
RESEARCH ARTICLE

How does the human visual system compare

the speeds of spatially separated objects?

M. V. DanilovaID
1,2*, C. Takahashi1, J. D. Mollon1

1 Department of Psychology, University of Cambridge, Cambridge, England, United Kingdom, 2 I. P. Pavlov

Institute of Physiology, St. Petersburg, Russian Federation, Giessen, Germany

* mvd1000@cam.ac.uk

Abstract

We measured psychophysical thresholds for discriminating the speeds of two arrays of mov-

ing dots. The arrays could be juxtaposed or could be spatially separated by up to 10 degrees

of visual angle, eccentricity being held constant. We found that the precision of the judg-

ments varied little with separation. Moreover, the function relating threshold to separation

was similar whether the arrays moved in the same, in opposite or in orthogonal directions.

And there was no significant difference in threshold whether the two stimuli were initially pre-

sented to the same cerebral hemisphere or to opposite ones. How are human observers

able to compare stimuli that fall at well separated positions in the visual field? We consider

two classes of explanation: (i) Observers’ judgments might be based directly on the signals

of dedicated ‘comparator neurons’, i.e. neurons drawing inputs of opposite sign from local

regions of the visual field. (ii) Signals about local features might be transmitted to the site of

comparison by a shared ‘cerebral bus’, where the same physical substrate carries different

information from moment to moment. The minimal effects of proximity and direction (which

might be expected to influence local detectors of relative motion), and the combinatorial

explosion in the number of comparator neurons that would be required by (i), lead us to

favor models of type (ii).

Introduction

In the study of sensory processes, psychophysics still has an honorable role [1]. We need psy-

chophysics to define the perceptual abilities that are to be explained; to place constraints on

theoretical models; and to suggest the stimulus parameters that are appropriate if imaging or

electrophysiology is to isolate a particular neural channel. In the present paper we use psycho-

physics to explore an aspect of visual perception that is theoretically interesting but seldom dis-

cussed: If two stimuli are presented at different, widely separated, positions in the visual field

and if the exposure duration is too short for eye movements, how precisely can the stimuli be

compared? This humble empirical issue raises fundamental questions about the format and

the protocol of transmission within and between the cerebral hemispheres–questions that

would be difficult to address with current imaging methods.
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The mechanism underlying the comparison of separated stimuli

Some sensory discriminations are known to deteriorate quickly as the spatial separation of the

stimuli increases. This is the case for comparisons of the luminance of two patches [2], or of

the relative depth of two targets [3], or of the temporal phase of two bars that are modulated in

contrast [4]. In such examples, we might suppose that the observer relies on signals from local,

hard-wired, neural comparators such as have been revealed by electrophysiological recording

from the mammalian visual system. A paradigmatic neural comparator would be a retinal gan-

glion cell that draws opposed inputs–excitatory and inhibitory–from adjacent regions of the

photoreceptor array. Such a unit signals local contrast to the brain [5]; and when we are asked

to compare the luminances of two abutting fields, our decision may be based on edge-contrast

signals that ultimately originate in such ganglion cells [6]. Similarly, cells are found in Area V2

of the macaque that respond to the relative depth of adjacent stimuli in a local region of the

field [7].

In the case of other visual attributes, however, such as spatial frequency, comparisons can

be made with the same precision whether the discriminanda–the stimuli to be compared–are

juxtaposed or whether they lie 10 degrees apart in opposite hemifields [8]. There exists no

accepted neural model of how such perceptual judgments are made. It would be possible to

propose a dedicated neural comparator cell for every possible pair of positions in the visual

field and for each of several visual attributes. For the analysis of spatial contrast, there have

been occasional suggestions of an array of “dissociated dipole” operators that perform non-

local, but spatially specific, comparisons of the type envisaged [Fig 1; 9,10]. But a neural model

of this kind leads to a combinatorial explosion in the number of dedicated neural comparator

units required; and in the Discussion we consider an alternative possibility, that information

about local attributes is carried in abstract, symbolic codes that travel over a shared bus to the

site of comparison.

The present experiments

In the series of experiments reported here, we used a 2-alternative forced choice procedure to

measure sensitivity for discriminating the speeds of two arrays of moving random dots. The

two arrays were briefly presented at spatially separated positions in the visual field (Fig 1A).

The eccentricity of the arrays was held constant but their separation was varied.

Could performance in this task be based on dedicated detectors of contrast of speed, i.e.

units that respond to a difference in the speeds present at different locations? Several psycho-

physical results from other paradigms do suggest the existence of sensory channels sensitive to

local contrast of either the speed or the direction of motion: Examples are the abolition of the

motion after-effect in the absence of a surround [11,12]; the Duncker effect (the illusory

motion seen when a stationary field is enclosed by a moving framework) [13,14]; the depen-

dence of apparent speed on the speed of adjacent elements [15]; the paradoxical reduction in

direction discrimination when the size of a high-contrast target is increased [16,17]; and the

visibility of static edges that are indicated only by kinetic cues [18 ch 3]. And indeed, cells sen-

sitive to the relative speed or direction of motion in adjacent regions have repeatedly been

described at different levels of primate visual systems [e.g. 19,20,21,22,23,24,25,26,27,28]. Par-

ticularly clear examples of units sensitive to speed contrast can be seen in Fig 2 of Allman et al

[20] and Fig 13 of Allman et al [19].

