurt 5-
to 7-year-olds more than adults. In Figure 2, we include
a plot of average accuracy as a function of age and blur
level.

Response latency

First, we analyzed the response time to our baseline
motor task across all age groups. We carried out a
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Figure 3. Average median response latency as a function of age
group (5- to 7-year-olds: Group 1, 8- to 10-year-olds: Group 2,
and adults: Group 3) and blur level (none, low, and high). Error
bars indicate 95% confidence intervals.

one-way ANOVA with age group as a between-subjects
factor. This analysis revealed a significant effect of age
group, F(2, 59) = 45.2, p < 0.001, such that all age
groups differed from one another in their response
latency to correct trials (adults, M = 0.34, SEM = 0.034;
5- to 7-year-olds, M = 0.78, SEM = 0.032; 8- to
10-year-olds, M = 0.50, SEM = 0.031).

Second, to calculate material perception response
latency for each participant, we calculated the
median response time to correct trials within each
experimental condition of the real/artificial food
task. Next, to account for age-related differences
in overall response latency, we calculated the
difference between this value and the median
response latency to correct trials in the baseline
response time (RT) task. The resulting difference
score thus reflects a participant-specific latency to
estimate material properties from the experimental
stimuli, correcting for individual differences in motor
responses (see Meissner et al., 2018, for a similar
approach).

Our analysis of these values also yielded main effects
of image blur [F(2, 118) = 132.0, p < 0.001, partial
n*> = 0.69] and age group [F(2, 59) = 46.77, p < 0.001,
partial n°> = 0.61]. We examined both of these main
effects using post hoc two-tailed paired-samples ¢
tests implemented in JASP, with Bonferroni-corrected
p values. The effect of blur level was the result of
significantly slower latencies in response to high-blur
images relative to low-blur images (¢ = 12.0, Cohen’s
d=1.53, p < 0.001) and unblurred images (¢t = 12.46,
Cohen’s d = 1.58, p < 0.001). The main effect of age
group was the result of significant differences between
all three age groups (¢ > 4.5 for each test, Cohen’s d
> 0.5 in each case). Finally, the interaction between
blur level and age group did not reach significance, F(4,
118) = 1.29, p = 0.28, partial n> = 0.042. In Figure 3,
we include a plot average median response latency as a
function of blur level and age group.
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Our results demonstrate that limiting the amount of
local information available in complex images has larger
effects on younger children than on older children and
adults. Accuracy appears to be disproportionately
affected by high levels of image blur in 5- to 7-year-old
participants, and task-specific response latency
decreases gradually during middle childhood. We
suggest that both of these results are consistent with
the hypothesis that young children largely rely on local
information for recognition tasks and develop adult-like
abilities to recruit global features gradually during
middle childhood. By themselves, however, these data
are not sufficient to rule out a number of important
alternative accounts. For example, it could be the case
that young children are generally affected more by most
forms of image degradation, regardless of the class of
visual features that are disrupted. Were this the case,
image manipulations that disrupt global information
more than local features should have essentially the
same impact on performance. We continue, therefore, by
considering how such manipulations affect performance
in our real/artificial food task.

In our second experiment, we carried out the same
real/artificial food task described in Experiment 1
subject to block scrambling of our stimuli. By
parametrically varying the size of the blocks used to
scramble our base images, we can preserve information
within local neighborhoods while dramatically
disrupting visual information spanning image regions
larger than the block size. If young children are indeed
more reliant on local image features to carry out
material judgments in this task, we would expect that
this manipulation should not lead to disproportionately
poorer performance in child participants. However,
if the key issue is simply that children struggle
disproportionately with impoverished images, we would
expect to observe the same type of interaction that we
observed in Experiment 1.

Methods

Subjects

We recruited a total of 65 participants for this
experiment, including children 5 to 7 years old (n = 23,
15 female), children 8 to 10 years old (n = 22, 14
female), and adult participants between the ages of
18 and 25 years (n = 20, 13 female). All recruitment
procedures (compensation, etc.) were the same as those
described in Experiment 1.
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Stimuli

The same stimuli described above in Experiment 1
were used as the basis for the images employed
here. In this experiment, however, we implemented a
simple form of block-based scrambling to preserve
information in local image neighborhoods while
disrupting visual information spanning regions larger
than that spatial scale. Specifically, each original image
was segmented into nonoverlapping tiles of varying size
(128 x 128 pixels for low scrambling, 64 x 64 pixels for
high scrambling), and these tiles were then randomly
rearranged within a square grid. The resulting images
were still 512 x 512 pixels in size and in full color
(Figure 4).

