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The future of improved immunotherapy against cancer depends on an in-depth
understanding of the dynamic interactions between the immune system and tumors.
Over the past two decades, the zebrafish has served as a valuable model system
to provide fresh insights into both the development of the immune system and the
etiologies of many different cancers. This well-established foundation of knowledge
combined with the imaging and genetic capacities of the zebrafish provides a new
frontier in cancer immunology research. In this review, we provide an overview of the
development of the zebrafish immune system along with a side-by-side comparison
of its human counterpart. We then introduce components of the adaptive immune
system with a focus on their roles in the tumor microenvironment (TME) of teleosts.
In addition, we summarize zebrafish models developed for the study of cancer and
adaptive immunity along with other available tools and technology afforded by this
experimental system. Finally, we discuss some recent research conducted using the
zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the
zebrafish will arise as one of the driving forces to help expand the knowledge of tumor
immunity and facilitate the development of improved anti-cancer immunotherapy in the
foreseeable future.
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INTRODUCTION

Dr. Harold F. Dvorak wrote in 1986 that solid tumors are comprised of two discrete compartments,
the malignant cells and the stroma in which they are dispersed, creating an environment that
resembles a “wound that does not heal” (Dvorak, 1986). One challenge in cancer treatment–
healing the “wound”–stems from the difficulty in fully understanding the mechanisms by which
cancer cells escape immunosurveillance in the tumor microenvironment (TME). In recent years,
immunotherapy has made revolutionary advances in our war against cancer. The successful
development and application of a newer generation of cancer immunotherapy, such as immune
checkpoint blockade and chimeric antigen receptor T cell (CAR-T), have led to improved
outcomes in cancers including hematologic malignancies, melanoma, lymphomas, and lung
cancers (Tang et al., 2017; Gong et al., 2018). Despite these progresses, immunologically “cold”
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tumors, encompassing a broad spectrum of solid tumors
such as breast cancer, pancreatic cancer, neuroblastoma, and
glioblastoma, present unique challenges for immunotherapy
(Bonaventura et al., 2019). Some of the underlying causes are
the lack of tumor antigens, a deficit in antigen-presenting B
cells, and/or impaired trafficking of activated T cells into the
TME (Bonaventura et al., 2019). For immunotherapies to become
highly effective for cancers, the following challenges must be
addressed: (1) enhancement of major histocompatibility complex
(MHC) expression in tumor cells for sufficient presentation of
tumor-associated antigens and (2) regulation of cytokines and
manipulation of the TME to improve effector T-cell infiltration
into “cold” tumors (Stambrook et al., 2017).

For decades, mice have represented the primary animal
model and major contributor to cancer research including tumor
immunity research (Callahan et al., 2014). However, this model
has limitations. One major drawback is that drugs’ effectiveness
and safety evaluated by pre-clinical murine models often cannot
be reproduced in clinical trials (Rossa and D’Silva, 2019).
This issue calls for the inclusion of additional animal models
to obtain preclinical data that can be replicated in multiple
systems in order to boost the success rates of clinical testing.
Another drawback of the murine model is the difference in
telomerase between human and mouse cells (Cheon and Orsulic,
2011). Specifically, most mouse cells have active telomerase
throughout adulthood while human adult cells have largely
inactive telomerase (Cheon and Orsulic, 2011). Interestingly,
the zebrafish possesses human-like telomeres, which gradually
decline with age, allowing its use to replicate similar genomic
instabilities seen in humans (Carneiro et al., 2016). Another
unique advantage of the zebrafish is that they are raised in
non-sterile conditions, making them physiologically relevant to
study immune responses (Iwanami et al., 2017). Coupled with
their imaging capacities, the zebrafish enables real-time and non-
invasive monitoring of tumor-immune cell interactions through
differential fluorescent labeling of cells.

Through exhaustive comparison of the human and zebrafish
genome assemblies, it was found that 82% of disease-causing
human genes have at least one zebrafish ortholog (Howe et al.,
2013). This level of conservation has led to the development
of a wide array of cancer models in zebrafish (Casey and
Stewart, 2018; Hason and Bartůněk, 2019; Casey and Stewart,
2020; Elliot, 2020). Through the years of ongoing research,
the pathological similarities of cancer and preservation of the
immune components have also been well established between
zebrafish and humans. For instance, many oncogenic pathways
are conserved in zebrafish along with similar development
processes in hematopoiesis and the immune system (Traver
et al., 2003; Davidson and Zon, 2004; White et al., 2013;
Gore et al., 2018; Casey and Stewart, 2020). Hence, the
zebrafish represents a physiologically relevant model system for
tumor immunity research. Here, we summarize the suitability
and unique advantages of the zebrafish in investigating
adaptive tumor immunity. We also provide a few examples
of early studies to demonstrate its feasibility in expanding the
knowledge of this field and its great potentials in advancing
cancer immunotherapy.

IN THE SAME SEA: HIGH
CONSERVATION OF THE IMMUNE
SYSTEM

The suitability of using the zebrafish to study tumor immunity
stems from the fact that hematopoiesis and most immune
components are highly conserved between humans and zebrafish,
beginning from the embryonic stage into adulthood (Figure 1).
Similar to humans, the zebrafish immune system is divided into
two main branches: innate and adaptive. Despite some differences
in the locations and timing of immune cell development, many
pathways in primitive and definitive hematopoiesis, lymphocyte
differentiation, along with key markers that define specific groups
of immune cells are shared between zebrafish and humans
(Traver et al., 2003; Iwanami, 2014; Gore et al., 2018).

Timing of Development
The development of the immune system begins with the
emergence of erythroid and myeloid lineages (Figure 1). In
humans, this occurs at the Carnegie Stage (CS) 7 and 9,
which correspond to 16–18.5 days post-conception (Ivanovs
et al., 2017). In zebrafish, primitive macrophages appear at
around 12 hours post-fertilization (hpf) (Wattrus and Zon,
2018). Interestingly, these primitive macrophages from the yolk
sac follow an expedited differentiation pathway, possessing the
ability to engulf pathogens and patrol the entire organism
(Herbomel et al., 2001; Novoa and Figueras, 2012). A portion
of these primitive macrophages will become neutrophils by 33
hpf (Harvie and Huttenlocher, 2015). During this primitive wave
of development, the zebrafish expresses multiple homologous
genes as mammals, including lmo2, gata1a, scl, and cul4a in the
erythroid lineage and pu.1 in the myeloid lineage (Yamada et al.,
2001; Dooley et al., 2005; Galloway et al., 2005; Zhu et al., 2005;
Yang et al., 2019).

Lymphoid cell development follows immediately after the
appearance of erythroid and myeloid cells, similar to what
has been observed at CS11 or 24 days post-conception in
humans (Herbomel et al., 1999; Tavian et al., 2010; Carroll
and North, 2014; Ivanovs et al., 2017). Markers of lymphoid
progenitors, such as rag1, rag2, lck, and ikaros, present in
the respective lymphoid progenitors and lymphocytes as those
observed in humans, and are all detectable at the end of the
primitive wave of hematopoiesis (Willett et al., 1997; Willett
et al., 2001; Langenau et al., 2004; Jing and Zon, 2011).
Although lymphoblast/lymphocyte markers arise as early as
3 days post fertilization (dpf), the zebrafish still rely on the
innate immune system for defense against external threats.
Starting at 4 dpf, four early hematopoietic markers, c-myb,
ikaros, runx2, and scl, begin to express in the kidney of the
zebrafish, marking the initiation of definitive hematopoiesis
in this location (Murayama et al., 2006). Meanwhile, T cells
develop in the thymus at a similar time and enter circulation at
around 8 dpf (Page et al., 2013). Around 20 dpf, B progenitor
cells develop in the dorsal aorta and posterior cardinal vein in
zebrafish (Page et al., 2013). Adaptive immunity in the form
of circulating lymphocytes does not fully mature until 3 weeks
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FIGURE 1 | Development of human and zebrafish immune systems. The development of the immune system starts with hematopoiesis at ∼17 dpf in humans and
12 hpf in the zebrafish, with myeloid and erythroid cells arising in the ALPM and ICM, respectively (Jagannathan-Bogdan and Zon, 2013). In humans, myeloerythroid
progenitor cells seed in the yolk sac before HSCs appear in the AGM at 27 dpf (Julien et al., 2016), a stage mirrored in zebrafish with the start of definitive
hematopoiesis at 30 hpf in the AGM and transition into the caudal hematopoietic tissue (Jagannathan-Bogdan and Zon, 2013). At 72 hpf, vital markers for early
lymphoid progenitors are present in developing immune organs, such as the early thymus and kidney in zebrafish (Willett et al., 1999; Langenau et al., 2004; Trede
et al., 2004). This corresponds roughly to the colonization of immune cells in the bone marrow and thymus in the human fetus at 10.5 wpf (Kissa et al., 2008).
Notably, at 72 hpf the zebrafish emerges from the chorion and into contact with the outside environment without fully developed CD4 + /CD8 + lymphocytes, which
appear later at 3 wpf (Lam et al., 2004). This is contrasted to humans, in which lymphocytes are detectable at 12–13 wpf, well before birth at 40 wpf (Tavian et al.,
2010). ALPM: anterior lateral plate mesoderm; ICM: intermediate cell mass; HSC: Hematopoietic stem cells; AGM: aorta-gonad-mesonephros.

post-fertilization (wpf) (Willett et al., 1999; Trede et al., 2004;
Novoa and Figueras, 2012). In humans, however, this lag does
not exist. At 12–13 weeks, CD4 + and CD8 + T cells
mature in the thymus of the developing human fetus and start
circulating throughout the body before birth (Haynes et al., 1988;
Jagannathan-Bogdan and Zon, 2013).