The primary roles of cells sensitive to motion contrast are thought to lie in the segregation

of figure from ground, in the estimation of depth and form from motion parallax, and in the

analysis of optic flow fields for the maintenance of balance and the guidance of locomotion

[see e.g. 19,21,29,30,31]; and not all such cells exhibit tuning for speed [21,28]. However, if the
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discrimination of speed did depend on signals from intrinsically local comparators of motion,

we might expect performance to deteriorate with increasing spatial separation of the stimuli.

As a second test of the hypothesis that speed discrimination depends on signals from dedi-

cated contrast-sensitive units, we also examined the effect of varying the directions of the

motions in the two patches. The responses of neurons at early stages of the visual system often

depend on two or more attributes, in addition to retinotopic position itself [32]. So we might

expect local comparator neurons for one attribute to have a systematic preference for a second

attribute. Neurons that signal speed commonly have an intrinsic preference for direction

[20,33]; and in the pre-striate motion area V5 or MT (middle temporal), direction of motion is

a primary basis for the columnar organization [34,35]. If, therefore, discrimination of relative

speed depends on dedicated comparator neurons, the comparators are likely to draw their

inputs from lower-order units that have a similar preference for direction (or for axis of direc-

tion). In that case we might expect the function relating speed thresholds to separation to have

a different form according to whether or not the subsets of dots were moving in the same or in

opposite or in orthogonal directions.

Ensuring a true comparison

In studying sensory discrimination, it is important to be sure that the observer makes a true

comparison rather than an absolute judgment of one of the two stimuli presented [36]. If the

reference stimulus is fixed from trial to trial, then–remarkable as it seems–a trained observer

may build up so accurate an internal template of the average stimulus presented that he or she

performs better by attending to only one of two stimuli [37,38,39]. For the judgment is then

based on only one sample of external noise rather than the two samples of external noise that

would be introduced if target and reference stimuli were actively compared. Such use of an

implicit standard has been shown specifically for the case of speed discrimination by Norman

and colleagues [40]. We here adopted two precautions to ensure that the observer did actively

compare the two stimuli. First, in our main experiments, the reference stimulus on any trial

was not fixed but was jittered over a range of speeds: In this ‘roving’ condition, a single psycho-

physical staircase was used to adjust the ratio of test to reference speed, but the reference varied

randomly over a range that was larger than the discrimination threshold. Second, in each

experimental run of the main experiments, we included a control condition where the com-

puter program randomly suppressed one or other of the discriminanda and the observer was

asked to make an absolute judgment as if the second stimulus were present.

Results

Panels b and c of Fig 1 show results from the preliminary experiments, designed to identify a

range of speeds where the Weber fraction for speed discrimination was relatively constant–a

range that could be used for the ‘roving’ procedure of the main experiments. In these prelimi-

nary experiments, several reference speeds were tested, without jitter, and measurements were

Fig 1. a. Arrangement of stimuli in the experiments. The patches of moving, pseudorandom dots always fell at

random positions on an imaginary circle, 10 degrees of arc in diameter, but their spatial separation was different in

different blocks of trials. The colored arrows indicate the direction of movement (in this example, horizontal). b, c

Results from preliminary experiments where speed was varied in different blocks of trials and where different spatial

separations were tested in different experimental runs. The ordinate represents the factor by which the test speed

differed from the referent speed at threshold (79.4% correct) and the abscissa represents the speed of the referent

stimulus. Data are the averages from five highly trained observers. Error bars represent standard errors of the mean.

The fitted curves are inverse second-order polynomials and have no theoretical significance. Panel b shows results for

horizontal motion, and panel c for vertical.

https://doi.org/10.1371/journal.pone.0231959.g001
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obtained at 3 different spatial separations. In Fig 1B results are shown for motion on a horizon-

tal axis (leftward or rightward on different trials, randomly chosen, but with both patches mov-

ing in the same direction on a given trial); and Fig 1C shows analogous results for motion on a

vertical axis. The y-axis in these and subsequent plots represents the factor by which the test

speed must differ from the reference speed to sustain a performance of 79.4% correct, the

threshold level tracked by our staircase procedure. In agreement with previous authors

[41,42,43], we find that discrimination is poorest at low speeds but there is a range of higher

speeds at which the Weber fraction is approximately constant.

Already in the data of Fig 1, we see also that spatial separation has only small effects on

thresholds: The functions for the three different separations are similar. For the horizontal

condition, a repeated-measures ANOVA, with factors Speed and Spatial Separation, shows a

highly significant effect of speed but no effect of spatial separation and no significant interac-

tion (After Greenhouse-Geisser correction, Speed, F(1.191) = 29.341, p = 0.003, Separation, F
(1.41) = 2.683, p = 0.155, Interaction (F(2.112) = 1.034, p = 0.401). In the case of vertical

motion, there is again a highly significant effect of Speed (F(1.373) = 25.369 p = 0.002) and

there is also a marginally significant effect of Separation, (F(1.174) = 9.369, p = 0.029)–

although it is the smallest separation that yields the highest thresholds. The interaction was not

significant (F(1.424) = 1.181, p = 0.356).

