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Colorectal cancer (CRC) has the second highest mortality rate among all cancers
worldwide. Surgery, chemotherapy, radiotherapy, molecular targeting and other
treatment methods have significantly prolonged the survival of patients with CRC.
Recently, the emergence of tumor immunotherapy represented by immune checkpoint
inhibitors (ICIs) has brought new immunotherapy options for the treatment of advanced
CRC. As the efficacy of ICIs is closely related to the tumor immune microenvironment
(TME), it is necessary to clarify the relationship between the immune microenvironment of
CRC and the efficacy of immunotherapy to ensure that the appropriate drugs are selected.
We herein review the latest research progress in the immune microenvironment and
strategies related to immunotherapy for CRC. We hope that this review helps in the
selection of appropriate treatment strategies for CRC patients.
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INTRODUCTION

Colorectal cancer (CRC) is a common malignant tumor of the digestive system. Worldwide, CRC
ranks third in the incidence rate and second in the mortality rate among malignant tumors (1). The
incidence of CRC is related to many factors, such as heredity, a low-fiber diet, smoking, lack of
exercise, and obesity. At present, changes in the intestinal microbiome and metabolites are also
considered risk factors for CRC (2). Traditionally, the treatment of CRC includes surgery,
chemotherapy and radiotherapy. In recent years, along with the continuous research on the
embryonic origin, anatomical structure, tumor clinical manifestations and genes of the left and right
colon, there have been different targeted therapies for “left and right CRC dispute”, namely,
cetuximab and bevacizumab, respectively. Furthermore, the advent of the small molecule anti-
Abbreviations: CRC, colorectal cancer; ICIs, immune checkpoint inhibitors; TME, tumor immune microenvironment; DCs,
dendritic cells; ECM, extracellular matrix; VEGF, vascular endothelial growth factor; VEFGR, vascular endothelial growth
factor receptor; TGF-b, transformation and growth factors-b; PDGF, platelet-derived growth factor, CAF, cancer associated
fibroblasts; TAM, tumor-associated macrophage; TAN, tumor-associated neutrophil; MDSC, myeloid-derived suppressor cell;
TILs, tumor-infiltrating lymphocytes; mCRC, metastatic CRC; NK, Natural killer; OS, overall survival; PD-1, programmed cell
death 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; ACT, adoptive cell therapy; MSS, microsatellite stable; dMMR,
mismatch repair deficieny; MSI-H, high microsatellite instability; CAR, chimeric antigen receptor-modified; CIK, cytokine-
induced killer; OS, overall survival; PFS, progression-free survival; DFS, disease-free survival; RFS, recurrence-free
survival rate.
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vascular oral drug, apatinib mesylate, has diversified the CRC
treatment. Nevertheless, the prognosis of CRC depends on the
stage of the tumor. The mortality of stage I/II is 8-13%, that of
stage III is 11-47%, and that of stage IV is as high as 89% (3).
Early detection of tumors and early effective treatment can
reduce the mortality of CRC. In addition to the small molecule
anti-vascular oral drugs, new therapeutic strategies for the
treatment of advanced CRC based on immune checkpoint
inhibitors (ICIs) have progressed. Overall, advancements in
research on the tumor immune microenvironment (TME) and
strategies related to immunotherapy are expected to provide
more treatment choices for CRC patients.

CRC is a typical tumor infiltrated by effector memory
lymphocytes, yet there have been no major breakthroughs in
clinical prognosis and immunotherapy (4). It is essential to
elucidate the immune environment of CRC to improve current
treatment strategies and prognosis for CRC patients. The TME
refers to the environment of tumor cells or tumor stem cells, which
is closely related to tumor occurrence, development and metastasis
of tumors. In the TME, angiogenesis is induced, and regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are
recruited, which helps suppress the antitumor immune response
and promote tumor progression. Furthermore, cytokines within
the TMEmanipulate immune functions and are involved inmuted
immune responses that guide tumor progression (5). Therefore,
the TME of CRC is an important factor affecting cancer
immunotherapy. It is necessary to develop a comprehensive
understanding of the TME of CRC and extend this knowledge
to current treatment strategies that target dysfunctional
components in the TME. This paper reviews the interaction of
various components of the CRC microenvironment and related
treatment strategies, with the goal of finding more effective
treatment methods through a better understanding of the
interaction of CRC microenvironment.
THE COLORECTUM COMPOSITION AND
MICROENVIRONMENT

The colorectum is not only the main digestive organ but also an
important immune organ, participating in innate and adaptive
immunity. The colorectum includes the intestinal epithelium,
intestinal intraepithelial lymphocytes and lamina propria
lymphocytes. The intestinal epithelium digests and absorbs
nutrients and forms a mucosal barrier, which effectively
prevents the invasion of harmful bacteria in the intestine (6,
7). The intestinal epithelium is mainly composed of absorptive
columnar epithelial cells, goblet cells and endocrine cells. Goblet
cells secrete a variety of mucus proteins to form a mucus barrier
to limit the invasion of bacteria into the intestinal mucosa. If the
intestinal tract lacks mucus, long-term exposure to the bacterial
environment may cause chronic inflammation similar to
ulcerative colitis, possibly leading to cancer (8, 9). Intestinal
epithelial cells also participate in the immune response. These
cells obtain lumen antigens and present them to dendritic cells
(DCs) in the intestinal lamina propria, which is called the goblet
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cell associated antigen channel (gap cells) (10, 11). McDonald
et al. found that interfering with the interaction between APCs
and intestinal epithelial cells via CCR6- deficiency in mice
reduces the transfer of goblet cell products to APCs and
induces the mucosal response (12). Goblet cells also regulate
the immune response by secreting various cytokines, such as
IL25, IL18, IL17, IL15, IL13, IL7 and IL6, as well as the
chemokine exotoxins CCL6, CCL9 and CCL20 (10). Therefore,
goblet cells play a unique and indispensable role in maintaining
intestinal immune homeostasis by interacting with immune cells.
Many endocrine cells are distributed in the colon and rectum and
act as the sensory sentinels of the intestinal environment and
coordinators of mucosal immunity (13). Intestinal endocrine
cells can secrete cholecystokinin secretin, somatostatin, and
histamine, among others, under the stimulation of chemicals
or other molecules. Intestinal endocrine cells are the key
receptors of metabolites of intestinal flora. Indeed, endocrine
cells recognize pathogen-associated molecular patterns (PAMPs)
and release cytokines and peptide hormones, which directly
affect the function of the intestinal barrier. In the immune
system, peptide hormones such as GLP-1 can regulate the
activation of intestinal immune cells (14–16). M cells, also
called microfold cells or membranous cells, are located
between the lymphoid follicular epithelium and scattered
among intestinal mucosal epithelial cells. M cells actively
transport a variety of substances, such as soluble antigens and
microorganisms, via liquid pinocytosis and receptor-mediated
endocytosis. Recently, it was found that M cells play a specialized
antigen transport role in the mucosal immune system,
transporting antigens from the intestinal cavity to the
subepithelial lymphoid tissue, so as to induce an immune
mucosal immune response or immune tolerance (17, 18). M
cell-dependent antigen uptake is mediated by specific receptors,
such as b1 integrin, cellular prion protein and glycoprotein-2
(GP2) (17).

The immune cells involved in colorectal mainly include
intestinal intraepithelial lymphocytes (IELs) and lamina
propria lymphocytes which play an immunomodulatory role in
maintaining colorectal homeostasis. The former cells express a
variety of receptors, such as chemokine receptor CCR9 and
integrin aEb7. CCR9 interacts with CCL25 produced by the
intestinal epithelial cells to help recruit IELs to the intestinal
mucosa. Integrin aEb7 (aE, also known as CD103) interacts
with E-cadherin on intestinal cells to promote entry and
retention in the intestinal epithelium (19). Approximately 90%
of IELs are T cell receptor (TCR) positive, although a small
number are TCR negative (20).