Locations of Development
The locations in which the hematopoietic lineages develop
between zebrafish and humans also differ somewhat
(Figure 1). In humans, hematopoiesis begins in the yolk
sac before colonization in the fetal liver and the production
of hematopoietic stem cells (HSCs) in the aorta-gonad-
mesonephros (AGM) region at around 27 dpf (Mikkola and
Orkin, 2006; Ivanovs et al., 2017). The definitive wave of
hematopoiesis that produces the adult immune system in
humans occurs in the bone marrow (Wattrus and Zon, 2018).
In zebrafish embryos, early hematopoiesis originates in the
intermediate cell mass (ICM) for erythroid cells and the anterior
lateral plate mesoderm (ALPM) for myeloid cells (Willett et al.,
1999; Berman et al., 2005; Hogan et al., 2006; Jing and Zon,
2011). Similar to humans, there is a transitional period in which
zebrafish hematopoiesis occurs in the AGM. Following this
stage, the HSCs move to the caudal hematopoietic tissue, which

functions comparably to the mammalian fetal liver. Finally, the
cells move into the definitive hematopoietic organs, the thymus
and kidney, from where the lymphoid cells begin to develop and
later emerge (Langenau et al., 2004; Burns et al., 2005; Murayama
et al., 2006). The definitive wave of hematopoiesis that produces
the adult immune system occurs in the zebrafish kidney as
opposed to the bone marrow in humans (Jagannathan-Bogdan
and Zon, 2013; Wattrus and Zon, 2018).

Conservation of Innate and Adaptive
Immunity
Like humans, the zebrafish possess two main branches of
immunity with fully fledged innate and adaptive components.
In addition, the fish also possess two primary lymphoid
organs, the kidney marrow (equivalent to the bone marrow
in mammals) and thymus which shrinks in adult fish as
in humans, as well as one secondary peripheral organ, the
spleen in adult fish (Wattrus and Zon, 2018). However, one
difference in terms of secondary immune organs is that the
zebrafish, like other teleosts, lack lymph nodes. Instead, the
vast majority of interactions between antigen-presenting cells
(APCs) and lymphocytes occur in the spleen (Renshaw and
Trede, 2012). Fish cells also express both MHC class I and
II molecules, indicating the conserved interactions between
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the innate and adaptive immune systems (Fischer et al.,
2013).

Zebrafish harbor the same fundamental system of innate
immunity with leukocytes such as the entire macrophage lineage
along with granulocytes like neutrophils and eosinophils (Traver
et al., 2003; Novoa and Figueras, 2012). These cells mount a
similar innate immune response as seen in mammals to local
infections with the expression of characteristic cytokines such as
TNF-α and IL-1β, which trigger the engulfment of pathogens by
macrophages (Secombes et al., 2001; Traver et al., 2003). So far,
22 putative toll-like receptors (TLRs), including orthologs of all
10 human TLRs, have been discovered in zebrafish (Kanwal et al.,
2014; Li et al., 2017).

In terms of adaptive immunity, as described above, zebrafish
possess functional T and B cells after 3–6 weeks of development.
T cell development occurs in the thymus of larval and adult
fish, while mature T cells reside in the kidney marrow of adult
fish. B cell development occurs in the pronephros of larval
fish and kidney marrow of adult fish (Langenau et al., 2004;
Trede et al., 2004). At 3 wpf, B cells become fully mature and
active, in tandem with T cells as they emerge from the thymus
(Lam et al., 2004). This indicates that the immune system in
zebrafish reaches a mature stage at 3–6 wpf (Lam et al., 2004).
However, one key difference exists between zebrafish and human
B lymphocytes: three main classes of immunoglobulins have been
discovered in zebrafish (IgD, IgM, and IgZ) versus five classes
in humans (IgA, IgD, IgE, IgG, and IgM) (Zimmerman et al.,
2011). Nevertheless, the overall similarities in the development
of zebrafish and human immune systems allow for experimental
modeling of human TME in zebrafish to visualize and understand
the complex interactions between immune and tumor cells.

SWIMMING TOGETHER: FISH PLAYERS
IN ADAPTIVE IMMUNITY

The status of adaptive immunity activation in the TME is
a key predictor of prognosis for solid tumors (Bonaventura
et al., 2019). Recent research seeks to understand the complex
relationship among tumor cells, immune cells, fibroblasts, and
endothelial cells, which together form the tumor mass (Hanahan
and Coussens, 2012). In this section, we review the role of T and
B lymphocytes in the TME and advocate for the utility of the
zebrafish due to its high conservation in immune and oncogenic
signaling cascades.

The Innate Immune System as a Helper
to Adaptive Immune Responses
Dendritic cells (DCs), macrophages, and neutrophils are the
three major players in human innate immunity, all capable of
infiltrating into the TME. DCs play a key role in presenting
exogenous tumor antigens to activate cytotoxic CD8 + T cells
for anti-tumor responses, with recent evidence indicating that
the suppressive TME can dampen the anti-tumor response
of DCs (Fu and Jiang, 2018). Macrophages and neutrophils
have been categorized into two broadly defined groups:
M1/M2 and N1/N2 (Fridlender et al., 2009). In general, M1

macrophages and N1 neutrophils are associated with TLR-
mediated responses/interferon signaling and exert strong pro-
inflammatory response against pathogens (Italiani and Boraschi,
2014; Murray, 2017). On the other hand, M2 macrophages
and N2 neutrophils are typically linked with T regulatory
cell (Tregs) responses and thus participate in cell proliferation
and tissue repair (Italiani and Boraschi, 2014; Murray, 2017;
Orecchioni et al., 2019; Wu et al., 2019). M1 macrophages and
N1 neutrophils secrete inflammatory cytokines that can activate
the adaptive immune system for anti-tumor responses (Selders
et al., 2017). In contrast, M2 macrophages and N2 neutrophils
secrete immunosuppressive cytokines (e.g., IL-10 and TGF-β)
and further suppress the immune system by producing CCL22
to recruit Tregs (Fridlender et al., 2009; Gajewski et al., 2013).
Macrophages and neutrophils can shift between the subtypes and
thus impact the TME in vastly different manners. In the initial
stages of tumor development, macrophages are believed to have
a prominent M1 profile, characterized by NF-κB expression and
capable of attacking the malignant cells (Mantovani and Sica,
2010). However, in clinically detectable tumors, the presence
of tumor-associated macrophages (TAMs) predict worse patient
outcomes for several types of cancer including those with breast
and pancreatic origin (Bingle et al., 2002; Campbell et al., 2011;
Zhang et al., 2012; Di Caro et al., 2016). Similarly, the presence
of tumor-associated neutrophils (TANs) has been linked to poor
prognosis across a wide range of cancers (Gentles et al., 2015).
TAMs and TANs promote both tumor initiation and progression
by enhancing angiogenesis, suppressing anti-tumor immunity,
and facilitating the migration and invasion of tumor cells (Qian
and Pollard, 2010; Argyle and Kitamura, 2018; Wu et al., 2019).
TAMs are generally believed to possess a M2 profile due to
their low expression of MHC class II (MHC-II) which reduces
the adaptive immune response and increases production of
angiogenesis-promoting elements such as vascular endothelial
growth factors (Mantovani et al., 2006; Mantovani and Sica,
2010).