In the subsequent main experiments (1–6) we measured speed thresholds as a function of

spatial separation, but the speed of the nominal ‘reference’ stimulus was allowed to ‘rove’ from

trial to trial in the range 3.2 to 6.8 deg/s. There were 25 possible reference values, spaced at

intervals of 0.15 deg/s. The ‘variable’ stimulus always had the higher speed but differed from

the reference by a factor that was adjusted according to a single staircase. Using the same pro-

cedures throughout, we ran 6 independent experiments, which differed in how different direc-

tions of motion were combined.

Fig 2A shows data for experiments 1 and 2 in which the two subsets of dots moved in the

same direction, either leftward or rightward (1) or upwards or downwards (2). For the hori-

zontal axis, a repeated-measures ANOVA (excluding the data for the absolute judgment condi-

tion) shows no significant effect of the spatial separation of the discriminanda (Table 1). The

data reveal no marked deterioration of discrimination as the stimuli are increasingly separated,

and this remains true even when the midpoints are 10 degrees of arc apart and when, on most

trials, the two patches must fall in opposite hemifields.

In panel a of Fig 2 and some subsequent plots, there is a hint that thresholds are higher
when the patches are juxtaposed than when the separation is slightly greater, a result that is

reminiscent of the gap effect seen for the analogous case of chromaticity discrimination

[44,45]. At a parafoveal eccentricity of 5˚, the minimal spatial separation of our stimulus

patches (2˚ center-to-center) would be within the range of ‘crowding’ according to the cele-

brated rule of Bouma [46]; and the elevation of thresholds could plausibly be attributed to spa-

tial averaging or pooling of local signals [e.g. 47,48,49,50]. The effect is particularly clear for

motion on the vertical axis and is likely to explain the marginal significance of spatial separa-

tion in the ANOVA for this axis (Table 1). It recalls the curious finding of Richards and Lieber-

man [51] that some observers are blind to differences in speed between adjacent, parafoveal

arrays of dots moving in the same direction. It is interesting that the impairment for adjacent

arrays is found in the present case even though an independent cue–color –differentiates the

two arrays: The chromatic difference appears not to prevent compulsory pooling of motion

signals.

In further experiments, we examined four cases where the two patches move in different

directions:
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3. The two patches move vertically but in opposite directions

4. The two patches move horizontally but in opposite directions

5. One patch moves downwards and the other moves rightwards

6. The patches move orthogonally (as in 5), but there are four possible combinations of axis

and direction (horizontal left or right; vertical upward or downward).

Fig 2. Results from six separate experiments on speed discrimination, using a roving procedure. a: The dots move

in the same direction, either on a horizontal axis (red points) or a vertical axis (blue points). (Experiments 1 & 2). b:

The dots move in opposite directions, either on a horizontal (red points) or a vertical axis (blue points). (Experiments 3

& 4). c: The dots move in orthogonal directions, either rightwards vs downwards (red points) or in any of four possible

combinations (blue points). Experiments 5 & 6). The ordinate in each case represents the factor by which the test speed

differs from the referent speed at threshold and the abscissa represents the spatial separation of the stimulus patches in

degrees of arc (v Fig 1A). Data are averages from 5 highly trained observers. Error bars represent the standard errors of

the mean. In each panel, the rightmost points represent an ‘absolute judgment’ condition, where the computer

randomly suppressed one of the two stimulus patches.

https://doi.org/10.1371/journal.pone.0231959.g002

Table 1. Results of repeated-measures analyses of variance for the separate experiments 1–6.

Experiment df F p
1 1.424 2.71 0.154

2 2.747 5.481 0.017�

3 1.993 0.722 0.515

4 3.055 1.477 0.269

5 1.765 1.056 0.387

6 1.975 0.427 0.664

https://doi.org/10.1371/journal.pone.0231959.t001
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The average results for these further experiments are shown in panels b and c of Fig 2. In all

cases, thresholds exhibit a similar relationship to spatial separation: There is little change in the

precision of the comparison as the distance between the discriminanda increases. Repeated-

measures ANOVAs show no significant effect of separation in any of these experiments

(Table 1).

The absolute levels of performance are similar whether the stimuli move in the same (Fig

2A), in the opposite (Fig 2B) or in orthogonal directions (Fig 2C, red circles). It would be

improper to perform statistical tests to compare these conditions, since the data are drawn

from what are formally different, non-concurrent, experiments; but we note that the observers,

the procedures and the apparatus were the same for all experiments, and it is clear that thresh-

olds vary little. The one exception to this consistency of thresholds is seen in the comparison

of Experiments 5 and 6 (Fig 2C): This difference perhaps arises because four types of trial are

randomly intermixed in Experiment 6 whereas in Experiment 5 there is only a single type.

In so far as discrimination thresholds are independent of spatial separation, our results are

consistent with those of Nishida and colleagues [52], who found that temporal phase discrimi-

nation for motion was excellent for stimuli separated by as much as 100 deg. (However, their

temporal phase task proved much more difficult when the alternating motions were orthogo-

nal–vertical and horizontal–something not observed for our speed-discrimination task (Fig

2C)). More generally, our finding that observers can compare the speeds of well separated

arrays is consistent with the ability of observers to recognize global motion in a distributed

array[53], with the evidence for cooperative processes between motions in different parts of

the field [54] and with the important role of bilateral optic flow in balance and vection [31,55].