Lamina propria lymphocytes include DCs, intestinal T cells
and plasma cells. DCs are antigen-presenting cells that are not
evenly distributed in the intestine. CD11c+CD11b-CD103+ DCs
are commonly found in the colon of mice, whereas
CD11b+CD103+ DCs are commonly found in the small
intestine (21). Human intestinal DCs display more complex
markers than mouse intestinal DCs. Human CD103+ signal
regulatory protein a (SIRPa)- intestinal DCs are associated
with mouse intestinal CD11b-CD103+ DCs, whereas human
December 2021 | Volume 12 | Article 792691
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CD103+ SIRPa+ DCs are closely related to mouse intestinal
CD103+CD11b+ DCs, which regulate the induction of T cells
(22). In recent years, it has been found that DCs and goblet cells
can interact and participate in the immune response.
CD11c+CD103+ DC subsets present antigens from goblet cells
(23). Intestinal T cells include gd T and ab T cells. On the one
hand, intestinal T cells secrete IFN-g, TNF-a and other cytokines
participating in the immune response against infection and
resisting intestinal bacterial immersion. On the other hand,
they secrete a variety of factors such as IL-4, IL-5, IL-10, IL-17
and IL-22, to maintain intestinal immune balance. There are also
special Treg cells in the intestinal lamina propria that produce
IL-10 and TGF-b to negatively regulate the activation of effector
T cells and suppress the intestinal inflammation. Plasma cells are
distributed in the lamina propria of colorectal tissue and produce
different antibodies. In the duodenum/jejunum, 79% of plasma
cells express IgA, 18% of plasma cells express IgM and 3% of
plasma cells express IgG, while the corresponding numbers in
the colon are 90%, 6 and 4%, respectively (24).
TME IN CRC

The components of the TME in CRC include tumor cells, blood
vessels, the extracellular matrix, fibroblasts, lymphocytes, bone
marrow-derived suppressor cells and signaling molecules.

Extracellular Matrix (ECM)
The ECM is composed of glycoprotein, collagen, elastin,
proteoglycan and other macromolecules, which support and
connect tissues and maintain normal physiological functions
(25). Compared with normal tissue, the ECM structure of tumor
tissue is disordered, and the process by which the infiltration of
fibroblasts/myofibroblasts and the subsequent accumulation of
significant amounts of collagenous ECM is observed in the TME
is called desmoplasia (26). Desmoplasia is connected with poor
prognosis and resistance to therapy (27). Furthermore, an
abnormal ECM regulates the epithelial-mesenchymal transition
(EMT) and affects cancer progression by directly promoting cell
transformation and metastasis (28). Wei et al. found that
increasing the stiffness of the surrounding ECM drives the
EMT in breast cancer cells by promoting TWIST1
translocalization into the nucleus (29). ECM abnormalities also
affect the efficacy of immunotherapy via dense EMC, preventing
not only immune cells from reaching the tumor cells but also
immunotherapeutic drugs from reaching the tumor. In addition,
the shielding diffusion barrier that the ECM forms result in
hypoxia, which directly enhances immune escape by
upregulating immunomodulatory factors and increasing
angiogenic signals (30). In general, ECM abnormalities relieve
the behavioral regulation of stromal cells and promote tumor-
related angiogenesis and inflammation, resulting in resistance to
immunotherapy in the TME (31).

Peptidylarginine deiminase 4 (PAD4) is a member of the
PAD family including calcium dependent isozymes (PADs 1-4
and 6) (32). PAD4 overexpression is typically involved in
Frontiers in Immunology | www.frontiersin.org 3
elevated tumor citrullination and hypercitrullination alters cell-
matrix adhesion and enhances metastasis (33). Yuzhalin et al.
found that citrullination of the ECM and expression of PAD4
promote liver metastasis of human CRC, which may create
opportunities for the development of biomarkers and
therapeutic targeting (34). Tenascin C (TNC) is a glycoprotein
in the extracellular matrix, and plays a role in promoting
metastasis, modulating adhesion and motility, developing
angiogenesis, and establishing immune tolerance (35). In
addition, Murakami et al. reported that the TNC on the CRC
interstitial ECM is a factor driving liver metastasis (36), and
differences in the expression of ECM-related proteins, such as the
upregulated expression of TNC, exist in patients with liver
metastasis and CRC recurrence (37).

Angiogenesis
Angiogenesis refers to the production of new blood vessels, while
tumor angiogenesis is an endless vicious cycle that cannot be self-
regulated. After tumorigenesis, cells proliferate rapidly, and the
tumor becomes ischemic and hypoxic. Ischemic and hypoxic
cancer cells secrete vascular endothelial growth factor (VEGF),
which binds to vascular endothelial growth factor receptors
(VEGFRs) on the adjacent vascular endothelium to directly
stimulate tumor angiogenesis and promote the migration of
endothelial cells (38). The basement membrane cells degrade,
and the surrounding vascular endothelial cells proliferate rapidly
and migrate to the tumor tissue via angiogenesis. Angiogenesis of
tumor tissue is the result of the joint action of cancer cells,
various tumor-related cells and their bioactive products, such as
cytokines, growth factors and microbubbles. Various immune
cells such as macrophages, neutrophils, immature myelocytes, B
cells, T cells and peripheral cells interact in tumor
angiogenesis (39).

VEGF is the most important growth factor regulating
angiogenesis in colon cancer and is expressed in all colon
carcinoma surgical specimens, including normal mucosa,
primary colon cancers and metastatic tumors, as well as in
human colorectal cancer cell lines (40, 41). Colon cancer
patients with high VEGF expression had a significantly worse
prognosis than those with low VEGF expression (41).
Furthermore, VEGF has three receptors on CRC cells. VEGFR-
1 is associated with tumor grade, Dukes stage and lymph node
involvement, and VEGFR-2 is correlated with lymph node
involvement while no correlat ion with any of the
clinicopathological variables was found for VEGFR-3 (42).
Witte et al. found that the expression of VEGFR-3 in >25% of
colorectal cancer cells was associated with a significantly poorer
overall survival, but not with lymph node metastasis or depth of
tumor invasion (43). Overall, angiogenesis is an important
mechanism for the occurrence and development of CRC.
Tumor cells secrete VEGF and promote tumor-related
angiogenesis which further promotes proliferation and distant
metastasis, seriously affecting the prognosis of tumor patients.

Cancer-Associated Fibroblasts (CAFs)
Fibroblasts are nonepithelial, nonvascular and nonhematopoietic
cells in connective tissue that are mainly responsible for the
December 2021 | Volume 12 | Article 792691
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formation of extracellular stroma. Fibroblasts maintain the
epithelial homeostasis of normal tissues and play an important
role in wound healing. When mechanical injury occurs or
radiation, temperature, toxins and pathogens cause acute
injury, body cells stimulate the protective system, macrophages
produce transformation and growth factor-b (TGF-b) and
platelet-derived growth factor (PDGF), and fibroblasts and
immune cells proliferate and promote angiogenesis (44). CAFs
are important components of the TME and play an essential role
in tumorigenesis and development. CAFs have many potential
origins, but most are considered to originate from local ancestors
(45). Tumor cells are usually derived from fibroblasts in tissues,
which are induced and activated by tumor cells in the
microenvironment (46–48). CAFs interact with tumor cells to
promote tumor growth and maintain their malignant tendency.
Tumor cells affect the recruitment of CAF precursors and induce
normal fibroblasts to differentiate into CAFs, which secrete a
variety of growth factors such as TGF-b, VEGF, chemokines and
cytokines, such as CXCL12 (SDF-1), CXCL14, CXCL16, CCL2,
CCL5, IL-4, and IL-6, and metalloproteinases, such as MMP-1,
MMP-2, MMP-3, MMP-9, MMP-13 and MMP-14. These factors
stimulate tumor growth, angiogenesis, invasion and metastasis
through a variety of mechanisms, thus affecting tumor prognosis.

Endoglin, which is expressed in CAFs in CRC specimens,
metastatic lymph nodes and liver metastases, is a member of the
TGF-b family of co-receptors and is involved in CAFs-mediated
invasion and metastasis through TGF-b signaling pathway
activation (49). Hu et al. found that CAFs can directly secrete
exosomes to enhance the cell stemness and epithelial-
mesenchymal transformation in CRC cells to promote CRC
metastasis and chemotherapy resistance. The mechanism is
dependent on increased expression of miR-92a-3p, which
directly inhibits Fbxw7 and moap1 and activates Wnt/b-
Catenin pathway to inhibit mitochondrial apoptosis and
promote stem cell differentiation, the EMT, metastasis and
5-FU/L-OHP resistance in CRC cells (50). According to
Heichler et al., CAFs secrete IL-6/IL-11 by activating STAT3
signaling pathway to promote tumor development. Moreover,
the expression of pSTAT in CRC correlates with patient survival
(51). CAFs are related to resistance in gastrointestinal tumors.
The fibroproliferative response induced by CAFs interferes with
the delivery of drugs to gastrointestinal cancer cells and causes
drug resistance to chemotherapy (52).