Dendritic cells, macrophages, and neutrophils have all been
identified and characterized in zebrafish. Histochemical and
ultrastructural analyses confirmed that zebrafish DCs possess
the same morphological features and key canonical activities
such as antigen-presentation to T cells as its mammalian
counterpart (Lugo-Villarino et al., 2010). Because the expression
of macrophage expressed gene 1 (mpeg1) is tightly restricted
to macrophages in humans, transgenic lines, which express
the fluorescent reporter genes under the promoter of mpeg1,
have been developed to study macrophage-like cells in zebrafish
(Ellett et al., 2011). For instance, the Tg(mpeg1:mCherry) line
was crossed to the transgenic line driving eGFP expression
under the tumor necrosis factor-alpha promoter to identify and
visually track M1 (mCherry+; eGFP+) and M2 (mCherry+;
eGFP-) macrophages in zebrafish (Nguyen-Chi et al., 2015).
Moreover, upon induced inflammation through fin-wounding,
tumor transplantation, or Escherichia coli inoculation, zebrafish
M1 and M2 macrophages recapitulate the activation and gene
expression patterns as established in higher vertebrates (Nguyen-
Chi et al., 2015; Sanderson et al., 2015; Hasegawa et al., 2017;
Nguyen-Chi et al., 2017; Tsarouchas et al., 2018). Similar to
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what is observed in humans, zebrafish neutrophils possess
polymorphic nuclei, granules, and myeloid-specific peroxidase
coupled with NADPH oxidase (Lieschke et al., 2001; Henry et al.,
2013). Taken together, the presence of DCs, macrophages, and
neutrophils in zebrafish and their similarities to humans make the
zebrafish suitable to study innate immunity and their interactions
with adaptive immune cells in the TME.

T Lymphocytes
T lymphocytes are the major players in tumor immunity and
include different subtypes characterized by their respective
functions. Cytotoxic CD8 + T cells have become one of the
most studied subtypes due to the recent success in checkpoint
blockade therapies targeting CTLA-4 and PD-L1 signaling
pathways (Gong et al., 2018). The anti-tumor response of
CD8+T cells is canonically supported by CD4+Th1 helper cells
(Ostroumov et al., 2018). Additionally, the TME also harbors
other subtypes of CD4 + T lymphocytes, including Th2, Th17,
and CD4 + /Foxp3 + Tregs that aid in immune evasion in
most tumors (Speiser et al., 2016). T lymphocyte profiles within
the TME of solid tumors vary greatly among patients. The ratio
of one subtype versus another can predict treatment outcome
and rates of disease relapse (Fridman et al., 2012). With similar
subtypes and functions of T lymphocytes (Zhang and Wiest, 2016;
Bajoghli et al., 2019), the zebrafish represents a useful model to
facilitate understanding of the interplay among T lymphocyte
subtypes within the TME. Translating this knowledge to the
bedside can help improve immunotherapy and patient prognosis.

Cytotoxic CD8 + T Cells
Cytotoxic CD8 + T cells are derived from the αβ lineage of
T-cell receptors (TCR) and recognize antigens presented by
MHC-I molecules, serving as a major immune surveillance guard
against tumors. Elevated numbers of activated CD8 + T cells
within the TME are associated with positive outcomes among
patients with breast cancer, colorectal cancer, renal cancer, and
melanoma (Clemente et al., 1996; Tosolini et al., 2011; Gu-
Trantien et al., 2013; Bohner et al., 2019; Ye et al., 2019).
Cytotoxic CD8+ T cells recognize tumor antigens and physically
engage tumor cells through spatial proximity to eliminate them
(Pittet, 2009). Two main pathways are involved in this process:
(1) granule exocytosis through the family of serine proteases:
the perforin forms a pore on the membrane, allowing granule-
associated enzymes (GZM) to access the target cytosol; or (2)
apoptosis through cytotoxic effector ligands (e.g., TNFα or Fas)
(Martínez-Lostao et al., 2015). However, as the TME becomes
increasingly hostile over time, cytotoxic CD8 + T cells lose their
ability to suppress tumor growth (Joyce and Fearon, 2015). For
instance, lack of nutrients in the TME represents one disruptive
factor, leading to exhaustion of these T cells (Chang and Pearce,
2016). Genetic alterations that deregulate oncogenic pathways,
such as KRASG12D gain-of-function or TP53 loss-of-function
mutations, can result in the recruitment of large numbers of
suppressive myeloid cells into the TME to inhibit cytotoxic T cells
(Anderson et al., 2017). Thus, more research efforts are needed
to understand the TME beyond what activates and mobilizes
CD8+ cytotoxic T cells.

Cytotoxic CD8 + T cells have been characterized in teleosts
and demonstrated similarities to their human counterparts.
Using rainbow trout, analysis of CD8α + and CD8α− cells
outside the thymus indicate the existence of CD4-/CD8 + and
CD4 + /CD8− lymphocyte populations, which correspond to
CD8 + cytotoxic cells and CD4 + Th or Tregs (Takizawa et al.,
2011a). In addition, these CD8α+ cells also expressed high levels
of perforin and granulysin, indicating their effective cytotoxic
function. Research conducted in Ginbuna carp again indicates
the presence of CD8α + cells with perforin-mediated cytotoxic
activity (Toda et al., 2009; Toda et al., 2011). Upon allogeneic
insult, a novel granzyme was found upregulated on CD8+ cells in
Ginbuna carp (Matsuura et al., 2014). Moreover, the cell-extrinsic
apoptosis pathway through the Fas ligand has been detected in
the zebrafish, but whether it is expressed in T cells is yet to
be determined (Eimon et al., 2006). In Japanese flounder, the
Fas ligand has been identified in T-like lymphocytes (Yamaguchi
et al., 2019). Overall, cell-cell contact is a key characteristic of
cytotoxic CD8 + T cells in the TME and this feature is observed
in teleosts (Toda et al., 2011). CD8α + cells have been observed
infiltrating the TME of salmon with intestinal tumors, which were
induced from chronic gut inflammation (Bjørgen et al., 2019).

CD4 + Lymphocytes
The functions of CD4 + T lymphocytes in the TME are
diverse and have been characterized to varying degrees. This can
be attributed to the fact that most non-hematological tumors
lack the expression of MHC-II molecules, which CD4 + T
cells utilize for antigen presentation. Moreover, CD4 + T cells
include various subtypes: Th1, Th2, Th17, and Tregs, which
exert different and even opposite roles. In teleosts, there are
two cd4-like paralogs, cd4-1 and cd4-2. Their encoded proteins,
which are widely coexpressed in zebrafish and rainbow trout
(Yoon et al., 2015; Takizawa et al., 2016), differ in Ig domain
structure. Cd4-1 exhibits a four Ig domain structure similar
to mammalian CD4 (Castro et al., 2011). Cd4-2 has fewer Ig
domains and its functional significance is currently unknown
(Takizawa et al., 2016). Recent studies show that Cd4-1 + T
cells in zebrafish infected with pathogens express Th1-, Th2-, and
Th17-associated transcription factors and cytokines, indicating
that T cell functions are well conserved in bony fish (Yoon et al.,
2015; Maisey et al., 2016; Takizawa et al., 2016).

CD4+ Th1 Cells
The Th1 subtype produces large amounts of IFNγ, a cytokine
that suppresses tumor growth by promoting proliferation and
differentiation of CD8 + cytotoxic T cells and enabling the
priming of APCs against tumor antigens (Shankaran et al., 2001;
Huang et al., 2007; Ostroumov et al., 2018). Differentiation of Th1
cells is triggered by their exposure to the cytokines such as IFNγ

and IL-12 and is characterized by the expression of the master
transcription factor T-bet (Kanhere et al., 2012). IFNγ secreted
by Th1 subset of cells can recruit natural killer cells and trigger
cytotoxicity of tumor-infiltrating macrophages thus preventing
tumor progression and angiogenesis (Haabeth et al., 2011; Kim
and Cantor, 2014). This Th1 subset also aids in the clearance
of pre-malignant, senescent hepatocytes working in conjunction
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with myeloid cells to prevent the development of liver cancer
(Kang et al., 2011).

Both Th1 and Th2 subtypes are present in teleosts,
similar to those observed in humans. T-bet, the transcription
factor expressed in the Th1 subtype, has been identified and
characterized in zebrafish (Mitra et al., 2010). Along with this,
IFNγ, the characteristic cytokine of CD4 + Th1 cells, was
identified for the first time outside of mammals in zebrafish
(Igawa et al., 2006). Two experiments have been conducted in
teleosts showing a generalized Th1-type response to antigen
challenge. The zebrafish experiment showed that Cd4-1+ T cells,
when exposed to a human antigen, induced T-bet and had higher
expression of IFNγ (Yoon et al., 2015). A similar experiment
conducted in rainbow trout revealed that Cd4 + lymphocytes
expressed higher levels of IFNγ, IL-2, and IL-22 after being
challenged with a bacterial pathogen (Takizawa et al., 2016).
These results indicate a meaningful Cd4 + Th1 response in
teleosts. Further research in zebrafish should seek to better
understand Th1 cells beyond IFNγ production.

CD4+ Th2 Cells
The Th2 subtype secretes the cytokines IL-4, IL-5, and IL-
13 and is characterized by the expression of the transcription
factor GATA3 (Kanhere et al., 2012). Differentiation from naïve
CD4 + into the Th2 subtype is regulated by IL-4 (Zheng and
Flavell, 1997). Through studies in an airway hypersensitivity
model, the transmembrane protein T cell immunoglobulin and
mucin domain 1 (TIM-1) was found to be critical for Th2-
type immune responses (Curtiss et al., 2012). Treatment with
the TIM-1 antibody in the murine airway model resulted in the
proliferation of Th2 cells, while the antibody against TIM-4, the
ligand for TIM-1, induced T-cell proliferation in general (Meyers
et al., 2005). Th2 cells can exert anti-tumor effects by recruiting
both B cells and eosinophils into the TME (Nishimura et al., 1999;
Mattes et al., 2003).

