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Abstract
Cu(II) and organic carboxylic acids, existing extensively in soil and aquatic environments,

can form complexes that may play an important role in the photodegradation of organic con-

taminants. In this paper, the catalytic role of Cu(II) in the removal of methyl orange (MO) in

the presence of tartaric acid with light was investigated through batch experiments. The

results demonstrate that the introduction of Cu(II) could markedly enhance the photodegra-

dation of MO. In addition, high initial concentrations of Cu(II) and tartaric acid benefited the

decomposition of MO. The most rapid removal of MO assisted by Cu(II) was achieved at pH

3. The formation of Cu(II)-tartaric acid complexes was assumed to be the key factor, gener-

ating hydroxyl radicals (•OH) and other oxidizing free radicals under irradiation through a

ligand-to-metal charge-transfer pathway that was responsible for the efficient degradation

of MO. Some intermediates in the reaction system were also detected to support this reac-

tion mechanism.

Introduction
Advanced oxidation processes (AOPs), which have superseded biological procedures proven to
be ineffective for the treatment of some contaminated effluents under certain conditions, have
been successfully demonstrated as efficient methods of degradation of organic pollutants [1–3].
In AOPs, hydroxyl radicals (�OH) and other oxidizing free radicals engendered from the reaction
system can effectively oxidize organic pollutants into carbon dioxide, water, and inorganic acids.

The Fenton process is an advanced oxidation process that is widely applied to treat a variety
of organic pollutants due to its high efficiency, simple operation, and low cost [4, 5]. Hydroxyl
(�OH) radicals are produced while hydrogen peroxide (H2O2) is decomposed in the presence
of ferrous ions. UV-vis irradiation improves the efficiency of the process. Recently, alternative
techniques such as photocatalysis of the novel iron sources, and complexes of Fe(III) and car-
boxylate anions for the degradation of organic contaminants have also received considerable
attention [6–11]. Zuo and Hoigne [6] noted that photolysis of Fe(III)-oxalato complexes could
lead to the formation of hydrogen peroxide (H2O2), which could react with Fe(II) to further
yield Fe(III) and a hydroxyl radical (�OH). Then, hydroxyl radicals could non-selectively
mineralize azo dyes to carbon dioxide and water due to their high oxidation potential [12].
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Cu(II) exists in natural environments and some waste soils and waters from the electroplat-
ing and smelting industries. Like Fe(III), Cu(II) can form a complex with organic carboxylic
acid and has a lower oxidation state, Cu(I). Thus, it is hypothesized that in the presence of
organic carboxylic acid, Cu(II), can also set up a photo-Fenton-like reaction with H2O2 pro-
duced in situ, generating Cu(I) and some active free radicals through a pathway of metal-
ligand-electron transfer under irradiation, just as Fe(III)/oxalate does.

Garcia-Segura et al. [13] investigated the combination of Cu(II) and Fe(III) to improve the
mineralization of phthalic acid by a solar photoelectro-Fenton (SPEF) process. They reported
that Cu(II)-carboxylate complexes were easily removed with �OH that resulted from the
photo-Fenton-like reaction of Fe(III)-carboxylate species, accelerating the degradation of
organic acids [13]. However, they did not mention Cu(II)-carboxylate complexes as a �OH
source. Our previous study on Cu(II)-carboxylate complexes mainly focused on the catalytic
role of Cu(II) in the reduction of Cr(VI) by tartaric acid [14].

In this study, the photodegradation of methyl orange (MO) catalyzed by Cu(II) and tartaric
acid was investigated at different initial pH values and concentrations of Cu(II), MO, and tar-
taric acid. MO was selected as the model organic pollutant in this paper because it is a typical
azo dye. Azo dye, which contributes to ~70% of all dyes in industries such as textiles, foodstuffs
and leather, is of particular concern because they are known to be mutagenic and carcinogenic
[7, 9, 10, 15]. Cu(I) and �OH in the reaction system were also examined to reveal the potential
degradation pathway of MO. The role of Cu(II) as a catalyst for the degradation of azo dyes
with light in the presence of organic acids has never before been reported.

Materials and Methods

2.1 Materials
Methyl orange was obtained from Beijing Chemical Reagents Company (Beijing, China), and
its stock solution (1000 mg/L) was prepared in deionized water. Cu(II) (50 mmol/L) was pre-
pared by dissolving CuSO4•5H2O (s) (analytic grade, Shanghai Zhenxing Chemical Reagent
Factory, Shanghai, China) in deionized water. The stock solution of tartaric acid (analytic
grade, Shanghai Chemical Reagent Co., Ltd, Shanghai, China) with a concentration of 50
mmol/L was prepared in deionized water.