Procedure

The testing procedure for this task was essentially
the same as that described for Experiment 1, with
varying levels of scrambling rather than varying levels
of blur. We also included the baseline response latency
task described in Experiment 1, following the same
procedures outlined previously.

Results

As described in Experiment 1, we calculated
participant accuracy and response latency to correct
trials. We analyzed these values using separate 3 x 3
mixed-design ANOVAs with scrambling level (none,
low, high) as a within-subjects factor and age group
(5-7 years, 8-10 years, adults) as a between-subjects
factor.

Accuracy

Our analysis of the accuracy data from subjects in
this task revealed significant main effects of scrambling
level [F(2, 124) = 11.53, p < 0.001, partial n> = 0.16] and
age group [F(2, 62) = 6.99, p = 0.002, partial n> = 0.18].
We examined both of these main effects using post
hoc two-tailed paired-samples ¢ tests implemented in
JASP, with Bonferroni-corrected p values. These post
hoc tests revealed that the former effect was due to
significantly lower accuracy in the high scrambling
condition relative to the unscrambled (¢ = 3.82, Cohen’s
d=0.47,p < 0.001) and low scrambling conditions
(t = 3.57, Cohen’s d = 0.44, p = 0.002). The main
effect of age group was due to significantly lower
accuracy between 5- to 7-year-olds and adults (z = 3.66,
Cohen’s d = 0.45, p = 0.002), with other comparisons
not reaching significance. In contrast to the results
observed in Experiment 1, we did not observe a
significant interaction between scrambling level and age
group, F(4, 124) = 1.86, p = 0.12, partial n> = 0.057.
In Figure 5, we display the average proportion correct
as a function of age group and scrambling level.
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Figure 4. Example stimuli created via block scrambling. Visual features within tiles are preserved, but larger-scale features are

disrupted.
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Figure 5. Average accuracy as a function of age group (5- to
7-year-olds: Group 1, 8- to 10-year-olds: Group 2, and adults:
Group 3) and scrambling level (none, low, and high). Error bars
indicate 95% confidence intervals.

Response latency

First, we analyzed the response time to our baseline
motor task across all age groups. We carried out a
one-way ANOVA with age group as a between-subjects
factor. This analysis revealed a significant effect of
age group, F(2, 62) = 74.3, p < 0.001, such that
all age groups differed from one another in their
response latency to correct trials, according to post
hoc two-tailed ¢ tests implemented using JASP. (In all
comparisons, Bonferroni-corrected p values were less

than 0.001; mean values for each group were as follows:

adults, M = 0.32, SEM = 0.037; 5- to 7-year-olds,
M =0.77, SEM = 0.036; 8- to 10-year-olds, M = 0.44,
SEM = 0.037).

Our analysis of the difference in response latencies
between real/artificial categorization and our baseline
measure of response latency revealed main effects of
scrambling level [F(2, 124) = 182.7, p < 0.001, partial
n* = 0.75] and age group [F(2, 62) = 17.9, p < 0.001,
partial n> = 0.37]. We examined both of these main
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Figure 6. Average response latency as a function of age group
(5- to 7-year-olds: Group 1, 8- to 10-year-olds: Group 2, and
adults: Group 3) and scrambling level (none, low, and high).
Error bars indicate 95% confidence intervals.

effects using post hoc two-tailed paired-samples ¢

tests implemented in JASP, with Bonferroni-corrected
p values. In both cases, these effects were the result

of significant differences between all stimulus levels
(Bonferroni-corrected p values were all less than 0.01).
These main effects were qualified by a significant
interaction between scrambling level and age group, F(4,
124) = 5.3, p < 0.001, partial »* = 0.15. This interaction
appeared to be the result of an increasing effect of

age group as scrambling level increased (Figure 6),
suggesting that children tended to take increasingly
longer to generate correct responses as the scrambling
level increased. As in Experiment 1, we investigated
this interaction further via a post hoc analysis based on
difference scores calculated across scrambling levels for
each age group. In this case, we subtracted the scores
from the “high scrambling” condition from the scores
of the “no scrambling” condition to estimate the slope
of the RT curves across scrambling levels. Next, we
analyzed these values using a one-way ANOVA with
age group as a between-subjects factor. This yielded
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a significant effect of age group, F(2, 62) = 5.93,

p = 0.004, which we examined further using post hoc
Tukey’s tests. This revealed that the size of the difference
score differed significantly between young children and
adults (r = 3.44, p = 0.003), suggesting that young
children indeed experienced a larger cost for increased
scrambling relative to adults.