Tumor-Associated Macrophages (TAMs)
Macrophages are resident phagocytes in lymphoid and
nonlymphoid tissues that participate in steady-state tissue
homeostasis by scavenging apoptotic cells and growth factors.
Macrophages have a wide range of pathogen recognition
receptors, which enable them to effectively phagocytize and
induce the production of inflammatory cytokines. It is well
known that the TME is rich in macrophages, and TAMs are
considered the most abundant immune cell population in solid
tumor tissues (53). TAMs are mainly recruited from the
periphery by chemokines released from tumor tissues,
including CCL2, CCL3, CCL4, CCL5 and CXCL12. These
factors bind to corresponding receptors for recruitment of
Frontiers in Immunology | www.frontiersin.org 4
monocytes/macrophages (54). TAMs play an important role in
promoting tumor angiogenesis and express a variety of growth
factors (such as VEGF, PDGF and bFGF), membrane binding
molecules and soluble proteases (including MMPs and
cathepsin), inflammatory cytokines (TNF-a, IL-1b, IL-6),
cyclooxygenase 2 (COX2) and CXC-chemokine ligand 8
(CXCL8) to promote sustained cel l act ivation and
proliferation, promoting ECM remodeling and recruitment and
activation of angiogenic cells (55–57).

In CRC, TAMs are enriched in the high incidence site of the
epithelial mesenchymal transformation (EMT). TAMs promote
the growth and invasion of colon cancer cells through EMT
remodeling (58). When HT-29 or HCT116 cells are co-cultured
with TAMs (THP-1 cells stimulated by conditioned medium
from a CRC cell line), TAM derived IL-6 activates the JAK2/
STAT3 pathway, which results in increased FoxQ1 expression,
leads to the production of CCL2 and promotes the recruitment of
macrophages, thus enhancing the migration and invasion of
CRC cells (59). TAMs are the main cells in the tumor EMT (60).
TAMs are related to the vascular system of CRC and can be used
as markers of angiogenesis-mediated CRC. By studying 76 CRC
patients, Marech et al. showed a significant correlation between
macrophage infiltration and microvessel density (61).
Furthermore, a large total number of TAMs is favorable for
the CRC prognosis. Indeed, Nakayama et al. detected high levels
of TAMs in patients with a good prognosis (62). Koelzer et al.
found that CD68+ TAMs predicted longer OS (63). Similarly,
Cavnar et al. reported a significant positive correlation between
DFS and CD68+ cells in 188 patients with CRC liver metastasis
(64). Compared with the total number of macrophages
determined by CD68 markers, the M2-like phenotype of
macrophages can better predict the adverse prognosis in CRC.
In the study of Wei et al., high-level expression of interstitial
CD163 at the front of tumor invasion was significantly correlated
with tumor grade, lymphatic vascular invasion, tumor invasion,
lymph node metastasis and TNM stage, and was associated with
poor recurrence survival rate (RFS), as based on IHC analysis of
81 Chinese CRC patients (59). Yang et al. found that in 81 CRC
patients, a high CD163+/CD68+ ratio at the front of tumor
invasion (rather than at the tumor stroma) was closely related
to enhance lymphatic vascular invasion, tumor invasion, TNM
stage, RFS and OS in CRC patients (65).

Myeloid-Derived Suppressor Cells (MDSCs)
Myeloid cells are composed of mononuclear myeloid cells and
granulocytes, while mononuclear myeloid cells are mainly
composed of monocytes, final differentiated macrophages and
DCs. Granulocytes include neutrophils, eosinophils and
basophils (66–68). In the early 1980s, these cells were found to
be immunosuppressive. Therefore, to unify this group of cells, they
were named bone marrow-derived suppressor cells in 2007 (69).

MDSCs interact with the TME, and tumor and stromal cells
secrete TGF-b, MMP9, BV8, IL-6, IL-1b, b-FGF and VEFG
through autocrine and paracrine mechanisms, mobilizing and
expanding MDSCs and further promoting tumor growth (70).
The TME can secrete chemokines, cause MDSCs to migrate to
the tumor site, inhibit immune function and accelerate tumor
December 2021 | Volume 12 | Article 792691
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progression (71, 72). CCL2 recruits MDSCs to the CRC TME
(73), enhancing the immunosuppressive function by inhibiting T
cell proliferation and stimulating Treg development (74). In a
mouse model, reducing CXCL4 in CRC tumor tissue promoted
the recruitment of MDSCs, resulting in an immunosuppressive
environment and progression of CRC (75). Ouyang et al. found
increased levels of CD33+ CD11b+HLA-DR-MDSCs in primary
tumor tissues of CRC patients, which was related to advanced
TNM stage and lymph node metastasis. At the same time, it was
found that tumor cells induce the expansion of MDSCs through
a variety of inflammatory factors. These tumor-derived MDSCs
inhibit T cell proliferation and promote tumor cell growth
through oxidative metabolism (76).

Tumor-Associated Neutrophils (TANs)
Neutrophils are effector cells of the innate immune system.
Unlike macrophages, neutrophils are not antigen-presenting
cells but act as killer cells in the blood. Neutrophils are mainly
produced in the bone marrow, accounting for 50-70% of human
circulating leukocytes, with a half-life of only 5 days; however,
they are the only immune cells that can dissolve cells and tissues
(77). When the body releases chemokines after infection,
neutrophils tend to migrate and recognize pathogens (78). In
cancer, tumor cells and TAMs release the chemokines CXCL1/2/
3/6/8 and CCL3/5, which induce neutrophils in peripheral blood
to enter the TME and polarize into different TANs (79, 80).

A few studies on the relationship between TANs and the
survival rate of CRC patients have been conducted (81). Rao et al.
found that an increase in neutrophils in tumors is associated with
a malignant phenotype and can predict poor prognosis in CRC
(82). Galdiero et al. evaluated CRC patients receiving 5-FU
chemotherapy and found that a higher TAN concentration was
associated with better treatment efficacy. TANs are important
immune cell infiltration components in CRC. In fact, evaluating
TAN infiltration may help to identify patients who will benefit
from 5-FU chemotherapy (83). Berry et al. analyzed the number
of neutrophils in CRC tissues. Due to the lack of neutrophil-
specific antibodies, neutrophils were counted manually
according to their morphology, and high levels of TANs were
associated with better overall survival (OS) in patients with stage
II CRC (84). Furthermore, the combination of the neutrophil
lymphocyte ratio and platelet count is able to predict the future
clinical course of CRC (85). A high neutrophil to lymphocyte
ratio (NLR) has also been shown to be a poor prognostic factor in
CRC patients. Li et al. retrospectively analyzed a cohort of 354
patients with stage I-III CRC and observed a close relationship
between dynamic changes in the NLR and the OS rate (86).
Additionally, a high NLR has an adverse effect on the OS of CRC
patients undergoing radical surgery (87).

Tumor-Infiltrating Lymphocytes (TILs)
Lymphocytes are the main immune cells of tumors, including T,
B, NK, and NKT cells, and these subsets can reflect tumor
immunotherapy and serve as clinical biomarkers. T cells are
the most abundant and characteristic immune cells in the TME
and are divided into cytotoxic T cells, helper T cells, inhibitory T
Frontiers in Immunology | www.frontiersin.org 5
cells and NKT cells, in contrast to traditional T cells (88). T cells
prevent tumor growth by targeting tumor cells. Tregs are a
specific group of CD4+T cells related to the overreaction of
immunosuppression, inflammation and allergic diseases (89). In
cancers, Tregs are considered to inhibit immunity in most cases,
and Treg infiltration is associated with poor prognosis (90–92).
Marshall et al. found that Treg cells promote lung cancer
metastasis (93). High FoxP3+ Treg infiltration exhibits a
significant correlation with shorter OS patients with other solid
tumors, including ovarian cancer, gastric cancer, renal cell
carcinoma, melanoma, hepatocellular carcinoma, oral
squamous cell carcinoma and breast cancer (94–97). However,
in some tumors with chronic inflammatory infiltration, the
accumulation of Tregs correlates positively with good
prognosis. Frey et al. found that patients with mismatch repair
deficiency (dMMR) CRC had high-level infiltration of Foxp3+

Tregs, with an increased survival rate (98). According to Hanke
et al., high-level infiltration of Foxp3+ Tregs in early lymph node-
negative CRC has a good prognosis (99). Vlad et al. also found
that an increased Foxp3+ Treg density is associated with
improved survival in CRC and is an independent prognostic
factor (100). The relationship between Treg infiltration and
tumor prognosis seems to be closely related to tumor type.
Treg regulation plays the dual or multiple roles in antitumor
immunity and the tumor treatment response, maintaining
immune homeostasis and preventing autoimmunity (101, 102).

