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Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic

stem cell transplantation (allo-HSCT), a main therapy to treat various hematological

disorders. Despite rapid progress in understanding GVHD pathogenesis, broad

immunosuppressive agents are most often used to prevent and remain the first

line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT

would permit reductions in immunosuppressant use and their associated undesirable

side effects. In this review, we discuss the mechanisms responsible for GVHD and

advancement in strategies to achieve immune balance and tolerance thereby avoiding

GVHD and its complications.
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INTRODUCTION

Immunological tolerance is a self-regulatory mechanism of the immune system to protect the host
from a wide variety of foreign antigens without causing immunopathology such as autoimmunity
(1, 2). The mechanisms of immunological tolerance can be divided into central and peripheral
tolerance. Central tolerance involves the clonal deletion of self-reactive lymphocytes in the primary
lymphoid organs, namely the thymus and bone marrow. Despite its high efficiency, central
tolerance often is incomplete due to the escape of self-reactive lymphocytes into the periphery.
Hence, there is need of an additional layer of tolerance in the periphery to suppress self-reactive
lymphocytes. Peripheral tolerance mechanisms consist of deletion, anergy, ignorance and immune
regulation (2, 3).

Although significant progress has been made toward immunological tolerance induction in
experimental animal models, translation to the clinic for allogeneic hematopoietic stem cell
transplantation (allo-HSCT) remains challenging. One manifestation of tolerance induction failure
in allo-HSCT is graft-vs.-host disease (GVHD), a life-threatening complication due to donor T
cell recognition of host alloantigens. During GVHD, conditioning regimen induced tissue injury
drives proinflammatory processes that support the priming of donor anti-host alloreactive T cells
via T cell receptor (TCR) engagement, co-stimulation and cytokine signaling. These inflammatory
events are counteracted by anti-inflammatory processes often augmented by proinflammatory
cytokines; however, for those that develop GVHD, it is clear that anti-inflammatory compensatory
mechanisms are overwhelmed and hence unable to control T-cell activation, differentiation and
expansion (4, 5). This review will focus on acute GVHD pathogenic and tolerance mechanisms
including as available clinical trial results and conclude with the concept of tissue tolerance. Since
GVHD acquisition is a sign of failed tolerance induction, we will not discuss GVHD therapy.
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OVERVIEW OF ALLOREACTIVE T-CELL
ACTIVATION, AMPLIFICATION AND
MIGRATION

In allo-HSCT, donor CD4+ and CD8+ T cells can receive TCR
signals engagement of peptide-major histocompatibility complex
(MHC) (termed signal 1) that occurs as a result of major or minor
histocompatibility antigen disparities between donor and host.
Studies from mouse models revealed that donor CD4+ T cells
play a central role in GVHD induction by exhibiting cytolytic
activity, producing effector cytokines and helping donor CD8+
T cells to proliferate via IL-2 production (6).

Upon alloantigen activation, CD4+ T cells differentiate into T
helper (Th) cell subsets including, most relevant to this review,
Th1 (secreting IL-2, IFN-γ), Th2 (secreting IL-4, IL-5, IL-10,
IL-13) and Th17 (secreting IL-17A, IL-17F, IL-21, IL-22, TNF)
(6). Our group and others have previously provided evidence
against the assumption that GVHD is strictly a Th1 driven
process (7–9). In our previous study, deletion of IFN-γ in donor
inoculum accelerated GVHD lethality, while deletion of IL-4
resulted in reduced GVHD lethality (7). In other studies, Th2
and Th17 subsets were shown to contribute to GVHD severity
with different GVHD target organs (8–10). Recently a subset of
CD4+ T cells was found to produce GM-CSF that was linked
to the support of GVHD pathology by licensing myeloid cells to
produce IL-1 and reactive oxygen species (11).

Similar to CD4+ T cells, CD8+ T cells have been
implicated as contributing to GVHD in both major and minor
histocompatibility models, the former typically in conjunction
with CD4+ T cells and contributing to tissue injury, whereas
in the latter, CD8+ T cells alone can be sufficient to cause
GVHD (12–15). Similar to CD4+ T cells, CD8+ T cells can also
differentiate to cytokine producing subsets including Tc1, Tc2,
and Tc17 subsets. These CD8+ subsets possess variable capacities
to induce acute or chronic GVHD (cGVHD) (16, 17).