In each of Experiments 1–6, the additional condition where one of the two stimuli is ran-

domly suppressed (rightmost data points in Fig 2) yields much higher thresholds, confirming

that observers are attending to both stimuli in the main conditions and not making absolute

judgments of one stimulus (see Introduction for the need for this control).

In a seventh experiment, we asked explicitly whether performance was better when the two

arrays were delivered initially to the same cerebral hemisphere, compared to the case where

one array falls in the left hemifield and one in the right (Fig 3). The paired arrays always fell

symmetrically within one hemifield: left, right, upper or lower. The former two conditions

measure within-hemisphere comparison and the latter two measure between-hemisphere

comparisons. The direction of motion was always along a radial line through the fixation

point, but was randomly chosen to be centrifugal or centripetal for each array on each presen-

tation. All four hemifields were probed in the same block of trials, but separate staircases were

maintained for each. A deliberate feature of the design of this experiment is that a given quad-

rant of the display (Fig 3) is probed equally often in comparisons that are within-hemisphere

and that are between-hemisphere. So any local variation in speed sensitivity contributes

equally to the two types of comparison. 19 participants completed this brief experiment, each

being tested for at least 6 separate runs.

With respect to our central question–the relative advantage of intra-hemispheric vs inter-

hemispheric processing–the outcome of the experiment is difficult to predict in advance. On

the one hand, in the between-hemisphere condition, it can be argued that the transmission

from one hemisphere to the other requires at least one additional synapse and thus the repre-

sentation may be degraded and delayed [56,57]. On the other hand, there is striking evidence

for a between-hemisphere advantages in reaction times when discriminanda are distributed

either between or within hemifields [e.g. 58,59,60]; and in accuracy of tracking when multiple

moving objects must be concurrently tracked either in one or both hemifields [e.g. 61,62]–

results that are usually explained in terms of a limited processing resource that is indepen-

dently available to each hemisphere.
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A paired 2-tailed t-test showed no significant difference between the conditions where

the two arrays were delivered to different cerebral hemispheres (i.e. when the discriminanda

were presented in the upper or lower hemifield) and those conditions where they were deliv-

ered to the same hemisphere (i.e. when the stimuli were presented in the left or right hemi-

fields): t(18) = 1.128, p = 0.274. The average factors by which the discriminanda differed at

threshold were 1.38 (SD = 0.138) for the between-hemispheres case and 1.40 (SD = 0.15) for

the within-hemisphere case–a (non-significant) difference in the wrong direction for any

hypothesis that envisaged degradation of signals in transmission across the corpus callosum

(see Discussion).

A perceptual advantage for the lower versus the upper visual hemifield has been reported

for some motion discriminations [e.g. 63,64,65] and there is a higher density of ganglion cells

in the superior parafoveal retina than in the inferior [66]. We therefore analyzed the subsets of

thresholds for cases where both discriminanda fell in the upper field or both in the bottom.

There was a small advantage in threshold in favor of the upper visual field (the average factors

being 1.36 vs 1.40) but this difference was not significant (t(18) = 1.84, p = 0.082). However,

we record that a corresponding analysis for left versus right hemifields showed a marginally

significant advantage for the left: t(18) = 2.52, p = 0.021), the factors at threshold being 1.38

and 1.42.

Fig 3. Stimulus arrangements for experiment 7. The two arrays of moving dots can fall, with equal frequency, within the left,

right, upper or lower hemifields. The upper two panels represent cases where the discriminanda are both delivered to the same

cerebral hemisphere and the lower panels represent cases where the two arrays are delivered to opposite hemispheres. The

black arrows show examples of directions of motion. The motion is always radial and along a 45˚ axis that runs through the

fixation point, but the direction of motion is randomly centripetal or centrifugal for any given array on any given trial. Note

that each quadrant of the field is probed with equal frequency and in random sequence.

https://doi.org/10.1371/journal.pone.0231959.g003
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General discussion

We asked how well the human observer can compare the speeds of stimuli that are briefly pre-

sented at distant points in the visual field. There is little deterioration in precision even when

the stimuli are as much as 10˚ apart; and thresholds are similar whether the two discriminanda

are initially presented to the same cerebral hemisphere or are presented to opposite

hemispheres.

Also relevant to our underlying question is the fact that the absolute values of the psycho-

physical thresholds are similar whether the discriminanda are moving in the same or in differ-

ent directions (Experiments 1–5). An analogy here may be drawn with the classical findings of

Burbeck and Regan [67] that orientation discrimination was equally acute whether or not the

discriminanda were of the same spatial frequency, and conversely that thresholds for discrimi-

nating spatial frequency did not depend on whether or not the stimuli had the same orienta-

tion. In the case of speed, Verghese and McKee [68] found that thresholds for discriminating

the speeds of arrays of dots moving in opposite oblique directions were similar to those for

arrays moving parallel to one another, above and below a horizontal boundary (their Fig 2).