Discussion

The results of Experiment 2 are similar in some
regards to those obtained in Experiment 1 but differ in
other ways. Although we observed a similar interaction
between scrambling level and age group in this task,
this critical interaction was evident in our response
latency data rather than our accuracy data. This could
mean that disrupting global information rather than
local features impacts the efficiency of visual processing
in this task rather than its outcome, which in itself is
a potentially interesting conclusion. Alternatively, we
could also interpret this result in terms of the hypothesis
we advanced following Experiment 1: Young children
may simply find any form of image manipulation
disproportionately difficult to deal with. In turn, this
could mean that young children rely on a broad set
of features for material perception and struggle more
than adults when any particular class of features is
unavailable.

One concern, however, regarding this method of
disrupting large-scale visual features while preserving
local information is that block scrambling as we have
implemented it here introduces artifactual contours into
the image. Specifically, the gridlines corresponding to
the boundaries of the shuffled image blocks are visible
after scrambling, which is a source of noise spanning
both low and high spatial frequencies. To help address
this concern, we continue in Experiment 3 by examining
children’s and adults’ performance in this task subject
to a different type of image scrambling that does not
introduce comparable image artifacts.

In our third and final experiment, we continued to
examine how material perception in our real/artificial
food task was affected by an image scrambling
manipulation that disrupts large-scale visual features
more than small-scale, local visual features. Specifically,
we implemented a form of image scrambling called
diffeomorphic scrambling (Stojanowski & Cusack,
2014) that has the benefit of producing images that
are free from spatial frequency artifacts and preserve
a larger class of image properties than simple block
scrambling. This includes response properties in several
layers of the HMAX model (Riesenhuber & Poggio,
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2002), which is an established model of hierarchical
visual processing in the human brain. Diffeomorphic
scrambling thus represents a means of imposing a
scrambling manipulation on complex images without
introducing systematic image artifacts.

Methods

Subjects

We recruited a total of 61 participants for this
experiment, including children 5 to 7 years old (n = 21,
14 female), children 8 to 10 years old (n = 19, 11
female), and adult participants between the ages of
18 and 25 years (n = 21, 13 female). All recruitment
procedures (compensation, etc.) were the same as those
described in Experiment 1.

Stimuli

The same stimuli described above in Experiment 1
were once again used as the basis for the images
employed here. In this experiment, however, we used
diffeomorphic scrambling to produce scrambled
versions of the original stimuli. This technique involves
a local warping operation that is applied to the images,
preserving a number of low- and mid-level features of
the original image. We created our images by imposing
a maximum distortion value of 80 and selected three
levels of scrambling from the resulting continuum of
images spanning unscrambled to maximally scrambled
appearance. We selected these levels of scrambling
based on the data reported in Stojanowski and
Cusack (2014), with the goal of selecting high levels
of scrambling that did not completely compromise
the ability to recover meaning from the images. The
resulting images were still 512 x 512 pixels in size and
in full color (Figure 7).

Procedure

The testing procedure for this task was again the
same as that described for Experiment 1, with varying
levels of scrambling rather than varying levels of
blur. We also included the baseline response latency
task described in Experiment 1, following the same
procedures outlined previously.

Results

As in both Experiments 1 and 2, we analyzed both
accuracy and response latency data using a 3 x 3
mixed-design ANOVA with scrambling level (none, low,
and high) as a within-subjects factor and age group
(5-7, 8-10, and adults) as a between-subjects factor.
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Figure 7. Example stimuli created via diffeomorphic scrambling. Visual features within tiles are preserved, but larger-scale features are

disrupted.
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Figure 8. Average accuracy as a function of age group (5- to
7-year-olds: Group 1, 8- to 10-year-olds: Group 2, and adults:
Group 3) and scrambling level (none, low, and high). Error bars
indicate 95% confidence intervals.

Accuracy

Our analysis of participants’ proportion correct
responses across conditions revealed main effects of
scrambling level [F(2, 116) = 100.1, p < 0.001, partial
n> = 0.63] and age group [F(4, 116) = 12.1, p < 0.001,
partial n> = 0.30]. We examined both of these main
effects using post hoc two-tailed paired-samples ¢
tests implemented in JASP, with Bonferroni-corrected
p values. The main effect of scrambling level was the
result of significant differences between all three levels
of scrambling, whereas the main effect of age group
was the result of significantly lower accuracy in 5-
to 7-year-olds relative to older children (r = 3.96,
Cohen’s d = 0.51, p < 0.001) and to adults (r = 4.49,
Cohen’s d = 0.58, p < 0.001). The interaction between
scrambling level and age group was marginal, F(4,
116) = 2.38, p = 0.055, partial n*> = 0.076, which
appears to reflect a trend for disproportionately lower
accuracy values in younger participants as scrambling
level increases (Figure 8).