Compared to the Th1 subtype, Th2 cells in teleosts have been
characterized with greater details. Dee et al. (2016) generated a
zebrafish transgenic line, Tg(cd4-1:mCherry), to monitor Cd4-
1+ cells in different organs. The authors identified Th2-like cells
in the gills, which express gata3 and il-4/13b, consistent with
what was found in salmonids (Takizawa et al., 2011b). They also
found that Th2-like cells infiltrated into the TME of zebrafish
melanoma. However, unlike the Th2 cells observed in the gills,
these cells did not express il-4/13b, indicating heterogeneity of
zebrafish Th2 subtype, a characteristic also observed in mammals.
As previously seen in humans, blockade or knockdown of TIM-
1 and TIM-4 in zebrafish significantly decreased the activation
of Cd4 + T cells together with increased proliferation of Th2
subtype and B cells, indicating a key role of these two proteins
in regulating CD4+ Th2 subtype (Xu et al., 2016).

CD4+ Th17 Cells
Differentiation from naïve CD4+ T cells into the Th17 subtype is
positively regulated by the cytokines TGF-β, IL-6, and IL-23 (Zhu
et al., 2010). Th17 cells express the transcription factor retinoid-
related orphan receptor RORγt and produce the characteristic
cytokines IL-17A, IL-17F, and IL-22. Th17 cells have been

shown to induce auto-immune injury in tissues, a function
opposite from Tregs (Bettelli et al., 2006). Although chronic
inflammation is often carcinogenic, Th17 cells can exert powerful
anti-tumor effects. A study using the murine model shows that
Th17 polarized cells were highly effective in destroying tumors
(Muranski et al., 2008). Additionally, adoptive T cell therapy
utilizing Th17 polarized cells can induce cytotoxic CD8 + T
cells (Martin-Orozco et al., 2009). In both studies, the anti-tumor
effects of Th17 cells are even stronger than the control Th1 cells.
Coupled with their long-lived and stem cell-like nature, Th17
cells are critical in anti-tumor responses (Muranski et al., 2011).

Evidence supports the presence of Th17 cells in teleosts,
particularly in zebrafish. Firstly, the ROR family is present
in zebrafish, including the RORγt transcription factor critical
for Th17 cell differentiation (Flores et al., 2007; Monte
et al., 2012; Zhang et al., 2013). Five different forms of IL-
17 are also found in zebrafish, and they are upregulated
in organs of the adaptive immune system such as the
spleen and kidney marrow upon lipopolysaccharide (LPS)
stimulation (Gunimaladevi et al., 2006). Transcriptome profiling
analysis revealed that zebrafish vaccinated with an attenuated
bacterial pathogen upregulated key Th17 cytokines, such
as IL-17A and IL-22 together with RORγt (Zhang et al.,
2013). This demonstrates a clear causal relationship between
antigen challenges and the expression of these characteristic
Th17 markers. Interestingly, large numbers of Th17-like
cells expressing il17a/f1, il17a/f3, il22, and rorca are found
recruited to the gut of a zebrafish model of autoimmune and
inflammatory diseases, confirming their recognition of self-
antigens (Coronado et al., 2019).

CD4+ Tregs
Tregs, another subtype of CD4 + T cells, produce
immunosuppressive cytokines such as TGFβ and IL-10, and is
characterized by the expression of the transcription factor Foxp3a
(Kim and Cantor, 2014; Speiser et al., 2016). Tregs normally
prevent excessive autoimmune responses and promote wound
healing. In the TME, they suppress CD8 + cytotoxic T cells and
support angiogenesis and metastasis of tumors (Zou, 2006). In
fact, a significant proportion of tumor-infiltrating CD4 + cells
are Tregs (Kim and Cantor, 2014). A high ratio of Tregs to
cytotoxic CD8 + T cells is correlated with poor prognosis of
patients with multiple cancer types, including pancreatic cancer,
ovarian cancer, and colorectal cancer (Preston et al., 2013; Tang
et al., 2014; Bencsikova et al., 2019). Hence, the key to the
treatment of solid tumors is to suppress the recruitment of Tregs
to the TME or to inhibit their immunosuppressive functions.

It has been demonstrated that Foxp3a-expressing Treg-like
cells exist in zebrafish (Quintana et al., 2010; Kasheta et al., 2017).
Along with a transgenic line that marks out these Treg-like cells
by expressing eGFP-fluorescent reporter gene under the zebrafish
foxp3a promoter, a mutant zebrafish line with loss-of-function of
foxp3a has also been generated (Kasheta et al., 2017). Using these
tools, Kasheta et al. (2017) found that foxp3a-/- mutant zebrafish
exhibit overall inflammation in tissues, resembling severe human
autoimmune disorders. Using the Tg(cd4-1:mCherry) transgenic
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zebrafish, Dee et al. (2016) demonstrated the existence of Treg-
like cells in the gut mucosa. Research studying Tregs’ function
in organ regeneration has revealed many potential roles of Tregs
in tumorigenesis. When zebrafish were used to model spinal
cord, heart, and retina regeneration, CD4 + Treg -like cells
were found to quickly migrate to the damaged areas to aid in
tissue regeneration (Hui et al., 2017). The ablation of these cells
significantly impaired the regenerative capabilities of the tissue
(Hui et al., 2017).

TCRγδ T Cells
The decision between the αβ and γδ fates is one of the first
made by T cell progenitors in the thymus. The two groups
diverge from the same progenitors based on the strength of
TCR signaling: with the strong one generating γδ cells and
the weak one generating αβ cells (Ciofani and Zuniga-Pflucker,
2010; Wong and Zuniga-Pflucker, 2010; Zarin et al., 2015).
αβ cells are defined by successful rearrangement of the TCRβ

loci and their progression through a CD4/CD8 double-positive
stage, while the γδ subtype rearranges the TCRγ and TCRδ

loci and avoids this double-positive stage (Kreslavsky et al.,
2010; Zarin et al., 2015). The TCRαβ lineage comprises the
vast majority of T cells in the body, while only 2–10% of
the total T lymphocytes exhibit γδ characteristics (Sheridan
et al., 2013). Unlike CD4+ or cytotoxic CD8 + T lymphocytes,
these rare γδ T cells are not restricted to antigens presented
by a particular class of MHC molecules and possess both
cytotoxic and immune-stimulating properties. For instance, they
express cytotoxic ligands (e.g., FasL) and have capacities of both
phagocytosis and antigen presentation (Lawand et al., 2017; Zhao
et al., 2018). Indeed, the high frequency of γδ cells is associated
with positive prognostic outcomes across 25 different types of
cancer, especially among solid tumors (Gentles et al., 2015). This
association was even stronger than that observed for cytotoxic
CD8 + T cells, highlighting the anti-tumor effect of γδ cells in
the TME (Gentles et al., 2015).

Distinctive γδ T cells have been observed in teleosts and
characterized in zebrafish. The TCRγ locus has been identified in
the zebrafish genome assembly using conserved elements among
species (Seelye et al., 2016). Wan et al. (2017) found that zebrafish
γδ T cells exhibit the characteristic CD4-; CD8+ surface markers
with similar flow cytometry scatter patterns/morphology as seen
in human γδ cells. Moreover, both the non-specific phagocytic
and antigen-presenting characteristics are also preserved in the
zebrafish (Wan et al., 2017). The presence of TCRγ was also found
in the gut mucosa of other teleosts, such as the sea bass (Picchietti
et al., 2011). The above evidence indicates that the zebrafish is
suitable for in-depth studies of γδ T cells in the TME.

B Lymphocytes
The role of B cells in the TME is less understood compared to T
cells. Across all subtypes of breast cancer, nearly 60% of tumor-
infiltrating lymphocytes within the TME were found to be B
cells (Coronella-Wood and Hersh, 2003). A recent study, which
examined the prognostic significance of tumor-infiltrating B and
plasma cells, showed that both types were associated with either
positive or neutral outcomes across a wide array of solid-tumor

cancer types, including lung, colorectal, gastric, ovarian, and
hepatocellular cancers (Wouters and Nelson, 2018). However,
when the disease stage was taken into consideration for oro- and
hypopharyngeal cancer, B cells were associated with a positive
prognosis in patients with early disease but a negative prognosis
for those with advanced disease (Wouters and Nelson, 2018).