B lymphocytes participate in immune regulation mainly by
producing immunoglobulin, presenting antigen secreting
cytokines. B lymphocytes produce antibodies in the tumor
microenvironment, which promotes tumor development (103,
104). B cells also inhibit tumor growth. Mouse B cells can
promote antitumor activity through T cell-mediated immunity,
inhibiting tumor development, and CD20-deficient mice show T
cell antitumor inhibition (105–107). In malignant melanoma,
enhanced patient survival is related to the simultaneous presence
of tumor-related CD8+ T cells and CD20+ B cells but not to other
clinical features (108). Research on the progression of CRC by B
cells is limited, and views are inconsistent. There are differences
between the B cell subsets in the peripheral blood, mesenteric
lymph nodes and primary tumors of patients with CRC and
those of healthy people, and B cells are activated in tumor-related
tissues (109). After activation, B cells in patients with CRC
differentiate into mature types, resulting in a specific response
to tumors. On the other hand, the number of B cells in patients
with metastatic CRC (mCRC) is small and the proportion of
regulatory B cells is increased, which may be involved in immune
escape (110, 111). Nevertheless, Berntsson et al. found that the
survival time of CRC patients with B cell infiltration was
prolonged (112). Through multiple-regions single-cell
sequencing of tumors, normal mucosal tissue, liver metastases,
and pairs of noncancerous tissues in CRC patients, a recent study
showed that the contradictory effect of B cells on tumors in the
past was due to the existence of multiple subtypes of B cells.
IgA+IGCL2+ plasma cells are associated with poor prognosis of
CRC, whereas highly proliferated GLC2+ plasma cells and
circulating B cells are associated with a better prognosis (113).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Tumor Microenvironment in Colorectal Cancer
Natural killer (NK) cells are effector cells of the immune
system. When cells are infected or mutated by the virus, the
expression of MHC-1 on their surface is lacking or abnormal.
NK cells bind to NKG2D interaction ligands through antibody-
dependent cell-mediated cytotoxicity (ADCC) or receptors,
degranulate and release cytotoxic perforin and granzyme,
induce signal transduction, and kill virus-infected cells and
tumor cells (114). However, compared with those in adjacent
normal tissues, NK cell levels in CRC tissues are low, suggesting
that less NK cell infiltration may be one of the mechanisms of
TME immune escape (115). The phenotype of peripheral NK
cells in CRC patients changes, which promotes tumor
progression (116). In CRC patients with curative tumor
resection, the expression of NKp44 and NKG2D on circulating
NK and NKT cells is increased, suggesting that the primary
tumor and TME have an inhibitory effect on the phenotype of
NK and NKT cells in CRC (117). In vitro, NK cells can enhance
the cytotoxicity of cetuximab and the killing effect on RAS and
BRAF mutant CRC cells (118). A phase I clinical trial observed
NK cells to be closely related to the therapeutic effect of CRC.
Cetuximab was significantly effective in patients with NK cell
infiltration, though there was no significant correlation in
patients who did not receive cetuximab (119). NK cell therapy
has played a key role in hematological diseases and resulted in
the use of NK cells in solid tumors. Initial results for chimeric
antigen receptor-NK (CAR-NK) in the treatment of CRC
patients have been obtained and NKG2D-CAR-modified NK
cells showed antitumor effects in mouse models. At the same
time, the standard CAR-NK was used in three CRC patients, who
reached the safe end point (120). NK cells are also a prognostic
factor for CRC recurrence (121).

In addition to NK cells and T cells, there is a special group of
cells with the common characteristics of NK and T cells, called
NKT cells. NKT cells have CD4+ CD8+ thymocytes, which
develop in the thymus and migrate to peripheral organs such
as the liver, spleen, lung and intestine (122, 123). Although NKT
cells exert cytotoxicity, they mainly secrete a large number of
helper T cytokines Th1-, Th2-, Th17-, Treg- or helper follicular
cytokine (TFH)-cell related cytokines to play a regulatory role in
innate or acquired immunity (124, 125). Type I NKT cells
recognize glycosphingolipids a- galactose ceramide or its
analogs (126, 127). a-Galactose ceramide (a-galcer) increases
NKT expression and PD-1 in combination with a-galce increases
the activity of NKT cells, enhances the antitumor response, and
significantly reduces the occurrence of small and large intestinal
tumors (128). Compared with the normal mucosa, the
expression of CD69L and FasL is increased in infiltrating type
I NKT cells in CRC tumor tissue, IFN- g and granzyme B are also
increased, and the OS rate of CRC patients with high-level NKT
cell infiltration is higher than that of patients with low NKT cell
infiltration (129). Intratumoral infiltration of NKT cells can be
used as a prognostic factor for CRC.

Exosomes
In the process of tumor cell growth, invasion and metastasis,
tumor cells and interstitial fine cells located in the TME can not
Frontiers in Immunology | www.frontiersin.org 6
only secrete various soluble molecules, including cytokines and
chemokines, but also release various vesicles. These vesicle
structures are extracellular vesicle structures (130) that can be
divided into exosomes (20-100 nm), microbubbles (100-1000
nm) and apoptotic bodies (1-5 µm) according to their size.
Exosomes are different in size from microbubbles and
apoptotic bodies and have specific surface molecular
characteristics, such as CD9 and CD63 expression. Exosomes
are present in almost all body fluids, including plasma/serum,
saliva, breast milk, cerebrospinal fluid, urine and semen (131–
141). Exosomes are also distributed in the TME and carry cargo
including a variety of proteins, DNA, mRNA, miRNA, long
noncoding RNA, and even virus/prion genetic material (142–
146). Exosomes play a key role in local and remote intercellular
communication in cancer and are an important part of the TME.
Almost all kinds of cells in tumors can secrete exosomes,
including tumor cells, tumor-associated adipocytes, TAFs,
TAMs and vascular endothelial cells. Exosomes can be ingested
by recipient cells to participate in intercellular signal
exchange (130).

Zeng et al. found that in CRC, cancer-derived exosomal miR-
25-3p promotes vascular permeability and angiogenesis by
regulating the expression of VEGFR2, ZO-1, occludin and
claudin-5 in endothelial cells by targeting KLF2 and KLF4.
And miR-25-3p from CRC cells enhances CRC metastasis in
the mouse liver and lungs. In addition, the expression of miR-25-
3p in circulating exosomes is significantly higher in CRC patients
with metastasis than in those without metastasis, and exosomes
can be used as blood biomarkers (147). CRC-derived exosomal
miR-106b-3p promotes tumor metastasis by downregulating
DLC-1 expression (148). Exosomal miR-200c-3p negatively
regulates the migration and invasion of CRC stimulated by
lipopolysaccharide (LPS) (149). The CRC-derived exosomal
circRNA, circPACR can be induced by miR-142-3p/miR-506-
3p-TGF-b1 to promote CRC cell proliferation, migration and
invasion (150). CAFs are the main components of the TME and
promote cancer development through tumor matrix interactions.
Bhome et al. compared the exosomes of normal and TAFs in
CRC patients and found that CAFs were enriched in microRNAs
329, 181a, 199b, 382, 215 and 21, with microRNA 21 being the
most abundant. After establishing the original transplanted
tumor model with miR-21-overexpressing fibroblasts, liver
metastasis increased (151). Exosomal miR-21 is expressed by
stromal fibroblasts and promotes tumor cell metastasis. MiR-21
is involved in the progression of CRC. Exosomes secreted by
CAFs are also involved in CRC metastasis and chemoresistance.
Hu et al. found that CAFs secrete exosomes, resulting in a
significant increase in the level of miR-92a-3p in CRC cells,
activating the Wnt/b- catenin pathway and inhibiting
mitochondrial apoptosis by directly inhibiting FBXW7 and
MOAP1; the effect is to promote stemness, EMT, metastasis
and 5-FU/L-OHP resistance in CRC (50). This finding provides
an alternative way to predict and treat CRC metastasis and
chemoresistance by inhibiting exosomal miR-92a-3p.
Exosomes can also be used as diagnostic markers in CRC.
Maminezhad et al. detected CRC cell lines and patient serum,
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and found increased levels of miR19a, miR-20a, miR-150 and let-
7a but decreased levels of miR-143 and miR-145, with expression
being related to TNM stage (152). Clinically, many miRNAs
secreted by exosomes, such as let-7a, miR-1229, miR-1246, miR-
150, miR-21, miR-223, and miR-23a have been used as
diagnostic and prognostic markers for screening and predicting
CRC tumors (153).