A second or co-stimulatory signal (termed signal 2) then
is required for full CD4+ and CD8+ T cell activation,
expansion, differentiation, survival, and metabolic fitness.
Previous studies (18–22) delineated the role of co-stimulatory
molecules including CD28 (18), ICOS (CD278) (19), CD40L
(CD154), OX40 (CD134) (20), and 4-1BB (CD137) (21).
Co-inhibitory molecules can counterbalance co-stimulatory
molecules. Cytotoxic T-lymphocyte–associated antigen 4 (CTLA-
4; CD152) (23), programmed death−1 (PD-1; CD279) and
its ligand (PD-L1; CD274) (24, 25), B and T lymphocyte
attenuator (CD272) (26), and B7-H3 (CD276) (27) have been
shown to attenuate GVHD lethality. A third signal provided by
inflammatory cytokines such as IL-12 or type 1 interferon is
required for optimal CD8+ T cell function (28, 29).

An amplifying component of the immune response is
ascribed to conditioning-related tissue damage releases damage-
associated molecular pattern (DAMPs) and pathogen-associated
molecular pattern (PAMPs) molecules (5). These molecules
initiate immune responses during the early phases of GVHD
and also provide a source of inflammatory cytokines that drive
T cell responses. The role of DAMPs in accelerating GVHD
lethality was illustrated by the binding of extracellular ATP and

subsequent signaling of the purinergic P2X7 and P2Y2 receptors
in host antigen presenting cells (APCs) bolstering donor T
cell priming and alloreactive responses (30, 31). Conversely,
ecto-nucleotidases such as CD39 and CD73, which regulate
extra-cellular ATP levels, play suppressive roles in controlling
GVHD (32–34). Other DAMPs such as uric acid, IL-33, heparan
sulfate, high-mobility group box 1 protein, sialic acid–binding
immunoglobulin-type lectins, mitochondrial components, and
biglycans fuel GVHD responses (5).

The role of bacterial components in activating APCs and
promoting GVHD via PAMPs is well established (35). For
example, lipopolysaccharides are toll-like receptor 4 ligand and
are implicated in marshaling innate immunity reactions, NF-κB
activation, and transcription of pro-inflammatory cytokines
genes (35). DAMPs and PAMPs not only contribute to
GVHD initiation but also may augment later allogeneic T
cell activation, differentiation, and expansion. Priming of
allo-reactive donor T cells most often occurs in secondary
lymphoid organs through interaction of the TCR with allo-
peptide and MHC antigens expressed on host (termed direct
allorecognition) or less often, on donor (termed indirect
allorecognition) APCs. Both hematopoietic cells and non-
hematopoietic cells are involved in alloantigen presentation
that promotes and amplifies GVHD responses (36, 37).
Recently, neutrophils have also been shown to exacerbate
GVHD lethality by releasing reactive oxygen species in the
gastrointestinal (GI) tract and surprisingly up-regulating MHC
class II antigens (38, 39).

Chemokines guiding the migration of T cells toward GVHD
target organs (40) wherein activated T cells mediate targeted
tissue cell death via FAS ligand, perforin/granzymes, and
releasing pro-inflammatory mediators mainly tumor necrosis
factor (TNF-α), interferon (IFN-γ) (5, 41, 42). Other cytokines
such as IL-7, IL-15, and IL-6 directly or indirectly support the
expansion or activation of the innate and adaptive immune
system and have been implicated in exacerbating GVHD
lethality (43, 44). To achieve long term tolerance in allo-HSCT
settings, strategies to control T cell activation, differentiation,
expansion, and homing are critical to allow anti-inflammatory
and central and peripheral regulatory events to be dominant
over pro-inflammatory mechanisms. The following sections
discuss approaches to blunt the distinct stages of GVHD
induction (Table 1).