Different subtypes of B cells can have opposite roles in the
TME, either tumor-promoting or suppressing (Shen et al., 2016;
Yuen et al., 2016; Largeot et al., 2019). Human mature B cells in
the periphery include two main groups: follicular and marginal
zone B cells. Follicular B cells can differentiate into IgG, IgE,
and IgA antibody-secreting cells (ASCs) with the help of T cells,
and can also form IgM ASCs in a T-cell independent manner
(Allman and Pillai, 2008). Marginal zone B cells generally serve
in an innate-like capacity, while pathogenic triggers such as LPS
can induce them to become short-lived plasma cells (Allman and
Pillai, 2008). In addition, specific subtypes of B cells expressing
CD19, CD20, CD11c, and B220 can also function as APCs
(Largeot et al., 2019). Beyond antigen presentation, CD19 + B
cells can also express the death ligand FasL to directly induce
cytotoxicity when stimulated by IL-17A (Lu et al., 2016). These
same cells are negatively regulated by IL-10 (Tao et al., 2017). IL-
21 can also stimulate B cells within the TME to produce granzyme
B (Jahrsdörfer et al., 2006). Finally, B regulatory cells (Bregs) are a
small population of B cells participating in immunomodulation.
They exert immunosuppression by enhancing the activity of
Tregs, secreting immunosuppressive cytokines such as IL-10,
and suppressing the effector CD4+ and CD8 + T cells via
the production of TNFα (Olkhanud et al., 2011; Sarvaria et al.,
2017). Evidence from multiple studies indicates that Bregs are
capable of shielding cancers from the immune system (Schioppa
et al., 2011; Murakami et al., 2019). Bregs have also been shown
to induce tissue heterogeneity in melanoma through crosstalk
between tumor-produced fibroblast growth factor 2 and B-cell
origin insulin growth factor 1 to reduce the effectiveness of
kinase-inhibitor therapies (Somasundaram et al., 2017).

B cells have been characterized in zebrafish. While IgM and
IgD are traditionally considered as the main surface markers
for B cells in teleosts, another B cell marker, IgZ, was recently
identified in zebrafish immune tissues such as the kidney, spleen,
and gills after the LPS challenge (Hu et al., 2010). Page et al.
(2013) characterized the development and behavior of IgM + B
cells in zebrafish. Utilizing three fluorescent transgenic lines,
they defined the existence of pro-B (Pax5+Rag2+IgM−) and
immature/mature (Pax5+Rag2−/loIgM+) B cells in the kidney
marrow of adult zebrafish (Page et al., 2013). Furthermore, they
characterized plasma B cells and discovered a population of
CD45-Blimp1 + cells that express plasma-based characteristic
markers, such as xbp1, cd40, and irf4 (Page et al., 2013). Liu
et al. applied a fluorescent cd79/cd79a transgenic reporter line to
show that the pre-B cell stage does not exist in zebrafish, a key
difference in B cell development between zebrafish and humans
(Liu et al., 2017). Further work indicates that CD79a and CD22
can serve as meaningful markers to distinguish multiple stages of
B cell development in teleosts (Liu et al., 2017; Peñaranda et al.,
2019). Research examining gastrointestinal tumors in salmonids
detected infiltration of IgM + B cells in the tumor stroma
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and also in metastatic outgrowths in the liver, mirroring what
was observed in certain human cancers (Bjørgen et al., 2019).
The above evidence supports the suitability of the zebrafish for
studying B cell immunity in the TME.

TECHNOLOGICAL ADVANCES FOR THE
ZEBRAFISH

Among vertebrate models, the zebrafish possesses unique
advantages for tumor immunity research. The high fecundity
of female zebrafish provides hundreds of progeny ideal for
statistical analysis, while their external reproduction provides
unprecedented access to study the early development of the
immune system and cancer (Zon and Peterson, 2005). The
optical clarity of embryos and juvenile fish together with the
development of highly transparent Casper adult fish enables live
imaging studies of tumor-immune cell interactions. Moreover,
significant advances have been made over the years to develop
the technology needed for zebrafish research, including an
assortment of transgenesis and mutagenesis techniques for gene
modulations, as well as the ability to conduct large-scale genetic
and chemical screens using zebrafish (Suster et al., 2009).

Transgenesis
Early transgenic zebrafish were created by microinjecting
linearized plasmid DNA into one-cell-stage embryos (Stuart et al.,
1988; Amsterdam et al., 1995). However, this technique was
limited by low rates of transmission of the transgene to the
progeny (Suster et al., 2009). In recent years, the development
of meganuclease or transposon-mediated transgenesis has led
to the generation of stable transgenic zebrafish (Michailidou
et al., 2009; Chen et al., 2014). Furthermore, the application of
conditional transgenesis allows for the inducible expression of
target genes, such as oncogenes like xmrk and krasG12D (Li et al.,
2012; Enya et al., 2018). One example is the Cre/lox system, which
can be combined with the GAL4/Upstream activating system
(GAL4/UAS) to regulate oncogene expression under tissue-
specific promoters (Santoriello et al., 2010; Enya et al., 2018; Park
and Leach, 2018). Another example is the LexPR system, which
initiates the transcription of a specific reporter gene through
binding to an operon (Kenyon et al., 2018). Finally, the Tet-
On system allows the spatial induction of an oncogene under
a tissue-specific promoter (Li et al., 2012). The combination of
zebrafish transgenesis and its prolificacy has led to the generation
of numerous transgenic lines rapidly in a cost-effective manner.

Targeted Gene Inactivation and Genome
Editing
Gene inactivation and editing provide another means to modify
gene expression in zebrafish. Endonucleases such as transcription
activator-like effector nucleases have been utilized to induce
targeted double-stranded DNA breaks in tumor suppressor genes
to trigger tumorigenesis (Sander et al., 2011; Dahlem et al.,
2012; Ignatius et al., 2018). Another approach to inactivate
genes in zebrafish is the application of zinc-finger proteases
to induce double-stranded breaks followed by non-homologous

base-pairing (Payne and Look, 2009). Recently, the cluster
regulatory interspaced short palindrome repeats CRISPR/Cas9
system has become the major method for zebrafish gene
editing. This advanced technique can induce double-stranded
DNA cleavages to delete DNA sequences or introduce genetic
modifications in highly targeted locations within the genome.
The high efficacy of the CRISPR/Cas9 system, combined with
the ease of microinjection of the one-cell-stage embryos, allows
for simultaneous targeting of multiple genes in zebrafish to
provide insights into how each lineage develops. Furthermore,
CRISPR/Cas9 manipulates the genome in a highly controlled
manner with up to 50% accuracy (Liu et al., 2019). Collectively,
these techniques have enabled the efficient procurement of
genetic editing in zebrafish.

Xenografts
Xenografts are animals injected with human cells. While the
murine xenografts take weeks or even months to establish,
it only takes days to weeks to establish zebrafish xenograft
(Xiao et al., 2020). Zebrafish are often transplanted as embryos
with fluorescently labeled tumor cells, including patient-derived
cancer cells (Au-Kemp et al., 2009; Veinotte et al., 2014; Hason
and Bartůněk, 2019; Vargas-Patron et al., 2019). Due to the
absence of the adaptive immune system at the early embryonic
stage, tumor cell engraftment can occur in zebrafish easily,
generating multiple models to study metastasis of human tumor
cells including those from patients (Marques et al., 2009; Cabezas-
Sainz et al., 2018; Xu et al., 2018). A recent example shows that
zebrafish xenografts can serve as a fast, cost-effective preclinical
tool with live imaging capabilities to investigate CAR T cell-
mediated killing of human cancer cells in B cell malignancies
(Pascoal et al., 2020). Although zebrafish are normally reared at
an optimal temperature of 26–28◦C, xenografted embryos can
tolerate an upper limit of 37◦C to simulate conditions within the
human body (Cabezas-Sainz et al., 2018; Morgan et al., 2019; Yan
et al., 2019). Despite the minimal effect on the proliferation of
xenografted cells (Cabezas-Sainz et al., 2018; Xu et al., 2018), it is
unknown whether these cells experience higher rates of mortality.
A more detailed characterization is required to fully understand
the properties of these transplanted tumor cells. Additionally,
the field will benefit from fine-tuning husbandry techniques to
improve zebrafish tolerance of higher temperatures.

For the adult zebrafish, human tumor cells can be introduced
through intraperitoneal injection (Patton et al., 2005).
However, successful transplantations can only occur in the
immunocompromised zebrafish (Vargas-Patron et al., 2019).
Similar to mammals, lymphocytes and APCs in adult zebrafish
recognize the transplanted tumor as foreign cells and eliminate
them (Langenau et al., 2004; Dee et al., 2016). APCs present
tumor-antigens through MHC-II molecules to activate Cd4 + T
cells and initiate anti-tumor immune responses (Wittamer
et al., 2011; Dee et al., 2016). Hence, T cells must be ablated in
recipient zebrafish through irradiation, chemical treatments,
or mutagenesis to ensure engraftment (Langenau et al., 2004).
To facilitate the use of zebrafish for cancer research, a panel
of immunocompromised zebrafish mutants in the transparent
Casper zebrafish background have been generated over the past
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few years (Table 3) (Moore et al., 2016; Tang et al., 2017). The
zebrafish xenografts allow for therapeutic testing of compounds
in a rapid and cost-effective manner. Moreover, coupled with the
imaging technique, zebrafish xenografts represent valuable tools
to study human tumor cell behavior, including proliferation,
apoptosis, invasion, and interaction with host cells (Zhao et al.,
2011; Jung et al., 2012; Drabsch et al., 2013; Pudelko et al., 2018;
Vargas-Patron et al., 2019).