Immunosenescence
Immunosenescence is a process of immune dysfunction that tend to
cause inflammation and an immunosuppressive microenvironment
leading to tumorigenesis and cancer metastasis (154). Senescence
might become an obstacle to achieve efficacious immunotherapy in
the TME, since senescent cells secret proinflammatory cytokines
and growth factors, known as the senescence associated secretory
phenotype (SASP), and this secretion has been implicated in both
aging and cancer development (155). Giunco et al. found that in
elderly CRC patients, senescent CD8 cells, but not CD4, displayed a
significant relationship with disease outcome. Furthermore, the
CD4/CD8 ratio was a prognostic marker of disease relapse in
stage I-III CRC patients (156). In the TME of CRC,
immunosenescent cells can influence the therapeutic effect since
the majority of CRC patients with microsatellite stability (MSS) do
not benefit from current anti-PD-1 therapy. A recent study found
that in 18 MSS CRC patients, the number of immunosuppressive/
exhausted T-cell phenotypes at tumor lesions were increased and
CD8+ CD28- immunosenescent T cells were accumulated according
to single-cell mass cytometry analysis. Moreover, the TME of CRC
hosts chemokines/cytokines that likely recruit immunosuppressive/
exhausted T cell subsets to regulate the immune system (157). It is
necessary to comprehensively understand the immunosenescence
to help boost the immune response in patients with MSS CRC.
CURRENT STRATEGIES RELATED TO
IMMUNOTHERAPY IN CRC

Antiangiogenic Therapy
Bevacizumab, an immunoglobulin G monoclonal antibody
against humanized vascular growth factor A, selectively binds
to vascular endothelial factor subtype A (VEGF-A), hinders the
binding of vascular endothelial growth factor to receptor tyrosine
kinases (VEGFR), and initiates signaling to inhibit tumor
angiogenesis (158, 159). Bevacizumab has been approved for
first-line and second-line treatment of mCRC (160). An Italian
randomized, open, multicenter, phase 3 clinical trial
(NCT00719797) compared the efficacies of FOLFIRI combined
with bevacizumab and FOLFIRI alone, and the median survival
time of the FOLFIRI combined with bevacizumab group was
greater than that of the FOLFIRI group (29.8 months vs. 25.8
months, HR = 0.80, P = 0.03) (161). Additionally, the combined
use of bevacizumab did not significantly increase side effects but
did enhance effective PFS and OS (162). The latest study found
that bevacizumab combined with capecitabine was also effective
as an advanced treatment for previously irinotecan-, oxaliplatin-
and fluoropyrimidine-resistant mCRC (163). VEGF plays an
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important role in the CRC immune microenvironment, which
can inhibit DC maturation, reduce T cell tumor infiltration and
increase inhibitory cells in the TME (164–167). We found that
the level of VEGF was increased in tumors. Moreover,
bevacizumab inhibited the VEGF-VEGFR1 binding signal on
DCs, NF-kB signaling, and DC cell maturation, prevented the
increase in the amount of MHC and other molecules, and
suppressed T cell activation. In CRC patients, bevacizumab
elevated the number of mature DCs in the peripheral blood
(168). Limagne et al. found that the amount pf MDSCs of
patients decreased with FOLFOX in combination with
bevacizumab, which was related to longer survival (169).

Ramucirumab, a humanized monoclonal antibody, mainly
acts on the extracellular region of VEGF receptor 2 and has a
beneficial role in gastric cancer, lung cancer and CRC (170–175).
In the RAISE trial, after first-line oxaliplatin/fluoropyrimidine
chemotherapy combined with bevacizumab for progressed CRC,
ramucirumab was added to FOLFIRI, and the OS rate and
progression-free survival(PFS) rate of patients were
significantly improved (176).

Aflibercept is a monoclonal antibody composed of the
extracellular segments of human VEGFR-1 and VEGFR-2
fused with the vascular endothelial growth factor-binding
region and human immunoglobulin G1 FC region. Aflibercept
b combined with FOLFIRI was approved for second-line
treatment of mCRC in 2017 (177). A high-quality double-blind
randomized controlled trial (RCT), the VELOUR trial, compared
the efficacy of aflibercept plus FOLFIRI with that of placebo plus
FOLFIRI, and the median OS, OS and PFS were higher than
those in the former group (178). However, aflibercept in elderly
patients (> 65 years old) shows a controllable increase in
toxicity (179).

In addition to using monoclonal antibodies to inhibit the
VEGFA pathway, some small molecule inhibitors have been
applied in anti-VEGF therapy, such as regorafenib, sorafenib,
sunitinib, pazopanib and axitinib. An international, multicenter,
placebo-controlled phase III clinical trial (CORRECT) found
that the median survival time of mCRC patients in the
regorafenib group was longer than that in the placebo group
(6.4 months vs. 5.0 months, HR = 0.77, P = 0.00052) (180).
Regorafenib combined with nivolumab also has good
applicability for the treatment of MSS chemotherapy-resistant
mCRC (181). Sorafenib, a multi-kinase inhibitor that targets
serine threonine and tyrosine kinases involved in tumor
progression and angiogenesis, including all VEGFRs and
PDGFR-b, RET, FLT3 and c-KIT (182), is used to treat
advanced renal cell carcinoma, unresectable hepatocellular
carcinoma and thyroid cancer (183–186). In CRC, a phase I
clinical trial (RESPECT) found that the first-line combined use of
sorafenib and oxaliplatin, folic acid and fluorouracil
(mFOLFOX6) did not prolong PFS (187). In a multicenter,
randomized phase II clinical trial (NEXIRI-2/PRODIGE 27),
mCRC patients carrying RAS mutations had a prolonged 2-
month no-progression rate and median PFS with the use of
sorafenib combined with irinotecan after oxaliplatin, irinotecan,
fluoropyrimidines and bevacizumab failed (188). Sunitinib is a
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small molecule multi-target receptor tyrosine kinase inhibitor.
However, for patients with unresectable/advanced mCRC, the
first-line combination of sunitinib and FOLFIRI did not lead to
significant clinical benefits (189). A randomized, phase III
clinical trial found no significant difference in median PFS
between sunitinib combined with FOLFIRI and FOLFIRI
combined with placebo (190). Fruquintinib, a small molecule
selective VEGFR inhibitor independently developed in China,
significantly prolonged the median OS of patients after three-line
use of fruquintinib compared with that of patients receiving the
placebo (9.3 months vs. 6.6 months, HR = 0.65) (191). The major
antiangiogenic therapy agents under clinical investigation in
CRC are summarized in Table 1.

Anti-EGFR Therapy
EGFR is a membrane-bound receptor tyrosine kinase protein
that activates downstream intracellular signaling pathways,
including MAPK (RAS/RAF/MEK/ERK), PI3K/AKT, and JAK/
STAT3 signaling, and plays a role in tumor cell growth,
proliferation and differentiation (206, 207). EGFR promotes
tumor progression when overexpressed. CRC patients exhibit
high-level expression of EGFR. Therefore, targeting EGFR and
its downstream pathways has become a new strategy for the
treatment of CRC (208). Cetuximab is a human/mouse chimeric
Frontiers in Immunology | www.frontiersin.org 8
IgG1 monoclonal antibody that mainly binds to EGFR on the
surface of tumor cells and competitively blocks EGFR signaling
to inhibit tumor cell proliferation. Cetuximab also inhibits the
development of neovascularization by reducing the production
of VEGF and activates the human anti- chimeric antibody
(HACA) (209). Initial multiple clinical phase II trials found
that among EGFR-positive patients, cetuximab combined with
irinotecan had a better clinical effect than chemotherapy alone
(210–212). Despite no significant difference between the PFS risk
ratios and OS rates of mCRC patients receiving cetuximab
combined with FOLFIRI and mCRC patients receiving
FOLFIRI alone, cetuximab combined with FOLFIRI benefited
KRAS wild-type patients (213). KRAS is an effector molecule
responsible for signal transduction from ligand-bound EGFR to
the nucleus. Activation of KRAS mutations often leads to CRC
resistance to the EGFR targeted monoclonal antibodies (214).
Therefore, EGFR-positive wild-type KRAS CRC responds to
cetuximab (215). The CEBIFOX study found an ORR of
70.3%, a median PFS of 10.9 months (95% CI 9.0-12.9), and
an OS of 33.8 months (95% CI 21.4-45.5) for fortnightly use of
cetuximab combined with FOLFOX6 in patients with RAS wild-
type mCRC (216).

Panitumumab, the first fully humanized IgG2 monoclonal
antibody, displays a high affinity for EGFR, and its mechanism of
December 2021 | Volume 12 | Article 792691
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TABLE 1 | Summary of antiangiogenic therapy for colorectal cancer (CRC).