2,2’-Biquinoline, a characteristic reagent for Cu(I), was obtained from Sigma-Aldrich (Saint
Louis, MO, USA). Tertiary butyl alcohol (TBA, Chengdu Kelong Chemical Reagent Factory,
Chengdu, China) and L-histidine (L-H, Sinopharm Chemical Reagent Co., Ltd, Shanghai,
China) were analytical grade and served as the radical scavengers to determine the production
of �OH and other oxidative free radicals in the reaction systems. The other chemicals used in
this study were at least analytical grade and used without further purification. All of the stock
solutions were stored in a refrigerator at 4°C in the dark prior to use.

All of the glassware used in the experiments were cleaned by soaking in 1 mol/L HCl for
more than 12 h, and thoroughly rinsed first with tap water, then with deionized water.

2.2. Photochemical experiments
The photodegradation of MO was conducted in an XPA-7 photochemical reactor (Xujiang
electromechanical plant, Nanjing, China) that was equipped with a magnetic stirrer, a device
that controlled the temperature, and light sources including 100, 300 and 500 Wmedium pres-
sure Hg lamps and a 500 W Xenon lamp. The light source was positioned inside a cylindrical
Pyrex vessel surrounded by a circulating Pyrex water jacket to cool the lamp. A schematic dia-
gram of the photochemical reactor was illustrated in our previous paper [16]. The light extensi-
ties at the position of the quartz tubes (reaction system) for the 100, 300 and 500 Wmedium
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pressure Hg lamps and the 500 W Xenon lamp were 12.7, 16.8, and 20.1 mw/cm2 (measured
by a UV-A irradiation meter, Beijing Normal University, China) and 26 500 Lux (measured by
a ST-80C illumination meter, Beijing Normal University, China), respectively.

For typical photocatalytic reactions, the required amounts of the stock solutions of MO, Cu
(II) and tartaric acid were introduced into a 50 mL quartz tube, and the mixed solution was
diluted with deionized water. NaOH (0.1 mol/L) and H2SO4 (0.1 mol/L) were adopted to adjust
the initial pH to the desired values (2, 3, 4, 5, 6, 7 and 8), and the final volume of the solution
was adjusted to 40 mL. Then, the reaction tubes with 40 mL of solution were placed into the
photochemical reactor and stirred with a magnetic bar at 500 rpm during irradiation. The tem-
perature was maintained by a thermostatic bath. Control experiments were also performed
under the same conditions. All of the experiments in this section were performed in triplicate.

2.3 Analytical methods
At given irradiation time intervals, a 1 mL aliquot of sample was removed with a pipette and
diluted to 10 mL with HAc-NaAc buffer (pH = 5). The MO concentration was immediately
determined using a UV-vis spectrometer (Beijing Ruili Corp, UV-9100) at the characteristic
λmax of 464 nm.

Cu(I), an intermediate, was detected using 2,20-biquinoline that acted as the chromogenic
agent, which was extracted with isoamyl alcohol [17]. The absorbance was measured at 545 nm
(see Fig A in S1 Text for the adsorption curve).

A CyberScan pH2100 Bench Meter (Eutech Instruments) was used to measure the pH of
the reaction solution after three-point calibration.

Results and Discussion

3.1 Catalytic role of Cu(II) in the photodegradation of MO in the presence
of tartaric acid
The photodegradation of MO was conducted under different conditions. The results presented
in Fig 1 show no noticeable change in the MO concentration in the single system of MO or the
two-component system of MO and Cu(II) under UV irradiation with the full light of a 300 W
medium pressure Hg lamp for 120 min, indicating that direct UV irradiation was insufficient
to decompose MO even in the presence of Cu(II). A small increase in the MO degradation effi-
ciency (~9%) in the two-component system of MO and tartaric acid was observed, which was
attributed to the possible oxidants (e.g., H2O2 and some free radicals) that were produced
through the photolysis of tartaric acid. A similar result was reported by Guo et al. [10], who
investigated the photodegradation mechanism and kinetics of MO catalyzed by Fe(III) and cit-
ric acid. Possible reactions resulting in the removal of MO are described in Eqs (1–5).