Response latency

First, we analyzed the response time to our baseline
motor task across all age groups. We carried out a
one-way ANOVA with age group as a between-subjects
factor. This analysis revealed a significant effect of
age group, F(2, 58) = 34.4, p < 0.001, such that
all age groups differed from one another in their
response latency to correct trials. (Bonferroni-corrected
post hoc ¢ tests implemented in JASP yielded
p values less than 0.01 for all pairwise comparisons.
Mean values for all age groups were as follows:
adults, M = 0.42, SEM = 0.037; 5- to 7-year-olds,

M =0.81, SEM = 0.037; 8- to 10-year-olds, M = 0.50,
SEM = 0.036.)

Our analysis of the response latency differences
between our main task and the baseline response
latency task also revealed main effects of scrambling
level [F(2, 116) = 98.4, p < 0.001, partial n*> = 0.63]
and age group [F(2, 58) = 4.67, p = 0.013, partial
n> = 0.14]. We examined both of these main effects
using post hoc two-tailed paired-samples ¢ tests
implemented in JASP, with Bonferroni-corrected p
values. The main effect of image scrambling was the
result of significant differences between all levels of
image scrambling, whereas the main effect of age
group was the result of significantly slower response
latencies from 5- to 7-year-olds relative to adults
(t=3.01, Cohen’s d = 0.38, p = 0.012). The interaction
between scrambling level and age group did not reach
significance, F(4, 116) = 1.68, p = 0.158, partial
n> = 0.055. We display the average median response
latency across all conditions and age groups in Figure 9.

Using a real/artificial food task, we examined
how children’s reliance on local and global visual
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Figure 9. Average response latency as a function of age group
(5- to 7-year-olds: Group 1, 8- to 10-year-olds: Group 2, and
adults: Group 3) and scrambling level (none, low, and high).
Error bars indicate 95% confidence intervals.

information changes across middle childhood. In all
three of our tasks, we found that children in all age
groups were capable of performing at well above-chance
levels, suggesting that this task was a useful means

of examining material perception in our target age
range. We think accurate performance in this task
likely reflects children’s expectations regarding the
appearance of edible food items and a useful vocabulary
for the material appearance of real and artificial food
that generally allows them to distinguish between these
two categories. Our results across all three experiments
demonstrate that the development of children’s use

of visual information for material perception is not
uniform across spatial scales. This is evident in several
different features of our data. In terms of accuracy,
the critical two-way interaction we observed in
Experiment 1 was not evident (at least not as robustly)
in either of the following two experiments in which

we used image scrambling to disrupt large-scale visual
features. One strong interpretation of this outcome

is that children do not suffer disproportionately

from the removal of small-scale, local features in
material perception tasks. We think our data do not
unequivocally support this account, however. We
observed marginal trends for the same interaction in
both Experiments 2 and 3, which suggest to us that

it may be more likely that the disproportionate cost

of image manipulation is larger when fine details are
disrupted but that young children may suffer from a
smaller disproportionate cost when larger-scale features
are disrupted. A direct comparison across these two
types of image manipulation with a much larger sample
could help us work out if this is the case or not, but
the present data do not lend themselves to such an
analysis. In particular, we have made no attempt here
to match the different levels of blur/scrambling in a
meaningful way, so including these in an omnibus
ANOVA would be inappropriate. Without this direct
comparison, it is difficult to rule out the possibility
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that image distortions generally affect younger children
more profoundly. Still, we suggest that these results
provide useful data supporting the hypothesis that
young children rely more heavily on small-scale visual
features for material perception than older children and
adults do. We note that the various main effects of age
that we observed in our response latency data across all
three of our experiments are broadly consistent with
this account as well. In Experiment 1, we observed
significant differences between all three age groups,
indicating continued changes in efficiency across middle
childhood and into adulthood. In both Experiments 2
and 3, however, we only observed significant differences
between our youngest age group and adults, suggesting
that 8- to 10-year-olds are quantitatively adult-like

in terms of their ability to cope with the loss of
large-scale visual features. These results do not suggest
a disproportionate cost to processing efficiency but
rather that there are different developmental trajectories
for efficient use of small-scale and large-scale visual
features.