Regimen Target population Design Treatment Registration number Reference

Bevacizumab mCRC Phase II FOLFIRI+ Bevacizumab NCT00467142 (192)
mCRC Phase II Oxaliplatin + Bevacizumab + Capecitabine NCT00159432 (193)
mCRC Phase II FOLFOX + Bevacizumab

FOLFOX + Bevacizumab + Irinotecan
NCT01321957 (194)

mCRC Phase II Perioperative FOLFOXIRI + Bevacizumab
Postoperative FOLFOX

NCT01540435 (195)

mCRC Phase III FOLFOXIRI + Bevacizumab
FOLFIRI + Bevacizumab

NCT00719797 (161)

mCRC Phase III Capecitabine + Bevacizumab
Capecitabine

NCT00484939 (196)

mCRC Phase III Chemotherapy + Bevacizumab
Chemotherapy + Cetuximab

NCT00265850 (197)

mCRC Phase III Bevacizumab + Xelox NCT00384176 (198)
mCRC Phase III Bevacizumab + Chemotherapy

Chemotherapy
NCT00112918 (199)

mCRC Phase III Bevacizumab + Xelox NCT00577031 (200)
Ramucirumab mCRC Phase III Ramucirumab + FOLFIRI

Placebo+ FOLFIRI
NCT01183780 (176)

Aflibercept mCRC Phase III Aflibercept + FOLFIRI
Placebo

NCT01661270 (201)

mCRC Phase III Aflibercept + FOLFIRI
Placebo

NCT00561470 (178, 202

Regorafenib mCRC Phase III Regorafenib
Placebo

NCT01103323 (180)

mCRC Phase III Regorafenib NCT01853319 (203)
mCRC Phase III Regorafenib

Placebo
NCT01584830 (204)

Sorafenib mCRC Phase II Sorafenib + Bevacizumab NCT00826540 (182)
mCRC Phase II Sorafenib + Irinotecan NCT01715441 (188)

Sunitinib mCRC Phase II Sunitinib + FOLFIRI NCT00668863 (189)
mCRC Phase III Sunitinib + FOLFIRI

Placebo +FOLFIRI
NCT00457691 (190)

Fruquintinib mCRC Phase III Fruquintinib
Placebo

NCT02314819 (191, 205
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action in CRC treatment is similar to that of cetuximab. Clinical
phase II and III trials have shown that panitumumab can
significantly prolong the PFS of patients with refractory CRC,
with good tolerance (212, 217). In a randomized phase III trial
(PRIME), the PFS of patients with wild-type KRAS was
prolonged with mCRC first-line use of panitumumab combined
with fluorouracil, folic acid and oxaliplatin (FOLFOX4) compared
with that of patients receiving FOLFOX4 alone, though there was
no significant difference in OS (218). In the randomized, open,
phase II VOLFI study (AIO KRK0109), FOLFOXIRI combined
with panitumumab was used as the first-line treatment for Ras
wild-type mCRC improving the ORR and secondary surgical
resection rate (219). In a phase II trial of locally advanced rectal
cancer, FOLFOXIRI combined with panitumumab/cetuximab was
used as a new adjuvant chemotherapy for patients with wild-type
RAS-BRAF rectal cancer, with good clinical efficacy and tolerance
(220). The major agents targeting EGFR therapy under clinical
investigation in CRC are summarized in Table 2.
Immune Checkpoint Inhibitors (ICIs)
Immune checkpoints are molecules that express and regulate the
activation of immune cells. When the immune response is too
strong, the immune checkpoint acts as a key regulator for
attenuation (222). However, in cancer, immune checkpoints
are highly activated and overexpressed; thus, antigens cannot
be presented to T cells, inhibiting their immune function and
resulting in malignant cell proliferation and tumor immune
escape (223, 224). ICIs restore immune function mainly by
targeting and/or blocking immune checkpoint protein ligands
on the surface of T cells or other immune cell subsets (225). ICIs
constitute a mature monoclonal antibody immunotherapy. The
most widely studied immune checkpoint targets are
programmed cell death 1 (PD-1) and cytotoxic T -lymphocyte-
associated antigen 4 (CTLA-4), which are used for a variety of
solid tumors (226–228). There are also studies on the potential
role of other checkpoints in tumor immune regulation, such as
lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin-3
(Tim-3), T cell immunoglobulin and the ITIM domain (TIGIT)
(229–233). CTLA-4 is a transmembrane protein that is mainly
expressed on activated T cells and was first cloned in 1987 (234).
CTLA-4 binds the B7 molecule to reduce T cell activity and
inhibit T cell activation channels, with an immunosuppressive
function (235, 236). In 2010, the CTLA-4 inhibitor ipilimumab
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was demonstrated to improve the long-term prognosis of
patients with unresectable malignant melanoma (237). In 2011,
ipilimumab became the first ICI approved by the FDA for cancer
treatment. PD-1, a new member of the immunoglobulin gene
superfamily, is expressed by various immune cells, such as CD4
and CD8 T cells, B cells, macrophages, DCs and tumor-
infiltrating lymphocytes (TILs) (238, 239). PD-1 is a negative
regulatory molecule that inhibits T cell activation and limits
autoimmunity (240, 241). The use of PD-1/PD-L1 pathway
inhibitors can restore the function of effector T cells, playing
an antitumor role (242). At present, a variety of PD-1 and PD-L1
inhibitors have been approved by the FDA to treat a variety
of tumors.

There are currently three PD-1 and CTLA-4 inhibitors
approved by the FDA for CRC: pembrolizumab, nivolumab
and ipilimumab (Table 3).

Pembrolizumab (Keytruda®) is the first PD-1 inhibitor
approved by the FDA for metastatic malignant melanoma
(252). In recent years, pembrolizumab has been used for non-
small-cell lung cancer (253, 254), Hodgkin’s lymphoma (255,
256), HNSCC (257), urothelial carcinoma (258, 259), gastric
cancer (260) and CRC (243, 244). The landmark clinical trial
NCT01876511 for the treatment of CRC with pembrolizumab is
noteworthy. The clinical trial included 11 dMMR CRC patients
and 21 pMMR CRC patients and 9 patients with dMMR in other
cancers. The immune-related objective response rate and
immune-related PFS rate were 40% and 78% in dMMR CRC
patients, and 0% and 11% in pMMR CRC patients, respectively.
The median PFS and OS in the dMMR group were not achieved,
and the median PFS and OS in the pMMR CRC group were 2.2
months and 5.0 months, respectively (HR = 0.1, P < 0.001) (245).
Based on these data, pembrolizumab (Keytruda®) was approved
to treat unresectable or metastatic dMMR and high microsatellite
instability (MSI-H) CRC by the FDA on May 23, 2017 (261).
KEYNOTE-164 is a phase II clinical trial for evaluating
pembrolizumab in the treatment of refractory, MSI-H/dMMR
metastatic CRC. At the end of the trial data, the median follow-
up time of group A (previously received ≥ 2-line treatment) was
31.3 months (range of 0.2-35.6 months), the objective response
rate was 33% (95% CI, 21% - 46%), and the median PFS was 2.3
months (95% CI, 2.1-8.1 months). The median follow-up time of
CRC in group B (previous ≥ 1-line treatment) was 24.2 months
(range of 0.1-27.1 months), the objective response rate was 33%
(95% CI, 22% - 46%) and the median PFS was 4.1 months (95%
December 2021 | Volume 12 | Article 792691
TABLE 2 | Summary of anti-EGFR therapy for colorectal cancer (CRC).

Regimen Target population Design Treatment Registration number Reference

Cetuximab mCRC Phase II Cetuximab + FOLFOX-6 NCT01051167 (216)
mCRC Phase III Chemotherapy + Bevacizumab

Chemotherapy + Bevacizumab + Cetuximab
NCT00208546 (221)

mCRC Phase III Cetuximab + FOLFIRI
FOLFIRI

NCT00154102 (213)

Panitumumab mCRC Phase III Panitumumab + FOLFOX4
FOLFOX4

NCT00364013 (218)

mCRC Phase II Panitumumab + FOLFOXIFI
FOLFOXIFI

NCT01328171 (219)
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CI, 2.1-18.9 months). The incidence of treatment-related grade
3-4 adverse events was 16% in group A and 13% in group B.
Thus, pembrolizumab can be safely used in patients with MSI-H/
dMMR CRC (244). KEYNOTE-177 (NCT02563002) is a phase
III clinical trial in which patients with metastatic MSI-H/dMMR
CRC were randomly assigned to the pembrolizumab arm,
though patients receiving chemotherapy could switch to
pembrolizumab if disease progression occurred. The PFSs of
the pembrolizumab and chemotherapy groups were 16.5 months
and 8.2 months, respectively (HR = 0.60; 95% CI, 0.45-0.80;
P = 0.0002) (243).