Manning and colleagues [69] did find some effect of whether different directions were being

compared; but the effects were modest and were restricted to some particular pairs of compo-

nent directions. A possibly critical difference between their study and the present study is that

our long-serving observers in Experiments 1–6 received feedback on every trial, and probably

were performing near the limits that the human visual system can achieve, whereas Manning

et al tested more participants for shorter time and without feedback.

In everyday life, human beings regularly have occasion to compare visual stimuli that fall at

different points in the visual field; and in many such tasks, sensorimotor or cognitive feedback

provides a basis for calibration over time. But perhaps it is because these perceptual compari-

sons are so natural and effortless that cognitive scientists have seldom asked how they are per-

formed (or indeed, how the calibration is maintained). Our primary purpose in this paper is to

define experimentally what is to be explained in the case of speed and to draw attention to the

absence of any explicit neural model. However, it is of interest briefly to compare two generic

classes of explanation.

(a) Dedicated comparator neurons. The problem of imprisoned

information

To account for the present results on speed discrimination (and analogous results for hue and

spatial frequency), we might suppose that there does indeed exist a large population of dedi-

cated and hardwired comparator neurons, one for each possible pair of positions in the visual

field and for each of a growing list of sensory attributes–populations of cells that are still to be

discovered by electrophysiologists. A critical reader might point out that receptive fields

become larger at higher levels of analysis in pre-striate cortex and may extend substantially

across the midline [19,24,70,71,72,73,74]; and so, it might be argued, a relatively small popula-

tion of pre-striate cells might suffice and each such cell might collect the decisions of local

comparators at intermediate stages of a neural net. However, if a cell is to subserve one of our

comparison tasks, it is not enough that it should integrate inputs for a given sensory attribute

over a large area. Rather, it must signal the difference, or the ratio, of the values of the stimulus

attribute in two specific, local, and arbitrarily chosen regions of its receptive field; it must pre-

serve the sign of the difference; and–in the present case of speed discrimination–it must be

indifferent to the direction of the motion. Such prestriate cells might in principle exist, but, to

our knowledge, neurons with these properties have never been described. ‘Collector units’ that

integrate a particular feature over a large receptive field have been postulated in models of
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crowding and texture perception, but it is usually assumed that they explicitly do not preserve

the exact localities from which their individual inputs originate [see ref 49].

Fig 4 sketches the combinatorial explosion of comparator cells and connections that would

be required if there were a dedicated comparator cell for each pair of local positions in the field

and if the array of comparators were replicated for different combinations of direction (We

use ’combinatorial explosion’ not in the mathematical sense but in the simple sense that is

used in communication science, to indicate the increase in the number of connections

required as the number of possible pairs in the network increases. See Fig 4). For the purposes

of the illustration, we assume at the lower level an array of local detectors, speed-sensitive but

also specific for direction and for a local region of the visual field. Multiple higher-order ‘com-

parator units’ draw opposed inputs from every possible pairing of lower-order units, extracting

either the ratio or the difference of the speed signals.

Two problems immediately present themselves. The first is what we could call the problem

of ‘junk mail’: (Unless some additional control apparatus is postulated) at any moment each

unit active at the lower level is broadcasting largely unwanted action potentials to every com-

parator unit with which it is connected; and each action potential has a significant cost in

energy [77].

Fig 4. An (implausible) model in which comparisons are performed by dedicated ‘comparator units’. At the lower level,

representing early visual cortex, cells that are tuned for speed and also for direction draw their inputs from local areas of the visual

field (these cells might themselves derive precise estimates of speed by comparing the outputs of a small number of lower-level,

broadly tuned units. See e.g. Smith and Edgar [75], Hammett et al [76], Manning et al [69]). At the upper level, there is a dedicated

comparator unit for each possible pairing of cells at the first stage (the formula to the right indicates the number of comparator units

that is required). A further array of dedicated projections is then needed to convey the results of any comparison forwards to any

other part of the brain that might need the information.

https://doi.org/10.1371/journal.pone.0231959.g004
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The second problem is the bulk of connections and of comparator neurons that are

required if comparisons of speed are performed by dedicated comparators of this kind. Setting

aside the necessary white matter, it is possible to make an order-of-magnitude estimate of the

bulk of neurons required. In the present experiments, we have probed sensitivity at only one,

arbitrarily chosen, set of loci in the near periphery. However, motion sensitivity extends to the

very margin of the visual field [e.g. 78], albeit that sampling areas become larger with eccen-

tricity. Sackitt and Barlow [79] suggest that each hypercolumn in cortical Area 17 corresponds

to an independent region of the field (varying in size according to a cortical magnification fac-

tor) and they estimate the total number of hypercolumns (n) in Man as ~ 5300. If we assume

that d, the number of directions independently represented in each hypercolumn, has a value

of 4, then the total number of comparator neurons needed for this task alone would be nd(nd-

d)/2 or 2.247 x 108 (see Fig 4). This is a conservative estimate: We have assumed that each com-

parator neuron can signal speed ratios greater or lesser than 1.0; we have also assumed that

each individual comparator can handle the full range of speeds; and we have assumed that all

possible directions are represented by just four lower-order detectors. The number of neurons

in one cubic millimeter of human visual cortex is of the order of 4 x 104 [80]. So the postulated

comparator neurons for speed would occupy a cortical volume of ~5600 mm3. Similar volumes

of comparator neurons would be required for each of several other attributes of the visual

image.