H2Tarþ O2 þ hv ! H2Tar�þ þ O2�� ð1Þ

Hþ þ O2�� Ð HO2 � ð2Þ

2HO2 � ! H2O2 þ O2 ð3Þ

H2O2 þ hv ! 2 � OH ðl < 300 nmÞ ð4Þ

MOþ �OH ! products ð5Þ
However, 0.15 mmol/L MO was almost completely decolorized (the photodegradation
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efficiency reached 92%) within 120 min in the presence of 1 mmol/L Cu(II) and 10 mmol/L
tartaric acid with UV irradiation, demonstrating that Cu(II) could significantly improve the
photochemical degradation of MO in the presence of tartaric acid. The UV-vis spectra of MO
versus time during the reaction are illustrated in Fig B in S1 Text, which clearly showed that
the absorbance of the MO sample at the characteristic adsorption peak (464 nm) rapidly
decreased with increasing reaction time.

It was reported that Fe(III) can strongly catalyze the degradation of MO by citric acid under
weakly acidic conditions because of the formation of Fe(III)-citrate complexes, which is of high
photocatalytic activity, to produce hydroxyl radicals through a photo-Fenton-like reaction sys-
tem [8–10]. Similar to Fe(III), Cu(II) reacted with tartaric acid to form a complex and also had
a lower oxidation state, Cu(I). Under the irradiation of light, the Cu(II)-tartaric acid complex
produced Cu(I) and tartaric acid radicals through a pathway of metal-ligand-electron transfer
(Eqs 6–8).

CuðIIÞ þ Tar ! CuIIðTarÞ ð6Þ

Fig 1. Photodegradation of MO in different reaction systems. Degradation conditions: 0.15 mmol/L MO, 1 mmol/L Cu(II) and 10 mmol/L tartaric acid (TA)
under the full light of a 300Wmedium pressure Hg lamp at pH 4 and 25°C.

doi:10.1371/journal.pone.0134298.g001
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CuIIðTarÞ þ hv ! CuIðTarÞ � ð7Þ

CuIðTarÞ� ! CuðIÞ þ Tar � ð8Þ

To prove this hypothesis, a full-length scan experiment was performed, demonstrating the
formation of Cu(II)-tartaric acid complexes in the reaction system (data not shown). Further-
more, we introduced 2,2’-biquinoline into the reaction system, and a red complex in an isoamyl
alcohol solution as an extracting agent was observed. The absorbance at λmax = 545 nm was
0.093 (Fig A in S1 Text), which verified the generation of Cu(I) during the reaction [17] More-
over, tertiary butyl alcohol (a �OH-specific radical scavenger) and L-histidine (a universal radi-
cal scavenger) [18] were introduced into the reaction systems. It was expected that these
scavengers would serve to determine the production of �OH and other oxidative free radicals in
the reaction systems, and then the contributions of different radicals to the decomposition of
MO could be discerned.

It was noted from Fig 2 that the Cu(II) catalytic degradation of MO in the presence of tar-
taric acid was clearly suppressed with the introduction of excess tertiary butyl alcohol (~250
mmol/L), especially in the initial 65 minutes (almost no MO degradation), confirming that
�OH resulted from the reaction system and contributed to MO decomposition to some degree.
However, there was some MO (~64%) that was still degraded in the system containing excess
tertiary butyl alcohol after 65 min, which indicated that there likely were some other types of
active substances that were responsible for the destruction of MO.

Fig 2. Effects of tertiary butyl alcohol (TBA, ~250mmol/L) and L-histidine (L-H,) on MO degradation. Degradation conditions: 1 mmol/L Cu(II) and 10
mmol/L tartaric acid under the full light of a 300Wmedium pressure Hg lamp at pH 4 and 25°C.

doi:10.1371/journal.pone.0134298.g002
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L-histidine, which served as a scavenger of all of the oxidative free radicals in the reaction
systems, was adopted in the Cu(II) catalytic degradation of MO in the presence of tartaric acid.
The results (Fig 2) demonstrate that the photodegradation efficiency of MO decreased by 38%
with the introduction of 1 mmol/L L-histidine within 120 min compared with that in the
absence of scavengers, and the photodegradation was almost inhibited when the concentration
of L-histidine was increased to 5 or 10 mmol/L. The results indicate that the degradation of
MO involving radicals was almost completely quenched after the introduction of enough L-
histidine. Based on the results described above, it was concluded that in addition to �OH, there
were some other types of free radicals that played an important role in MO decomposition.
Moreover, these results corroborate the radical-based mechanism responsible for the destruc-
tion of MO with light in the presence of both Cu(II) and tartaric acid. The possible reactions
apart from Eq (5) that were involved in the photodegradation of MO in the system of MO/Cu
(II)/tartaric acid are summarized as follows:

CuIðTarÞ � �!O2 CuIIðTarÞ þ O2
� � ð9Þ

HO2 � =O2
� � þCuðIÞ ! CuðIIÞ þH2O2 ð10Þ

H2O2 þ CuðIÞ ! CuðIIÞ þ �OHþ OH� ð11Þ

During the generation process of these free radicals, Cu(I) and CuI(tar)•, which were pro-
duced from the Cu(II)-tartaric acid complexes through a pathway of metal-ligand-electron
transfer (Eqs 6–8), were oxidized by the oxidizing free radicals and dissolved oxygen in the
reaction system, accompanied with the reproduction of Cu(II) (Eqs 10 and 11). Again, Cu(II)-
tartaric acid complexes formed. Consequently, a cyclic process of converting Cu(II) to Cu(I) in
the reaction system was established. The main reactions previously discussed were summarized
in a possible mechanism scheme (Fig 3) for Cu(II) and Cu(I) cycling in the Cu(II)-tartaric acid
system.

3.2 Effect of the initial concentrations of tartaric acid and Cu(II) on the
photodegradation of MO
The effect of the initial concentrations of tartaric acid and Cu(II) on the photodegradation of
MO with irradiation by a 300 Wmedium pressure Hg lamp at pH 4 and 25°C was further
investigated, and the results are depicted in Fig 4. As shown in Fig 4A, the increase of tartaric
acid in the ternary system of MO/Cu(II)/tartaric acid with a given Cu(II) concentration greatly
enhanced the photodegradation efficiency of MO. Similar results were reported by Balmer and
Sulzberger [19] in an iron oxalate system, and they also noted that a higher oxalate concentra-
tion led to higher degradation of atrazine. The enhancement of the MO degradation by an
increase in the tartaric acid concentration was due to the increased production of �OH radicals
and other active free radicals resulting from more the photochemically active Cu(II)-tartaric
acid complexes that formed, as described in Eqs 6–11. Similarly, in the presence of 10 mmol/L
tartaric acid, the degradation of MO significantly increased with the initial concentration of Cu
(II) from 0 to 1 mmol/L (Fig 4B). This result suggested that the formation of Cu(II)-tartaric
acid played a crucial role in generating �OH radicals to accelerate the degradation of MO.
However, as the initial concentration of Cu(II) increased from 1 to 15 mmol/L, there was no
apparent enhancement in the MO degradation efficiency by the end of the reaction (120 min);
however, there was an enhancement in the removal rate of MO in the beginning stage of the
reaction. This result suggested that 1 mmol/L Cu(II) may be enough to form sufficient Cu
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(II)-tartaric acid complexes with 10 mmol/L tartaric acid to catalyze the photodegradation of
0.15 mmol/L MO.

3.3 Effect of pH on the photodegradation of MO
Fig 5 shows the effect of pH on the photodegradation of MO in the presence of Cu(II) and tar-
taric acid. It was noted that pH played an important role in the degradation of MO, and the
most efficient degradation of MO was realized at pH 3. In this case, MO was almost completely
degraded within 70 min. Except for pH 3 and 4, the degradation rates of MO at pH 2 and 5–8
were similar and low, and less than 20% of the initial MO was removed within 120 min.

The dependence of the MO photodegradation on pH was considered to mainly result from
the following factors. Firstly, high pH (pH 5–8) gave rise to an increase in Cu(II) hydrolysis,
which had a negative effect on the formation of Cu(II)-tartaric acid complexes and did not ben-
efit the photodegradation of MO. Secondly, it was supposed that low pH that benefited �OH
generation (Eqs 2 and 11) aided in MO photodegradation. However, this explanation was not
true for the pH 2 condition. This was possibly due to the distribution of tartaric acid species
and the quinoid structure of MO. Li et al. [18] reported that tartaric acid exists mainly as a

Fig 3. Scheme for Cu cycling and the main reactions in the Cu(II)-TA system.

doi:10.1371/journal.pone.0134298.g003
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Fig 4. Effect of the initial concentrations of tartaric acid (a) and Cu(II) (b) on MO degradation. Degradation conditions: (a) with 1 mmol/L Cu(II), (b) with
10 mmol/L tartaric acid, under the full light of a 300Wmedium pressure Hg lamp at pH 4 and 25°C.

doi:10.1371/journal.pone.0134298.g004

Fig 5. Effect of pH on the photodegradation of MO. Degradation conditions: 0.15 mmol/L MO, 1 mmol/L Cu(II) and 10 mmol/L tartaric acid under the full
light of a 300 Wmedium pressure Hg lamp at 25°C.

doi:10.1371/journal.pone.0134298.g005
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molecular species at low pH, resulting in decreased Cu(II)-tartaric acid complexes. On the
other hand, the molecular species of tartaric acid is prone to competing for �OH with MO and
degrades under UV light [20], which inhibits the photodegradation of MO. In addition, it is
known that the structure of MO is quinoid at low pH (pKa = 3.4), and the quinoid structure is
more stable than the azo form [21]. Therefore, the degradation of MO was blocked at pH 2.