Another successful PD-1 inhibitor is nivolumab (Opdivo®).
Based on the CheckMate 037 and CheckMate 066 trials,
nivolumab has also been approved for the first time to treat
unresectable or metastatic melanoma (246, 247). Nivolumab
showed a good therapeutic effect in mCRC patients with
dMMR/MSI-H. CheckMate 142 (NCT02060188) found that
23/74 patients achieved objective remission, and 68.9% (51/74)
of patients received > 12 weeks of disease control; the safety of
dMMR/MSI-H mCRC was tolerable (248). Nivolumab was
approved on August 1, 2017, for dMMR and MSI-H mCRC.
Interestingly, the CTLA inhibitor ipilimumab has also shows a
certain therapeutic effect in CRC. Ipilimumab combined with
nivolumab as the treatment for dMMR/MSI-H mCRC patients
was effective at 9 months in 94% of patients; the PFS rates at 12
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months were 76% and 71% for dMMR and MSI-H mCRC
patients, respectively, and the OS rates at 12 months were 87%
and 85% for dMMR and MSI-H mCRC patients, respectively
(249). Moreover, ipilimumab combined with nivolumab did not
significantly increase toxicity or side effects (250). Therefore,
ipilimumab and nivolumab were approved for dMMR and MSI-
H mCRC on July 10, 2018. Furthermore, a recent phase II
CheckMate 142 study found that first-line nivolumab plus low-
dose ipilimumab had robust and durable clinical benefit and was
well tolerated as a first-line treatment for MSI-H/dMMR mCRC
patients (251).

Adoptive Cell Therapy (ACT)
Adoptive cell therapy utilizes the immune cells, such as T cells,
DCs, NK cells or cytokine-induced killer (CIK) cells, of patients
or other donors for tumor patients to achieve anti-tumor effects.
ACT for CRC treatment includes TILs, CIK cell therapy and
chimeric antigen receptor-modified (CAR) T cell therapy
(Table 4). In a clinical study on TILs combined with IL-2 in
CRC, patients in the ACT group received TILs extracted from
metastatic tumors, as stimulated and amplified with high-dose
IL-2, whereas the control group received traditional chemotherapy.
Although no significant difference in disease-free survival (DFS)
was observed between the two groups after 1, 3 and 5 years, TCRϵ
chain expression increased significantly in disease-free patients
December 2021 | Volume 12 | Article 792691
TABLE 3 | FDA approved main agents of immune checkpoint inhibitors (ICIs) for colorectal cancer (CRC).

Regimen Target population FDA approved date Registration number Reference

PD-1 inhibitor
Pembrolizumab Unresectable or metastatic dMMR and

high microsatellite instability (MSI-H) CRC
23 May 2017 NCT01876511

KEYNOTE-164
KEYNOTE-177 (NCT02563002)

(243–245)

Nivolumab DMMR and MSI-H mCRC 1 August 2017 CheckMate 037
CheckMate 066
CheckMate 142 (NCT02060188)

(246–248)

PD-1 + CTLA-4 inhibitor
Nivolumab + Ipilimumab DMMR and MSI-H mCRC 10 July 2018 CheckMate 142 (249–251)
TABLE 4 | Summary of adoptive cell therapy (ACT) for colorectal cancer (CRC).

Regimen Target population Design Registration number Status

TILs Malignant Solid Neoplasm including MCRC Adenocarcinoma,
Metastatic Ovarian Carcinoma

Phase II NCT03610490 Active, not recruiting

CRC stage III Phase I/II NCT03904537 Recruiting
CRC / NCT02980146 Completed

CEA-CAR-T CRC stage III, CRC liver metastasis Phase I NCT04513431 Not yet recruiting
Solid cancers including CRC Phase I, II NCT04348643 Recruiting
CRC
Peritoneal Carcinomatosis
Peritoneal Metastases
Gastric Cancer
Breast Cancer
Pancreas Cancer

Phase I NCT03682744 Active, not recruiting

CART72 mCRC Phase I CC-9701 and CC-9702 clinical trials by
Cell Genesys and Aventis Pharmaceuticals

Completed

CIK CRC Phase IV NCT03084809 Completed
DC-CIK CRC Phase II, III NCT02419677 Completed

CRC Phase II, III NCT02415699 Unknown
CRC Phase II NCT02202928 Unknown
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compared with that in patients with recurrence (P = 0.04),
suggesting that TILs play a role in the immune response (262).
Sentinel lymph node (SLN)-T cells are also used for ACT in the
treatment of CRC. A preliminary study found that after 16 CRC
patients were injected with SLN T cells, 4 of 9 patients with stage IV
CRC experienced complete remission, with a median survival time
of 2.6 years, which was much greater than the median survival time
of 0.8 years in the control group (263). In another I/II clinical study
of 55 patients with CRC with SLNmetastasis, the median OS of the
experimental group that received expanded lymphocytes was 28
months, whereas that of the control group was 14 months, and no
obvious toxicity or side effects was observed (264).

Many clinical trials using TILs or SLN T cells as a treatment
for CRC (NCT03610490, NCT03904537, and NCT02980146) are
being performed. NK cells have natural cytotoxicity toward
tumor cells, with antibody dependent cytotoxicity (ADCC),
and can secrete a variety of cytokines and chemokines for an
immunomodulatory role. Therefore, NK cells can also be used
for adoptive therapy. In a phase I clinical trial, expanded NK cells
combined with IgG1 antibody were used to treat patients with
gastric cancer or CRC. Among 6 evaluable patients, 4 were in
stable condition (SD), and disease progression occurred in two
patients (119). As TILs have the limitation of needing to be
expanded from a tumor, exogenous T cell receptors (TCRs) have
been expressed on cells by genetic engineering technology.
Carcinoembryonic antigen (CEA) levels are often elevated in
the tissues and serum of patients with gastrointestinal tumors.
Therefore, genetically engineered autologous T lymphocytes that
express mouse TCR against human CEA have been used for CRC
treatment. In a phase I clinical trial, three patients with refractory
mCRC were administered TCR targeting CEA, and their serum
CEA levels were significantly decreased (74–99%). One patient
showed reduced liver and lung metastases, but all three patients
experienced severe transient inflammatory colitis (265). CAR-T
cells have achieved remarkable results in B-cell leukemia and
lymphoma, although the development of solid tumors is lagging
(266, 267). A phase I clinical trial of targeted CEA-CAR-T cells
for CRC treatment found that 7 of the 10 CEA+ patients were in
stable condition after CAR-T cell treatment, with 2 patients
maintaining this state for more than 30 weeks, and 2 patients
underwent tumor regression (268). Another study on CAR-T
cells targeting tumor-associated glycoprotein (TAG)-72
(CART72 cells) in the treatment of mCRC found that a very
short duration of CART72 cells in the blood (≤14 weeks),
suggesting that CART72 cells have a limited role in mCRC
(269). A CAR-NK study targeting NKG2D found that after
three mCRC patients received local infusion of CAR-NK cells,
ascites production decreased and tumor cells in ascites samples
decreased significantly. In addition, the method using RNA to
make CAR can enhance the specificity of NK cells to NKG2DL
and their tumor cell killing activity (120).

CIK cells treatment is a part of ACT and is induced by
mononuclear cells cultured with CD3 monoclonal antibody and
cytokines such as IFN-g, IL-1 and IL-2. CIK cells include
activated NKT cells, CD3-/CD56+ NK cells and CD3+/CD56-