There is a deeper issue. For models of this kind only postpone the problem. If any arbitrary

sensory comparison relies on the signal of a dedicated comparator neuron, then the informa-

tion is ‘frozen’ in the activity of that cell. The information may be required by many different

modules elsewhere in the brain, but the only way that it can be delivered is by a further array

of dedicated connections, thus multiplying the original problem. This is a general difficulty

with all theories that suppose that entities (words, faces, concepts, as well as the outcomes of

sensory comparisons) are represented centrally by the activity of single neurons–the ‘cerebral

fibrils’ of Charles Bonnet [81], the ‘gnostic units’ of Konorski [82] or the ‘grandmother cells’ of

Lettvin [83]: Information is imprisoned in the cell. ‘Ensemble’ or population coding–a distrib-

uted representation–does not solve this problem, since it too requires an array of dedicated

connections to transmit the information onward. The information is again imprisoned–frozen

in the ensemble. Sooner or later, neural apparatus is needed to extract and identify the pattern

of activity embedded in the ensemble.

(b) A cerebral bus?

In an alternative class of models of sensory comparison, local information about stimulus attri-

butes would be transmitted to the site of comparison in an abstract form and over a shared

‘cerebral bus’, where the same physical substrate carried different information from moment

to moment, as in many man-made communication networks, such as the Internet. The site of

comparison might be the prefrontal cortex [84,85] and information about visual stimuli might

be carried there by the inferior occipital-frontal fasciculus. Associated with each message

would be codes that represented the addresses of the source and the destination. By analogy

with the ‘object files’ of Anne Treisman [54 pp 123–124,86], the message would include the

position of the stimulus as just one of its several attributes, along with speed, direction, color

etc. (This would be in contrast to coding at early stages of the visual system, where all the evi-

dence suggests that spatial coordinates are coded by labeled line, i.e. by which neuron is

active.)

In discussions of inter-hemispheric communication, it is often suggested that there will be

potential degradation at an extra synapse when the information is transmitted across the
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corpus callosum [56]. Yet our Experiment 7 shows that thresholds are not significantly

increased when the discriminanda are initially delivered to opposite hemifields. This is not

unexpected if in fact the two representations are independently transmitted to the prefrontal

cortex for collation. An early DTI study suggested that the inferior fronto-occipital fasciculus

of each hemisphere contains not only a component that originates in the ipsilateral occipital

lobe but also a component that originates in the contralateral occipital cortex, passes through

the posterior corpus callosum, and joins the ipsilateral fronto-occipital fasciculus [87; Fig 5B

and 5C]. If this pathway is confirmed and if judgments of speed are made in the prefrontal cor-

tex, then the same number of synapses may be involved in within- and between-hemisphere

comparisons.

If the brain’s white-matter tracts do consist in more than dedicated connections that trans-

mit signals between fixed points, then many interesting technical questions arise that would be

asked about any man-made communication network [88] but which are curiously little dis-

cussed with respect to the brain. For example: Does data transmission occur in fixed packets

or is it continuous? Are addresses encoded separately from data (e.g. in parallel fibers of differ-

ent diameter)? How is the speed of transmission matched to that of the receiver and does the

failure of such handshaking lead to pathologies? What are the protocols for error checking?

Can packets be directed by alternative routes, as on the Internet?

Particularly salient is the question: Is information transmitted only on demand? We raised

in the last section the energetic cost of freely broadcasting sensory information in case it is ever

needed. On the Internet specific information is requested, and is returned, from the relevant

address. In the brain, of course, this would correspond to selective attention–a process that

would lose some of its mystery if it is an intrinsic part of the operation of a communications

network.

Since axonal transmission is slow and since action potentials are limited in their maximal

frequency and in their temporal precision, it is likely that a ‘cerebral bus’ will be much more

parallel in its architecture than are current man-made communications networks, such as the

Internet, where fiber optics allow high rates of serial transmission. So Fig 5 –where we sketch

the type of activity that might occur on a cerebral bus when the present psychophysical task is

performed–is very loosely inspired by the types of protocols found in parallel architectures

Fig 5. A cross-section of part of a ‘cerebral bus’. This might be, say, part of the inferior fronto-occipital fasciculus, delivering information

from different parts of the visual field to the prefrontal cortex. In all white-matter tracts there is a range of axon diameters, and in this

illustrative example (of what is a large generic class of models) we assign Control signals to the minority types of cell with large axons and we

assign Data signals to the many smaller axons. Control signals sub-serve the ‘handshaking’ between transmitter and receiver that has proved

a necessary feature of man-made communication networks [88] but is seldom discussed in the context of brain networks.

https://doi.org/10.1371/journal.pone.0231959.g005
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(such as that of a ‘Small Computer System Interface’ (SCSI)). In this, strictly illustrative,

model, the different types of signal (addresses of source and destination, data, transmission

control protocols) are carried in parallel by axons of different diameter. In most of the white-

matter fasciculi of the human brain, there is a large range of axon diameters, and thus a large

range of transmission speeds [89,90]. Yet only occasionally has the explanation for this striking

diversity been discussed [91]. We suggest that the control signals might reveal themselves

more readily to single-unit recording than does the code in which the actual data are carried.