Small Molecule Screens
Due to their high fecundity and small size, zebrafish are
suitable for small molecule screens to identify anti-cancer
compounds, and zebrafish xenografts can even be used to screen
for personalized therapeutics (Rennekamp and Peterson, 2013;
Veinotte et al., 2014). The rapid development of zebrafish allows
for the simultaneous assessment of drug efficacy and toxicity in
a high-throughput manner (Williams and Hong, 2016; Hason
and Bartůněk, 2019; Yan et al., 2019). One successful example
of using zebrafish xenografts for small molecule screening is
the identification of the drug, clotrimazole, for the treatment
of melanoma (Precazzini et al., 2020). This drug, when co-
administered with specific inhibitors targeting oncogenes such
as Ras expression in melanoma, blocked transformed malignant
cells from proliferating (Precazzini et al., 2020). Other researchers
have also utilized zebrafish for small molecule screens to identify
compounds that disrupt specific biological pathways important
to cancer initiation, progression, or maintenance (Gore et al.,
2018; Letrado et al., 2018; Lam and Peterson, 2019). Along with
the discovery of novel oncogenic pathways that these compounds
target, zebrafish chemical genetics have led to an improved
understanding of tumor progression and treatment resistance
(Gallardo et al., 2015; Dang et al., 2016).

Advanced Imaging Techniques
The optical clarity of the zebrafish during the embryonic to
juvenile stage allows for high-resolution imaging. The generation
of Casper fish, which lack pigmentation and have thin muscle
tissues, extended this imaging capacity to adult zebrafish (White
et al., 2008; Blackburn et al., 2011). A broad spectrum of
fluorescent proteins can be exploited for differential labeling and
visualization of stromal and tumor cells, including vasculatures
and different types of immune cells (Oralova et al., 2019). Live
imaging in zebrafish unfolds the process of neovascularization,
morphology of tumor cells, and their movement, as well as the
dynamic interactions with their surrounding tissues (Blackburn
et al., 2011; Ignatius and Langenau, 2011). Low-resolution
fluorescent macroscopes equipped with different LED lights and
filters enable both still imaging and live-video recording of up
to 30 zebrafish simultaneously (Blackburn et al., 2011). Laser
confocal microscopy provides images with high resolution and
contrast, but images are procured one pixel at a time, leading
to photo-toxicity over time (Ignatius and Langenau, 2011).
A spinning-disc confocal microscope that captures multiple
pixels at once can ameliorate these drawbacks. Alternatively,
the two-photon microscopy allows for time-lapse images of
deep cell structures at high-resolution with long exposure times
(Ignatius and Langenau, 2011).

Genetic Screens
Over the past two decades, a large body of work on zebrafish
has been focused on genetic screens, uncovering numerous genes
critical for tumorigenesis. The genetic screens were either based
on chemical or insertional mutagenesis. For the former, the
chemical ENU was often used as the mutagen, leading to the
discovery of many zebrafish mutant lines for cancer research
(Driever et al., 1996; Haffter et al., 1996; Shive et al., 2010). On
the other hand, insertional mutagenesis screens utilize exogenous
DNA or retroviruses as the mutagens (Sivasubbu et al., 2007).
An additional screening method exploited by zebrafish is target-
induced local lesions in genomes, a reverse genetic strategy
that can identify point mutations of the gene of interest (Da
Costa et al., 2014). More recently, screens through transgenic
overexpression of genes, such as those using the MiniCoopR
vectors, have been conducted to identify genetic modifiers of
a known tumor phenotype (Iyengar et al., 2012; Ablain et al.,
2018). All of these screening methods have led to the generation
of a panel of zebrafish mutants that develop tumors and the
identification of novel tumor suppressor genes, oncogenes, and
genes that modify the existing tumor phenotype.

AVAILABLE RESOURCES ENABLING
ZEBRAFISH FOR TUMOR IMMUNITY
RESEARCH

Along with the technological advances, there are a number
of resources suitable for tumor immunity research using
the zebrafish. Among them, transgenic fluorescent reporter
lines help label and track different types of immune cells,
especially those participating in adaptive immunity (Table 1).
In addition, researchers have also generated and validated a
panel of antibodies recognizing zebrafish T and B cells as
well as mutant lines in which these adaptive immune cells
are depleted (Tables 2, 3). Finally, two dozen zebrafish models
of cancer have already showcased the power of this organism
in understanding disease etiologies (Table 4). Together, these
valuable resources opened the door for researchers to probe
specific interactions between immune and tumor cells in various
types of cancers, and to expand our understanding of the TME
and adaptive tumor immunity.

Transgenic Lines for Tracking Adaptive
Immune Cells
Transgenic fluorescent reporter lines represent powerful tools to
track immune cells and their behaviors in the TME (Table 1). As
the conserved genes governing the development of the adaptive
immune system are identified, multiple fluorescent reporter
lines have been rapidly generated to mark different immune
components in zebrafish using their respective promoters.
Similar to the reporter lines for the innate immune system,
such as Tg(mpeg1:eGFP) for macrophage and Tg(mpx:GFP) for
neutrophils (Ellett et al., 2011; Wang et al., 2014), reporter
lines for the adaptive immune system have been utilized to
understand the development of lymphocytes in vertebrates
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TABLE 1 | Transgenic fluorescent reporter lines for tracking adaptive immune cells.

Promoter Fluorophores Possible cell type labeled References

lck eGFP; dsRed Lymphoid progenitors (T/B cells, NK cells, dendritic
cells)

Langenau et al., 2004; Lugo-Villarino
et al., 2010; Borga et al., 2019;

Carmona et al., 2017

ikaros eGFP Lymphoid progenitors Bajoghli et al., 2009

rag2 mCherry Lymphoid progenitors (T/B cells) Langenau et al., 2003

rag1 eGFP Lymphoid progenitors (T/B cells) Jessen et al., 1999

cd4 mCherry CD4 + T cells and macrophages Dee et al., 2016

foxp3a eGFP, RFP T regulatory cells Hui et al., 2017

mhc2dab eGFP B-cells/myeloid cells Wittamer et al., 2011

cd45 dsRed T-cells/myeloid cells Wittamer et al., 2011

IgM eGFP Mature IgM + B cells/plasma cells Page et al., 2013

cd79a eGFP Persistent B cell marker beginning at pro-B cells Liu et al., 2017

cd79b eGFP Marker for B cells beginning at pro-B but less
effective for mature B cells

Liu et al., 2017

TABLE 2 | Antibodies recognizing markers of zebrafish immune cells.

Antigen Type Reactive species Host species Isotype References

CD4-1 Monoclonal Zebrafish, Gibuna crucian carp Rat IgG2a Miyazawa et al., 2018

CD8α Monoclonal Zebrafish, Gibuna crucian carp Rat IgG2a Miyazawa et al., 2018

CD4-1 Polyclonal Zebrafish Rabbit IgG Yoon et al., 2015

TCR-α Polyclonal Zebrafish Rabbit/mouse IgG Wan et al., 2017

TCR-β Polyclonal Zebrafish Rabbit/mouse IgG Wan et al., 2017

TCR-γ Polyclonal Zebrafish Rabbit/mouse IgG Wan et al., 2017

TCR-δ Polyclonal Zebrafish Rabbit/mouse IgG Wan et al., 2017

CD154 Polyclonal Zebrafish Rabbit/mouse IgG Gong et al., 2009

CD40 Polyclonal Zebrafish Rabbit/mouse IgG Gong et al., 2009

IgM Polyclonal Zebrafish Rabbit/mouse IgG Gong et al., 2009

CD80/86 Polyclonal Zebrafish Rabbit/mouse IgG Zhu et al., 2014

CD83 Polyclonal Zebrafish Rabbit/mouse IgG Zhu et al., 2014

CD4 Polyclonal Zebrafish Rabbit IgG Zhu et al., 2014

Lcp1 Polyclonal Zebrafish Rabbit IgG Redd et al., 2006

TABLE 3 | Immunodeficient zebrafish mutants.