CTLs. CIK cells have the characteristics of rapid proliferation,
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strong antitumor activity, wide spectrum and low toxicity. They
have been used in the treatment of various solid tumors, such as
hepatocellular carcinoma, renal cell carcinoma, gastric cancer,
breast cancer, ovarian cancer, non-small-cell lung cancer and
nasopharyngeal carcinoma. The efficacy of somatic CIK cells in
patients with mCRC was examined in a phase II clinical trial.
MCRC patients in the experimental group received
chemotherapy combined with CIK cells, whereas the control
group received chemotherapy alone. The median OS rates of the
experimental and the control groups were 36 months and 16
months, respectively (P < 0.001), and the PFS rates were 16
months and10 months (P = 0.072), respectively. Although there
was no significant difference, there was an increasing trend (270).
A retrospective study using CIK cells to treat postoperative CRC
patients reported a median PFS and median OS in the CIK group
of 25.8 months and 41.3 months, respectively, while the median
PFS and median OS in the control group were 12.0 months and
30.8 months, respectively (271). Another retrospective study on
the efficacy of postoperative adjuvant infusion of CIK cells
combined with chemotherapy for CRC observed a significantly
longer DFS in the group than in the control group [HR = 0.28,
95% CI (0.09, 0.91), P = 0.034]. The 2-year DFS rates of the CIK
group and control group were 59.65 ± 24.80% and 29.35 ± 6.39%,
respectively. Moreover, CIK cell infusion was not associated with
immediate adverse reactions (272). Dendritic cytokine-induced
killer cells (DC-CIK) were observed in the combined first-line
treatment of advanced CRC. The 5-year OS rates of the DC-CIK
group and non-DC-CIK group were 41.3% and 19.4% (P =
0.001), and the 5-year PFS rates of the DC-CIK group and non-
DC-CIK group were 57.4% and 33.6% (P = 0.022), respectively
(273). Overall, DC-CIK immunotherapy combined with first-
line treatment can significantly prolong the 5-year OS and PFS
rates in patients with advanced CRC.
Cancer Vaccine and Oncolytic
Virus Therapy
Cancer vaccines are another method of immunotherapy for CRC
(Table 5). Tumor cells express tumor-associated antigen (TAA),
and by expressing specific tumor antigens, cancer vaccines can
stimulate the body to produce a specific immune response.
However, the results obtained for vaccines in the treatment of
CRC are not consistent. Initially, a prospective randomized
controlled clinical trial was conducted in CRC patients, and an
autologous tumor cell BCG vaccine that induced active specific
immunotherapy (ASI) was used. The study found that there was
no statistically significant difference in the survival rate or disease-
free survival rate of 80 eligible patients (279). A randomized phase
III clinical trial of adjuvant ASI with autologous tumor cell BCG
reported no significant difference in DFS and OS rates between
the surgical resection plus ASI group and the simple resection
group of stage II and III CRC patients (280). In another study of
stage II and III CRC patients, despite no clinical benefit of
autologous tumor cell BCG immunotherapy for stage III CRC
after surgery, the recurrence-free period of autologous tumor cell
BCG adjuvant ASI after surgical resection was significantly longer
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than that of simple resection (P = 0.011), and recurrence-free
survival was significantly prolonged (P = 0.032) (281). As antigen-
presenting cells, DCs are also often modified to produce vaccines.
A randomized trial for CRC patients on the activation of CD40L
by DC vaccines in vitro found that 15 of 24 patients had immune
induction reactions. The five-year recurrence-free survival rate
(RFS) of those who had tumor-specific T cell proliferation or IFN-
g induced by the vaccine that appeared at one week after
vaccination was significantly higher than that of patients
without a response (63% vs. 18%, P = 0.037) (282). The
randomized phase II clinical trial on administering DC vaccines
after complete resection of CRC liver metastasis showed a
significantly longer median DFS for the vaccine group was than
for the observation group (25.6 months vs. 9.53 months) (283).

Guanylcyclase C (GUCY2C), which is selectively expressed by
intestinal epithelial cells and some neurons, is almost universally
overexpressed in CRC (284). According to a phase I study using
the Ad5-GUCY2C-PADRE vaccine in the treatment of stage I or
II (pN0) colon cancer (NCT01972737), the vaccine can stimulate
the immune response of T cells and has certain safety (285). CEA
is overexpressed in CRC and acts as a tumor antigen marker. A
phase I/II trial using the Ad5[E1-, e2b-]-CEA (6D) vaccine for
advanced CRC reported a median survival time for the 32
patients included in the study of 11 months, and the Ad5 [E1-,
e2b -] - CEA (6D) vaccine was well tolerated and induced an
immune response (286). In the phase I study of patients with
stage III CRC treated with virus-like replicator particle (VRP)-
CEA, 12 CRC patients completed standard postoperative
adjuvant chemotherapy and received VRP-CEA immunization
4 times every 3 weeks. The 5-year RFS rate was 75% (95% CI 40-
91%), and no deaths were observed during the period. After
vaccination, levels of CD8+ TEMs increased (10/12), Foxp3+

Tregs decreased (10/12), and specific CEA and IFN-g produced
by CD8+ granzyme B+ TCM cells increased (287).

Several CRC clinical trials of CEA-modified tumor vaccines
have been carried out, such as NCT01147965, NCT00529984,
and NCT01890213 (274). MUC1 is abnormally expressed in
tumors and is also a tumor-associated antigen. DCs and poxvirus
vectors act as immune stimulants against tumor antigens. A
Frontiers in Immunology | www.frontiersin.org 12
randomized phase II trial (NCT00103142) compared whether
two vaccines based on DCs and pox vectors encoding CEA and
MUC1 (PANVAC) can prolong the survival of mCRC patients
after resection (275). Seventy-four mCRC patients after resection
and perioperative chemotherapy were randomly treated with
autologous modified PANVAC with DC (DC/PANVAC) or
GM-CSF (granulocyte macrophage colony-stimulating factor)
every time. The 2-year RFS rates of the two groups were similar,
and the DC and poxvirus vectors had similar activity. As a
treatment for mCRC, the modified vaccine Ankara-5T4 and low-
dose cyclophosphamide improved the antitumor immune
response and prolonged survival, with no safety problems
(276). Furthermore, a phase I trial (NCT02179515) was
performed to test the safety and tolerability of a modified
vaccinia Ankara (MVA)-based vaccine modified to express
brachyury and T-cell costimulatory molecules (MVA-
Brachyury-TRICOM) in advanced patients including colon
cancer patients. Heery et al. found that the MVA-brachyury-
TRICOM vaccine directed against a transcription factor known
to mediate EMT can be administered safely in patients with
advanced cancer and can activate brachyury-specific T cells
in vitro and in patients (277). Recently, a phase I dose-
escalation trial of Bavarian Nordic (BN)-CV301, which is a
recombinant poxviral vaccine targeting MUC-1 and CEA with
costimulatory molecules, was conducted to test the safety and
immune response of the vaccine. The trial found that the BN-
CV301 vaccine was safely administered to patients with
advanced cancer (278).

GVAX is a cellular immunotherapy induced by an allogeneic,
whole-cell, granulocyte macrophage colony-stimulating factor
that can induce the immune response of T cells to TAAs. A phase
2 study (NCT02981524) of the colon GVAX vaccine,
cyclophosphamide and pembrolizumab in 17 patients with
pMMR advanced CRC was carried out. The median PFS was
82 days (95% CI 48-97 days), and the median OS was 213 days
(95% CI 179-441 days) (288). Although GVAX/Cy plus PD-1 did
not achieve the main outcome expected in pMMR CRC,
biochemical reactions were observed in patients, providing a
certain method to cause insensitivity to PD-1 in pMMR CRC,
TABLE 5 | Summary of cancer vaccine and oncolytic virus therapies for colorectal cancer (CRC).

Regimen Target population Design Registration number Reference

AD5 CEA Vaccine CRC
Lung Cancer
Breast Cancer

Phase I, II NCT01147965 (274)

CEA (6D) VRP Vaccine (AVX701) CRC
Lung Cancer
Breast Cancer
Pancreatic Cancer
Colon Cancer

Phase I, II NCT00529984 Completed

CRC stage III Phase I NCT01890213 Completed
DC/PANVAC or GM-CSF CRC

Metastasis Cancers
Phase II NCT00103142 (275)

Modified vaccine Ankara–5T mCRC / ISRCTN54669986 (276)
GVAX Colon Vaccine mCRC Phase II NCT02981524 Completed
MVA-Brachyury-TRICOM CRC Phase I NCT02179515 (277)
Bavarian Nordic (BN)-CV301 CRC Phase I / (278)
December 2021 | Volume 12 | Art
icle 792691

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Tumor Microenvironment in Colorectal Cancer
which still needs to be further explored in combination with
other drugs. Although there is no cancer vaccine approved for
clinical use, a large number of clinical trials are ongoing and are
expected to further improve the therapeutic effect on CRC.

Tumor-Derived Exosomes Therapy
Tumor-derived exosomes have a certain potential antigenicity
and can induce a strong antitumor immune response (289).
Therefore, in addition to being a potential diagnostic marker,
some studies have found that these exosomes can play a role as
vaccines in CRC. A phase I clinical trial included 40 patients with
HLA-A0201+ CEA+ advanced CRC who were randomly treated
with AEX (ascites-derived exosomes) or AEX plus GM-CSF, and
both methods were safe and tolerable. The patients in the AEX
plus GM-CSF group showed a strong tumor-specific anti-tumor
cytotoxic T lymphocyte reaction. These data suggest that
immunotherapy with AEX plus GM-CSF can be used as an
effective vaccine for mCRC patients (290).
CONCLUSION AND PROSPECTS

The TME is a complicated landscape that is not only closely related
to the growth and development of CRC but also affects the treatment
and prognosis of patients with colorectal cancer. A variety of
cytokines, chemokines, matrix enzymes and immunosuppressive
Frontiers in Immunology | www.frontiersin.org 13
cells, such as Tregs and MDSCs, shape the immunosuppressive
environment of CRC. Although immunotherapy has achieved good
results in malignant melanoma and lung cancer, its results in CRC
are still poor. Therefore, it is particularly important to deeply study
the TME, reverse or prevent tumor immune resistance and find a
better way to treat CRC. At present, research on anti-PD-1
antibodies, adoptive cell immunotherapy, vaccine therapeutics and
oncolytic viruses is being carried out. We need to carry out more
clinical experiments, find more biomarkers for CRC, and make
rational use of the differences in immune typing and genotyping of
CRC such that suitable patients can benefit from immunotherapy.
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