REDUCING DONOR ANTI-HOST
ALLOREACTIVE T CELL BURDEN

In vitro or in vivo T Cell Depletion
In allo-HSCT, the cellular composition of the graft includes
hematopoietic stem cells (HSCs) and a wide variety of cells, which
influence engraftment. HSCs restore hematopoietic function,
whereas other cell types such as mature T cells promote
engraftment by inhibiting graft rejection mediated by recipient
immune responses. Although T cells play a central role in
the pathogenesis of GVHD, depletion of T cells increases the
risk of infection and also of leukemia relapse (88, 89). Donor
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TABLE 1 | Approaches to blunt the distinct stages of GVHD induction.

Strategies (agent or cell) Mechanism of action Predominant clinical

indication

References

REDUCING DONOR ANTI-HOST ALLOREACTIVE T CELLS

Anti-thymocyte globulin Depletion of donor T cells Prophylaxis and therapeutics (45, 46)

Alemtuzumab Depletion of CD52+ mature

lymphocytes

Prophylaxis and therapeutics (47–49)

Post-transplant

cyclophosphamide

Depletion of rapidly proliferating

alloreactive donorT cells

Prophylaxis (50–54)

Exvivo depletion of CD45+ naïve

T cells

Depletion of naive T cells Depletion of naive T cells (55)

BLUNTING TCR SIGNALS (Standard approaches usually in combinations)

Tacrolimus and Cyclosporine Calcineurin inhibitors; blocks T cell

proliferation and IL-2 transcription

Prophylaxis (56, 57)

Methotrexate Folate antagonist; inhibits T cell

proliferation

Prophylaxis (56, 58, 59)

Mycophenolate mofetil Blocks de novo synthesis of purine

metabolism; inhibits T cell proliferation

Prophylaxis (56, 58, 59)

Sirolimus mTOR inhibitors; block T cell

activation

Prophylaxis (56, 60, 61)

INHIBITING CO-STIMULATORY SIGNALS

CTLA-4 Ig Inhibits CD28 mediated T cell

activation

Prophylaxis (62)

IMPAIRING ACTIVATING AND INFLAMMATORY CYTOKINE SIGNALS DRIVEN GVHD INJURY

Ruxolitinib, Pacritinib JAK inhibitors; Block T cell activation,

cytokine production, and proliferation

Therapeutics (63–65)

Alpha-1-antitrypsin (AAT) Reduces pro-inflammatory cytokine

secretion, expands Treg numbers,

Inhibits neutophil elastase, decreases

CD8+ effector memory cells

Therapeutics (66–68)

REGULATING HISTONE DEACETYLASE

Histone deacetylase inhibitors

(vorinostat)

Reduce pro-inflammatory cytokine

secretion, increase Treg numbers,

modulate the function of APCs,

upregulate IDO expression in DCs

Prophylaxis (69–71)

BLOCKING T CELL CHEMOKINE RECEPTOR DIRECTED MIGRATION INTO GVHD ORGANS

CCR5 inhibitor (Maraviroc) Prevents T cell infiltration into GVHD

tissues

Prophylaxis (72, 73)

α4β7 (Natalizumab,

Vedolizumab)

Prevents T cell infiltration into

intestines

Prophylaxis (72, 73)

CELLULAR THERAPY

Mixed hematopoietic chimerism Promotes immune tolerance Prophylaxis (74–76)

nTregs Promotes immune tolerance Prophylaxis and Therapeutics (77–79)

iTregs Promotes immune tolerance Prophylaxis (80–82)

Tr1 Promotes immune tolerance Prophylaxis (83–85)

MSCs Immunomodultaor, Tissue repair Therapuetics (86, 87)

T cell depletion may be accomplished by in vitro or in vivo
strategies. Pan-T cell depletion of the donor grafts can be
highly effective but is associated with increased susceptibility
to infections and malignancy recurrence due to the relatively
long period of time required to reconstitute the immune
system (90). In vivo administration of anti-T cell globulin
(45, 46) or anti-CD52 mAb, CAMPATH-1 (47–49), reduce
the donor T cell burden, while resulting in a state of T
cell deficiency.