Genotype Description Background of fish ZFIN ID References Access

rag1t26683 No T cells, no B
cells

AB ZDB-FISH-150901-17632 Wienholds et al., 2002;
Tokunaga et al., 2017

Nüsslein-Volhard Lab

rag2E 450 fs No T cells, low B
cells

AB fb101 Tang et al., 2014 Langenau lab

rag2E 450 fs No T cells, low B
cells

Casper fb101 Tang et al., 2016 Langenau lab

jak3 P369 fs No T cells, no NK
cells

Casper fb102 Moore et al., 2016 Langenau lab

prkdc D3612 fs No T or B cells Casper fb103 Moore et al., 2016 Langenau lab

il2rga Y 91 fs No T cells or NK
cells

Casper fb104 Tang et al., 2017 Langenau lab

il2grb I30 fs Not characterized Casper Pending Pending Langenau lab

zap70 Y 442 fs No T cells Casper y442 Moore et al., 2016 Langenau lab

prkdcfb103/fb103 No T, B, or NK cells Casper Pending Yan et al., 2019 Langenau lab

il2rgafb104/fb104

c-myb (t25127) No myeloid,
erythroid, or

lymphoid cells

Soza-Ried et al., 2010 Boehm lab
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TABLE 4 | Zebrafish cancer models.

Cancer type Technology used
to generate tumor

phenotype

Genotype Fish background Cell type References

Peripheral nerve-sheath tumor
(PNST), angiosarcoma, germ cell
tumors, leukemia

TALENs tp53del/del CG1 syngeneic Multiple Ignatius et al., 2018

PNST, rhabdomyosarcoma,
myeloproliferative disorder,
intestinal hyperplasia

Heat-shock induced
Cre-Lox

β-actin:LoxP-EGFP-LoxP-
kRASG12D;
hsp70:Cre

WT Le et al., 2007

Epithelioid sarcoma,
angiosarcoma, undifferentiated
pleomorphic sarcoma

CRISPR-CAS9 atrx +/del tp53del/del , nf1del/del Multiple Oppel et al., 2019

Melanoma Tol2 transgenesis mitfa:BRAFV 600E tp53M214K Melanocytes Patton et al., 2005

Tol2 transgenesis mitfa:EGFP-NRASQ61K tp53M214K Dovey et al., 2009

I-SceI
meganuclease

mitfa:HRASG12V ; mitfa:eGFP WT Michailidou et al., 2009

I-SceI
meganuclease

mitfa:HRASG12V ;
mitfa:mCherry

WT Michailidou et al., 2009

Inducible LexPR mitfa:LexPR-Cerulean x
Crysβ:eCFP-LexOP:mCherry-

NRasQ61K

WT Kenyon et al., 2018

Gal4-UAS kita:GalTA4; UAS:mCherry;
UAS:eGFP-HRASG12V

WT Santoriello et al., 2010

Inducible LexPR kita:LexPR-Cerulean x
Crysβ:eCFP-LexOP:mCherry-

NRasQ61K

WT Kenyon et al., 2018

Non-melanoma skin cancer Tol2 transgenesis krt4:c-mycT 58A;
cdc6:mCherry

WT Epidermal cells Chen et al., 2014

Hepatocellular carcinoma Tol2 transgenesis fabp10a:RPIA; myl7:GFP Hepatocytes Chou et al., 2019

Tol2 transgenesis fabp10:rtTA2sM2;
TRE2:eGFP-krasG12V

Chew et al., 2014

Tol2 transgenesis fabp10:eGFP-krasV 12 Nguyen et al., 2011

Inducible Tet-On fabp10:TA; TRE:Myc; krt4:GFP Li et al., 2012

Inducible Tet-On fabp10:TA; TRE:xmrk;
krt4:GFP

Li et al., 2012

Inducible LexPR fabp10:LexPR; LexA:eGFP x;
cryB:mCherry;

LexA:eGFP-krasV 12

Nguyen et al., 2012

Familial adenomatous
polyposis/hereditary
non-polyposis colon cancer

Gal4/UAS pInt-Gal4;5x
UAS:eGFP-P2A-krasG12D

WT Intestinal epithelial
cells

Enya et al., 2018

Inducible LexPR pDs-ifabp:LexPR-
Lexop:eGFP-krasV 12

WT Lu et al., 2018

Glioblastoma Inducible Tet-On gfap:rtTA;
TRE:mCherry-KRASG12V

WT Glial cells Ju et al., 2015

Inducible Tet-On krt5:rtTA;
TRE:mCherry-KRASG12V

WT Skin epithelial
cells/Glial cells

Ju et al., 2015

Peripheral nerve-sheath tumor
(PNST)

Tol2 transgenesis Tg(-8.5nkx2.2a:GFP)ia2 WT Peripheral nerves Astone et al., 2015

Rhabdomyosarcoma Tol2 transgenesis rag2:KRASG12D; rag2:dsRed2 WT Myoblasts Langenau et al., 2007

Costello syndrome Inducible
heat-shock

hsp70:GFP-HRASV 12 WT Constitutive Santoriello et al., 2009

Thyroid cancer Tol2 transgenesis tg:BRAFV 600E -pA;
tg:TdTomato-pA

WT Thyrocytes Anelli et al., 2017

Neuroblastoma Tol2 transgenesis dβh:eGFP-MYCN WT Neuroblasts Zhu et al., 2012

dβh:eGFP; dβh:MYCN WT Tao et al., 2017

dβh:c-MYC; dβh:mCherry WT Zimmerman et al., 2018

Pancreatic ductal
adenocarcinoma

BAC
recombineering

ptf1a:eGFP-KRASG12V WT Pancreatic
progenitor cells

Park et al., 2008

Gal4/UAS ptf1a:Gal4;
UAS:eGFP-KRASG12D

WT Schiavone et al., 2014

Gal4/UAS and
Cre/Lox

ptf1a: CREERT 2; LSL-GAL4;
UAS-KRASG12V

WT Park and Leach, 2018

Pituitary adenomas Tol2 transgenesis Pomc:Pttg; POMC:eGFP WT Corticotrophs Liu et al., 2011

Testicular neoplasias ENU forward screen brca2Q658X N/A Spermatogonia Shive et al., 2010
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(Table 1) (Willett et al., 1999; Langenau et al., 2004). Since these
reporter lines can label both lymphoid progenitors and mature
lymphocytes, they represent valuable tools to investigate the
role of T and B cells in the context of solid tumors and
their differentiation in the TME. Interestingly, recent work has
found that eGFP fluorescence levels in the Tg(lck:eGFP) line
can distinguish B or T cells, indicating the usefulness of this
transgenic line in simultaneously studying the behaviors of T and
B cells (Borga et al., 2019). The Tg(cd4-1:mCherry) line can label
both Cd4+ lymphocytes and macrophages, and has been used to
document the conservation of zebrafish lymphocyte development
and oncoimmunophenotypes (Dee et al., 2016).

Antibodies for the Study of the Adaptive
Immune System in Zebrafish
The development of zebrafish antibodies is an ongoing process
(Table 2). Prominent work from the Shao lab at the Zhejiang
University has generated a wide variety of zebrafish antibodies
against a number of key components in the adaptive immune
system, such as IgM, CD40, TCRα/β/γ/δ, CD80/86, and CD83
(Gong et al., 2009; Zhu et al., 2014; Wan et al., 2017). In addition,
cross-reactive antibodies developed for other species have helped
expand this toolbox. For instance, CD4-1 and CD8α antibodies
developed for Ginbuna carp have been validated for successful
use in zebrafish (Miyazawa et al., 2018).

Immunocompromised Zebrafish Mutants
Immunocompromised zebrafish serve as the ideal host for tumor
cell transplantation and are useful tools that help dissect the
contribution of specific immune cells to tumorigenesis (Table 3).
This line of research began with the development of the rag1-/-
mutant (Wienholds et al., 2002), followed by the identification
of c-myb(t25127) mutant fish (Soza-Ried et al., 2010). The
Langenau laboratory later developed additional mutant fish with
excellent survivability, leading to the establishment of multiple
human cancer xenografts in which patterns of angiogenesis and
metastasis are studied (Tang et al., 2014; Moore et al., 2016; Tang
et al., 2016; Tang et al., 2017; Yan et al., 2019). Combined with
their optical clarity, these immunocompromised zebrafish allows
for the visualization of single-cell engraftments and the tracking
of cancer cell proliferation and migration (Yan et al., 2019). In
addition, when transplanted with human cancer cells at the adult
stage, these mutant zebrafish are instrumental in evaluating and
screening for compounds for personalized application (Hason
and Bartůněk, 2019; Yan et al., 2019).