3.4 Effect of light intensity on the photodegradation of MO
The photodegradation of MO under simulated solar light by a 500 W Xenon lamp and full
ultraviolet light by 100 to 500 Wmedium pressure Hg lamps with an initial concentration of
0.15 mmol/L MO, 1 mmol/L Cu(II) and 10 mmol/L tartaric acid was investigated at pH 4 and
25°C. The results in Fig 6 show that the MO degradation under the irradiation of simulated
solar light was negligible, indicating that solar light could not efficiently activate Cu(II)-tartaric
acid complexes or tartaric acid to generate free radicals under this experimental condition.
However, intensive ultraviolet irradiation could significantly enhance the MO degradation
rate. Under the irradiation of 100, 300 and 500 Wmedium pressure Hg lamps, the MO degra-
dation efficiency was 20% in 120 min, 92% in 120 min, and ~94% in 35 min, respectively. It
was obvious that the photodegradation of MO strongly depended on light intensity in this
system.

Fig 6. Effect of light intensity on the photodegradation of MO.Degradation conditions: 0.15 mmol/L MO, 1 mmol/L Cu(II) and 10 mmol/L tartaric acid at
pH 4 and 25°C.

doi:10.1371/journal.pone.0134298.g006
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3.5 Improvement of the catalysis of Cu(II) and tartaric acid
It was noted that the degradation rate was slow at the initial stage of the reaction and then
accelerated after some reaction time in the ternary system of MO/Cu(II)/tartaric acid. It was
assumed that the formation of Cu(II)-tartaric acid complexes required time. Thus, a series of
experiments were carried out to prove this assumption. Cu(II) and tartaric acid were mixed for
30 min and 180 min with a magnetic stirrer in the photochemical reactor in the dark, and then
MO was introduced into the reaction system to begin the experiment (the following steps were
kept in routine operation). The results of MO degradation with different pre-treatments of
Cu(II) and tartaric acid are shown in Fig 7. In comparison with the routine ternary system of
MO/Cu(II)/tartaric acid without pre-treatment, when Cu(II) and tartaric acid were mixed in
advance, the slow degradation stage in the beginning was shortened after 30 min of pre-treat-
ment and almost disappeared after 180 min of pre-treatment. These results again illustrate that
the formation of Cu(II)-tartaric acid complexes was the crucial step in the reaction system, and
the photodegradation of MO could be accelerated by mixing Cu(II) and tartaric acid in
advance.

Fig 7. Photodegradation of MO by Cu(II)-tartaric acid with different pre-treatments. Degradation conditions: 0.15 mmol/L MO, 1 mmol/L Cu(II) and 10
mmol/L tartaric acid under the full light of a 300Wmedium pressure Hg lamp at pH 4 and 25°C.

doi:10.1371/journal.pone.0134298.g007
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Conclusions
Cu(II) markedly catalyzed the photodegradation of methyl orange in the presence of tartaric
acid under weakly acidic conditions. The degradation rate and efficiency was improved with an
increase of the initial concentrations of Cu(II) and tartaric acid. The optimal degradation of
methyl orange catalyzed by Cu(II) was achieved at pH 3. The formation of Cu(II)-tartaric acid
complexes in the reaction system was the crucial step, from which the strong oxidizing agent
(�OH) and other oxidizing free radicals were generated under irradiation by a medium pressure
Hg lamp, accompanied by the cyclic process of Cu(II) to Cu(I) conversion. It could be inferred
from this study that in natural environments or in some contaminated effluents with sunlight
(including ~5% ultraviolet light), the transformation of Cu(II) to Cu(I) occurs when Cu(II)
and organic carboxylic acid coexist, accompanied by the degradation of organic pollutants.

Supporting Information
S1 Text. Supporting information for “Rapid photodegradation of methyl orange (MO)
assisted by Cu(II) and tartaric acid”.
(DOCX)
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