We are not suggesting that the ‘cerebral bus’ resembles in any strong sense a SCSI bus, but

man-made communications networks offer a guide as to the protocols and the control signals

that are likely find their analogues in the brain [88].

In a further important way the central white-matter tracts of the brain may differ from a

man-made system such as the Internet. It seems plausible, for example, that the inferior

fronto-occipital fasciculus might have features that optimize the transmission of visual data,

and that the arcuate fasciculus might have features favoring phonological and syntactic infor-

mation–even though in each case the information is in abstract form. In this case, the data

code may be specific to a particular category of information and not truly independent of the

tract that is carrying it. On the other hand, the ARPANET, the military forerunner of the Inter-

net, was explicitly designed to withstand damage to individual nodes, in that any information

could be sent by any route, by means of packet switching [88]; and it is a nice question as to

how far this is possible in the human brain. Some evidence that codes can be sent by more

than one route comes from the recovery of interhemispheric transmission not only in cases of

agenesis of the corpus callosum but in adults who have suffered severe damage to that tract.

Conclusion

The distinction that we make above is that between a neural net (where information is embod-

ied in the structure of the net, in its connections and their weights) and a communications net-
work (where the data transmitted by the same physical substrate vary from moment to

moment). This distinction can be seen in the much larger context of the classical debate

between Connectionism and Symbolic AI [92].

It seems unquestionable that parts of the cortex do behave as a neural net–all the evidence,

for example, suggests that this is the case for early stages of the visual system–but is the more

central communication between cortical regions best described in the same terms? What class

of model offers a more appropriate account of our psychophysical results? Given the finding

that comparisons of speed are made with similar precision whatever the spatial separation of

the stimuli, given that the judgments are of similar precision whether the stimuli move in the

same or in opposite or in orthogonal directions, given that there is no impairment when sti-

muli initially arrive in different cerebral hemispheres, and given the bulk of neurons that

would be required if this task, and similar sensory tasks, were performed by an array of dedi-

cated comparator units, we favor an explanation in terms of a communications network. The

distinction we make for purposes of exposition is, of course, an artificially dichotomous one:

The two generic classes of model may well have intermediate forms.

Owing to the absence of physiological data, our concept of the cerebral bus is not yet at

a level of detail that would allow computational modeling; but we have presented a series of

psychophysical results that are compatible with the hypothesis and we have made two further

suggestions of how the hypothesis could be tackled empirically: (i) By identifying electrophysi-

ologically a subset of fascicular axons that carry stereotyped control signals; and (ii) by examin-

ing histologically the circuits present at the terminations of fasciculi. And we hope our

discussion of the issue may encourage colleagues to suggest further tests.
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Research such as the Human Connectome Project has recently told us much about cerebral

connectivity–that is, about the structure of local and large-scale networks in the brain as repre-

sented by nodes and edges in graph theory [93,94]. Now is the time to raise complementary

questions about the format and the protocol of information transmission over the great white

matter tracts of the brain–questions that are largely unasked. Our purpose in this paper is not

so much to answer such questions as to prompt interest in these fundamental issues.

Methods

Observers

The same five observers (3 female) took part in the preliminary experiments and the main

experiments 1–6. All observers were highly trained on this and similar tasks. Observer 3 was

tested in St Petersburg: Her data (see S1 Fig) are closely similar to those of the remaining

observers tested in Cambridge. The data for Experiment 7 were collected wholly in Cambridge

and there were 19 observers (15 female).

Ethics statement

The experiments in both laboratories were approved by the Psychology Research Ethics Com-

mittee of Cambridge University (PRE.2008.35) and participants gave informed consent.

Apparatus and stimuli

The experiments were performed in parallel in Cambridge and St Petersburg, using the same

programs and near-identical apparatus. The display in each case was a Mitsubishi Diamond

Pro 2070 22-inch CRT set at a resolution of 1024 x 768 pixels and 100 Hz and controlled by a

Cambridge Research Systems (CRS; Rochester, Kent, UK) graphics board (model VSG2/5 in

Cambridge, ViSaGe in St Petersburg). Monitor outputs were linearized with a silicon photodi-

ode and the spectral power distribution for each gun at maximal output was measured with a

JETI spectroradiometer model Specbos 1201 (JETI Technische Instrumente GmbH, Jena,

Germany).

The typical arrangement of our stimuli is illustrated in Fig 1A. The discriminanda were two

arrays of pseudo-random moving red and green dots and the observer’s task in all experiments

was to report which array was moving faster. (Color is used here only to simplify the observer’s

task.) The midpoints of the two target arrays fell at different positions on an imaginary circle

centered at the fixation point, so that their eccentricity was constant at 5 degrees of visual

angle. The width of the stimulus sectors was 2˚ at their individual centers. The midpoint of the

two sectors took a different random position on the circle from trial to trial, and the separation

of the sectors differed between experimental runs (preliminary experiments) or between

experimental blocks (main experiments): At one extreme, the stimulus patches were touching

and at the other extreme they were separated by a visual angle of 10˚ and thus lay on a diameter

of the imaginary circle.