In both cases, our data support the hypothesis that
children’s visual processing follows a local-to-global
trajectory during middle childhood. Unlike previous
results using schematic stimuli (e.g., Navon figures), we
find that children exhibit similar information biases
across middle childhood when asked to work with
images that are not explicitly hierarchical. Instead, the
real/artificial food images we presented to children in
these tasks were typical natural images that contained
task-relevant visual features across spatial scales. This
suggests that the development of global processing
during middle childhood is not solely reflected in
children’s emerging capacity to integrate discrete shape
elements into a larger gestalt (Nayar et al., 2015) but
rather applies more generally to the measurement
of visual features that extend across large portions
of visual space. With regard to material perception
specifically, the current results also serve as an
important extension of our previous work examining
children’s ability to use visual summary statistics for
material categorization (Balas, 2017). As we previously
noted in the introduction, imposing texture synthesis
algorithms like the Portilla-Simoncelli model often
involves a commitment to a particular spatial scale,
primarily disrupting large-scale visual features more
than small-scale features. Although our previous results
may thus largely depend on the availability of local
visual features, continued examination of how children
process material properties specifically and texture more
generally would almost certainly benefit from explicit
manipulation of the spatial scale parameters intrinsic
to the texture models used to manipulate stimuli.

A similar approach was adopted by Freeman and
Simoncelli (2011) to argue that area V2 encodes and
represents local summary statistics, but more generally
the technique could be adapted to examine changes in
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children’s use of information at different spatial scales.
Overall, using a range of techniques for controlling
the visual features available to children and adults in
natural images (including blurring, scrambling, and
texture-synthesis approaches) will likely offer more
insights into how information use and perceptual
strategies change during childhood.

An important issue regarding the overall local-to-
global developmental hypothesis is the extent to which
this is a general property of visual development or
whether this trajectory unfolds at different rates (or
perhaps does not happen at all) when we consider
other recognition tasks. At the outset of the current
study, for example, we were interested in determining
the nature of information use for material perception
specifically, but do our results instead reflect something
more universal or processes other than material
perception in particular? For example, one could
also imagine that performance in this real/artificial
food task depends to some degree on recognizing
the food items depicted on each trial. If this were
the case, scrambling manipulations could potentially
disrupt the recovery of that recognition process,
leading to downstream effects on the material judgment
that we have focused on. We are not aware of data
demonstrating this specific relationship between object
recognition and material perception in the context
of food items, and in general, material properties are
recoverable by children and adults from images that
do not clearly depict recognizable objects (Balas et al.,
2017). Nonetheless, this is just one example of how
a more general local processing bias could underlie
the results we have reported here. Our current data
do not allow us to speak directly to this point, but
the emergence of global processing in other domains
provides some evidence that there may not be just one
local-to-global shift in visual processing. In particular,
children’s holistic processing of faces, usually indexed
by their performance in a version of the composite
face task (Murphy, Gray & Cook, 2017), appears to
develop earlier than we would expect based on our
data. The emergence of adult-like holistic processing
appears to be evident at 4 years of age in some reports
(De Heering, Houthuys, & Rossion, 2007; Pellicano,
Rhodes, & Peters, 2006), and there is ongoing debate
regarding whether there is any meaningful change at all
in local versus holistic face processing during childhood
(Crookes & McKone, 2009). At the very least, adult-like
global face processing at the age of 4 is a far cry from
the slower developmental trajectory we observed here.
This suggests that material perception is not simply one
more by-product of a system-wide change in visual
development. An explicit comparison between local
and global processing biases for material perception
and other texture- or shape-based recognition tasks
would be an important extension of our work here, and
even examining different types of material perception
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in more depth could also yield interesting results. In
the current study, we relied on an intuitive judgment
regarding food to ensure that children understood our
task and also had to successfully interpret a range of
different materials. Explicitly examining how children
use local and global information to perceive gloss or
roughness may help link the use of local and global
information to more specific geometric and photometric
cues that signal specific material properties.

Overall, our results demonstrate that children’s
material perception is subject to a fairly slow shift
in processing strategy that favors local information
early in development. Children’s processing of visual
texture thus appears to follow a similar trajectory as
their ability to integrate discrete visual elements across
extended image regions (Kovacs et al., 1999; Nayar
et al., 2015). We argue that a key challenge for visual
development research is understanding in more depth
what global processing is. Here, we have discussed our
results in terms of integration of visual features across
large spatial scales, but the nature of that integration
remains largely unknown. Even in adult participants, it
is clear that there are integrative processes that make
true “metamers” of natural scenes difficult to come by
(Wallis, Bethge, & Wichmann, 2016), and examining
the emergence of global processing during childhood
may be an important means of establishing what
visual integration is in more detail. We suggest that
material perception is potentially extremely valuable
in this regard, and the current study provides useful
information about how it develops during childhood
with an eye toward probing deeper issues regarding the
development of visual recognition.

Keywords: material perception, visual development,
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