Zebrafish Models of Human Cancers
Beyond xenograft models mentioned above, zebrafish genetic
models for human cancers represent one area with the most
growth over the past 20 years. Pairing appropriate promoters with
cancer-prone genetic alterations have led to the development of
over two dozens of zebrafish cancer models (Table 4). Most of
these models were generated through oncogene overexpression.
Among them, the solid tumor models, such as melanoma and
neuroblastoma, are well suited for investigating tumor-immune
cell interactions in vivo. Examples of this type of research include

studying the role of myeloid cells in early melanoma development
utilizing the BRAFV 600E transgenic fish as well as the LexPR-
regulated conditional NRASQ61K zebrafish (Patton et al., 2005;
Kenyon et al., 2018). The zebrafish expressing either N-MYC or
C-MYC under the adrenal promoter dβh to model neuroblastoma
recapitulates human phenotypes (Zhu et al., 2012; Tao et al.,
2017; Zimmerman et al., 2018). C-MYC was also paired with a
different promoter to generate a zebrafish model of hepatocellular
carcinoma (Li et al., 2012).

Zebrafish models of human cancers have also been generated
through inactivating tumor suppressors. An example of this is the
zebrafish with tp53 mutations that primarily develop malignant
peripheral nerve sheath tumors (MPNSTs) (Berghmans et al.,
2005). Interestingly, a recent development of the zebrafish
with deletion of tp53 revealed tumor development ranging
from MPNSTs, angiosarcomas, and germ cell tumors to an
aggressive natural killer cell-like leukemia (Ignatius et al.,
2018). Since this model was generated in the CG1 syngeneic
zebrafish strain, researchers can easily transplant tumors
into this zebrafish to visualize metastatic and angiogenic
capacities of tumor cells (Ignatius et al., 2018). CRISPR/Cas9
technology has also been used to delete tumor suppressor
genes such as ATRX (Oppel et al., 2019). When ATRX
was knocked out in the tp53 mutant fish background,
the fish developed epithelioid sarcoma, angiosarcoma, and
undifferentiated pleomorphic sarcoma (Oppel et al., 2019).
ENU screens generated additional cancer models, such as the
brca2Q658X mutant fish that develop testicular neoplasias (Shive
et al., 2010). The availability and conservation of these zebrafish
cancer models further expand the toolbox of the zebrafish for
tumor immunity research.

PROOF OF PRINCIPLE: A SMALL FISH
DIP

Both genetic and xenograft cancer models of zebrafish are suitable
for tumor immunity studies. The use of genetic models of
cancer provides insights into how the immune system responds
to malignant transformation and progression during animal
development. The fact that zebrafish share conserved telomere
regulation pathways and also live in a non-sterile environment
as humans provides unique advantages for its utility in studying
tumor immunity in comparison to mice (Carneiro et al., 2016).
Xenograft assays, ranging from the transplantation of cultured
human cell lines to primary patient cells, can complement the
genetic models to quickly validate immunotherapies and other
selected agents that can kill cancer cells but not the developing
fish. In addition, some descriptive studies of the TME in teleosts
have been conducted when cancer development is triggered
by diet-mediated inflammation, such as metastatic intestinal
adenocarcinoma (Bjørgen et al., 2019).

Zebrafish Genetic Models to Probe
Tumor-Immune Interactions
Zebrafish genetic models of cancer are often paired with
the fluorescent reporter lines to differentially label both the
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tumor and the immune system, especially the adaptive immune
components (Tables 1, 4). Combined with the imaging capacities
of the zebrafish, interactions between tumor and specific immune
cells arising from the fish can be tracked and studied with high
fidelity as seen in human cancers. Dee et al. studied the infiltration
of melanoma by T cells and their findings recapitulate what
is observed in mammalian systems (Dee et al., 2016). When
melanoma develops from the radial growth phase into nodular
tumors, T cell activities reduce in the TME of these fish as
demonstrated by decreased transcript levels of lck, cd4-1, and
cd8α (Dee et al., 2016). Further analysis of tumor-infiltrating
Cd4-1 + cells showed that these cells expressed higher levels of
gata3 and il-4/13a but not il-4/13b, indicating the presence of a
specific subset of Th2 cells in the TME of melanoma, which are
absent in normal mucosal environments such as the gills (Dee
et al., 2016). Gómez-Abenza et al. sought to understand the TME
using the zebrafish model of melanoma in the context of chronic
inflammation (Gómez-Abenza et al., 2019). Through the use
of a zebrafish line deficient of serine peptidase inhibitor kunitz
type 1 (SPINT1), they showed that SPINT1 levels positively
correlated with rates of macrophage infiltration into the TME,
indicating its regulation of the crosstalk between tumor cells and
the immune system. These findings demonstrate that zebrafish is
suitable to investigate the interplays among cancer cells, innate,
and adaptive immune system.

Zebrafish Xenografts to Screen for
Immunomodulators and Test Cell-Based
Immunotherapies
Similar to zebrafish genetic models of cancer, researchers also
utilize differential labeling of immune and tumor cells in zebrafish
xenograft models of cancer to visualize immune-tumor cell
interactions in vivo. In addition, the small size and a large number
of xenografted embryos enable rapid screens and evaluation of
compounds that modulate tumor-immune cell interactions. In
particular, the simultaneous introduction of both human cancer
and immune cells from the same patient enables the evaluation
and selection of optimal cell-based immunotherapy, such as
CAR-T cells. For instance, Yan et al. have recently generated a
Casper; prkdc-/-; il2rga-/- mutant fish that can be reared at 37◦C
to better replicate human conditions and support a wide variety
of cancer cell engraftments, including patient-derived human
cells (Yan et al., 2019). Their work demonstrated the feasibility
of this model to assess the efficacy of CAR-T cells in eradicating
cancer cells. Pascoal et al. showed that zebrafish xenografts can be
used to screen optimal CAR-T cell therapies (Pascoal et al., 2020).
Researchers have also utilized zebrafish xenografts to visualize
the killing of dormant metastatic cancer cells by CAR-T cells
in vivo at the single-cell resolution (He et al., 2020). Al-Samadi
et al. (2017) demonstrated that extracellular vesicles isolated from
human tongue carcinoma cells can trigger the diminishment of il-
13 mRNA in zebrafish, which is an anti-inflammatory cytokine.
These studies provide evidence to support the feasibility of
zebrafish xenografts in immunomodulator screening and cell-
based immunotherapy testing, demonstrating their potential to
bridge in vitro studies and those conducted in mammals like mice
(He et al., 2020; Pascoal et al., 2020).

FUTURE PERSPECTIVES

In summary, the zebrafish has served as one of the key model
organisms in recent decades to further our understanding
of cancer etiologies and immune system development in
vertebrates (Trede et al., 2004; Hason and Bartůněk, 2019;
Rossa and D’Silva, 2019). Comparative studies of hematopoiesis
demonstrated similarities in the genetic and cellular components
of the immune system with only a few differences in the
timing and location of the development. Furthermore, these
studies revealed surprisingly high conservation in the adaptive
immune system between zebrafish and humans. Distinct γδ

T cells, cytotoxic CD8 + T cells, CD4 + T cells, and their
subtypes are present in both species. In addition, zebrafish
and humans share similar differentiation patterns and functions
of B lymphocytes, with some differences in the classes and
abundance of immunoglobulins as well as the absence of
pre-B cells in zebrafish. The overarching similarities between
the zebrafish and humans have encouraged the development
of a myriad of technologies and tools available for tumor
immunity research.

The zebrafish possesses unique advantages for tumor
immunity research. The optical clarity of zebrafish together
with their small size and low cost makes imaging studies
of the TME and screening of immunomodulators feasible.
Moreover, the ex-utero development of the zebrafish embryos
allows easy and non-invasive access to image the TME,
especially tumor-immune cell interactions, at the early stages
of tumor development. An in-depth investigation of how
the immune system evolves from the anti-tumor to pro-
tumor stage holds the key to unlocking the mechanisms of
immune evasion. For zebrafish embryos or juveniles under
3 weeks of age, they cannot mount an adaptive immune
response (Rossa and D’Silva, 2019). This temporal lag in the
development of innate and adaptive immunity in zebrafish
is useful to study the differences in interactions between
the innate and adaptive immune systems with tumor cells
(Rossa and D’Silva, 2019). Moreover, the development of
immunocompromised zebrafish mutants in which specific
adaptive immune components are removed facilitates elegant
probing of these individual component’s contribution to
tumor development.

Like any other model system, the zebrafish also possesses
some limitations. Gene duplication within the zebrafish genome,
which can lead to redundancy in gene function, creates
difficulties in gene knockout studies (Postlethwait et al., 2000;
Taylor et al., 2003; Howe et al., 2013). As mentioned above,
some differences also exist during immune cell development
between zebrafish and humans. Importantly, preliminary
work using zebrafish and other teleosts have provided fresh
mechanistic insights into the regulation of the TME (Dee
et al., 2016; Bjørgen et al., 2019; Gómez-Abenza et al., 2019),
along with demonstrations of the feasibility of zebrafish
xenografts for screening personalized treatments (Al-Samadi
et al., 2017; Yan et al., 2019; Pascoal et al., 2020). With
its technological advances, established research tools, and
high levels of conservation, the zebrafish has joined murine
models and human genetic studies for tumor immunology
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research to uncover novel immunotherapeutic strategies for
improved cancer treatment.
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