Each stimulus dot consisted of a square of 4x4 pixels, which subtended 4.38 angular min-

utes at the eye. The stimulus dots were anti-aliased to allow displacements of less than 1 pixel

between frames. The CIE x,y chromaticities of the red and green dots were 0.5097, 0.4356 and

0.3324, 0.5729 respectively; their luminance was 38 cd-2; and they were presented on a steady

white background (metameric to Illuminant D65) of luminance 10 cd-2. In order to construct

the array of dots, we began with a regular array of dots separated by 25 pixels (27.4 angular

minutes) and then randomly jittered the position of each dot within its cell. To provide a con-

tinuous supply of dots, the conceptual array of dots filled the full screen, but only dots
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geometrically within the specified sector were displayed on a given frame. Two such concep-

tual arrays were maintained concurrently, one moving at the reference speed on a given trial

and one at the test speed. Within each array, to prevent the use of path length as a cue, dots

had a limited lifetime in that we constrained the mean path length to be the same in both

arrays at any given reference speed. Specifically, the mean path length was the distance in pix-

els travelled by the reference dots in 9 frames; and the test dots were limited to the same mean

path length in pixels. In addition, for any given dot, the path length was randomly jittered

around the mean so that its actual value in pixels corresponded to the distance travelled by the

reference dots in 9±6 frames. Whenever a dot died anywhere in each conceptual array, a new

dot was created at a mirror-image position on the screen, so as to maintain the overall density

of dots.

The two arrays appeared simultaneously for 180 ms (18 frames); this duration is short

enough that observers cannot move their eyes from one stimulus to another during the presen-

tation. Viewing was binocular from 114 cm and the room was otherwise dark.

For Experiment 7, where we wished explicitly to compare hemifields, we introduced addi-

tional arrangements to maximize the symmetry of the testing situation [95]: a chin and fore-

head rest was used to control the observer’s viewing position, a circular aperture mask was

mounted in front of the display, and the computer was placed behind the display rather than

to one side. In this experiment, the two stimulus arrays always fell within one hemifield

(upper, lower, left, right) and the separation was always 7 degrees of visual angle (Fig 3).

Motion was always radial, towards or away from fixation, but was randomly centripetal or cen-

trifugal, independently for each of the two arrays.

Procedure

As a preparation for the roving procedure of our main experiments, we carried out prelimi-

nary experiments to determine a range of speeds where the Weber fraction for speed discrimi-

nation was relatively constant. In these experiments, several reference speeds were tested,

without jitter, and the measurements were repeated for 3 different spatial separations. The sep-

arations were tested in different experimental runs; and within each run, there were eight dif-

ferent speeds, each in a separate block of trials. On a given trial, one of the two arrays, chosen

randomly, was set to the referent speed and the other was set to a higher, variable speed.

Thresholds were measured by a 2-alternative forced-choice method: The observer indicated by

pushbuttons whether the red or the green array was moving faster, and received auditory feed-

back after each response. The ratio of the variable speed to the referent was adjusted by a stair-

case procedure that tracked 79.4% correct [96]. The step size was 10% of the difference

between variable and test. Data from the first 5 reversals of the staircase were not used, and the

subsequent 10 reversals were averaged to give an estimate of the threshold. For each observer,

6 independent estimates of each threshold were collected across different experimental days.

The first estimate was discarded as practice in all cases and the plotted points are thus based on

5 independent measurements for each observer for each condition. For speeds in the range 3.2

to 6.8 deg/s (the range used in the main experiments), the 95% confidence limits in the prelim-

inary experiment were equivalent to a 4% variation in threshold (S1 Fig) and so the same for-

mal structure of data collection was adopted in all the main experiments.

For the main experiments 1–6, eight spatial separations were tested in separate blocks

within one experimental run. Within each block, thresholds were measured by a single stair-

case, but the speed of the referent stimulus was jittered in the range 3.2 to 6.8 deg/s; and what

was adjusted in the staircase was the factor by which the variable differed from the referent

speed. There were 25 possible referents, spaced at intervals of 0.15 deg/s. In an additional
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block of trials (which could never be the first block in an experimental run but was otherwise

randomly placed in the run), the experimental program randomly suppressed one of the two

stimuli and the observer was asked to base his or her judgment on one of the two stimuli, as if

the other had been present. This condition was to control for the possibility that observers

were attending to only one of the two stimuli in the primary conditions (see Introduction).

For each observer, 6 independent estimates of each threshold were collected across different

experimental days. The first estimate was discarded as practice in all cases and the plotted

points are thus based on 5 independent measurements for each observer.

In Experiment 7, the four hemifields (upper, lower, left and right) were tested in random

order within a block of trials, and a separate staircase was maintained for each case. Staircases

could terminate after 15 reversals but were allowed to run for up to 20 reversals, to minimize

instances where observers were aware which staircases were still in play (and where attention

might therefore become biased). In all cases the estimated threshold was based on the last 10

reversals.

Supporting information

S1 Fig. Left-hand panels: Results for individual observers in the preliminary experiment on

horizontal motion. Error bars show ± standard error of the mean. Other details as for Fig 1B.

Right-hand panels: Results for individual observers for speed discrimination as a function of

spatial separation in Experiments (i) and (ii). Other details as for Fig 2A.
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