T cells are broadly classified as naïve vs. antigen experienced
memory T cells (TM) (91). Stage of T cell differentiation
is a critical factor in determining the capacity of T cells to
induce GVHD. For instance, unlike naïve T cells, alloreactive
effector and central TM cells failed to induce GVHD in pre-
clinical models (92–94). The reduced ability of TM cells to
induce GVHD is attributed to their reduced survival, expansion
and alloreactivity (95). In a first-in-human trial, depletion of
CD45RA+ naïve T cells from peripheral blood stem cells did
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not reduce the incidence of GVHD (55). Nonetheless, all patients
with GVHD uniformly responded to corticosteroids (55). A
recent clinical trial (NCT01523223) used a final infusate of highly
purified (>94%) CD8+ TM cells to treat relapse after allo-
HSCT patients (96). Consistent with the results of pre-clinical
models, CD8+ TM infusions are associated with low incidence
of GVHD (1 of 15 patients, grade II liver GVHD). Altogether,
strategies employing T cell grafts depleted of Tnaive cells may
facilitate immune tolerance in allo-HSCT settings by hampering
pro-inflammatory responses.

In vivo Post-transplant Cyclophosphamide
Induced Alloreactive T Cell Depletion
In a recent approach, cyclophosphamide (Cy) that has both anti-
neoplastic and immune modulatory effects, has been used to
deplete alloreactive donor T cells and thereby prevent GVHD
(50–52). Post-transplant cyclophosphamide (PTCy), typically
given for 2 consecutive daily doses between days 3–5 post-
transplant in combination with calcineurin inhibitors (CNI)
and mycophenolate mofetil (53, 97, 98) or as a single agent
(99, 100). Cy, a cytotoxic alkylating agent, specifically targets
rapidly proliferating alloreactive T cells because of their impaired
ability to replicate their damaged DNA (100–102). On the
other hand, Tregs are relatively resistant to PTCy through
increased expression of aldehyde dehydrogenase enzyme (103),
which converts active to inactive Cy metabolites. The expansion
and induction of Tregs promotes peripheral tolerance by
suppressing remaining allo-reactive T cells and also hastens
immune reconstitution. The final step for achieving long-
term tolerance induced by PTCy is mediated by the later
stage intrathymic deletion of immature alloreactive donor T
cells. In clinical trials, PTCy reduced GVHD in both HLA-
matched and partially HLA-mismatched allo-HSCT patients (53,
54). There are multiple ongoing clinical trials (NCT01028716,
NCT01349101, NCT01860170, NCT02053545, NCT02065154,
NCT02167958, NCT02169791) to investigate the effects of PTCy
in conjunction with other agents to prevent GVHD. Overall
results of clinical trials have shown a reduction in acute GVHD
with a pronounced reduction in cGVHD albeit with organ
toxicity, carcinogenicity and increased rates of infections.

BLUNTING TCR SIGNALS

Standard pharmacological regimens to prevent acute GVHD
involve calcineurin inhibitors (CNI), mammalian target of
rapamycin (mTOR) inhibitors, and anti-metabolites (5, 56).
Calcineurin inhibitors such as tacrolimus or cyclosporine inhibit
IL-2 production and subsequently clonal expansion of activated T
cells (57). Sirolimus, a lipophilic macrocytic lactone, which binds
to FKBP12, and inhibits the mTOR kinase activity, reducing
cytokine responses and regulating cell proliferation, survival
and metabolism by integrating information from environmental
cues including stress signals such as nutrient deprivation (60).
TCR, IL-2, CD28, sphingosine-1-phosphate receptor and leptin
signals up-regulate the mTORC1 complex. Unlike CNI, sirolimus
preferentially supports Tregs generation as Teffectors (Teffs) are
mTOR-dependent whereas in vitro or in vivo induced peripheral

Tregs and FoxP3 expression are favored by mTORC1 complex
inhibition by sirolimus (61). Antimetabolites predominantly
methotrexate, a folic acid antagonist and mycophenolate mofetil,
an inhibitor of the de novo purinemetabolism are being used with
other immunosuppressants in allo-HSCT patients (56, 58, 59).

INHIBITING CO-STIMULATORY SIGNALS

It is well established that the fine-tuned balance between co-
stimulation and inhibitory signals dictates immune responses
(104, 105). Numerous co-stimulatory and co-inhibitory
molecules have been identified and targeted to prevent and
reduce various inflammatory diseases including GVHD.
Preclinical studies of co-stimulatory and co-inhibitor pathway
blockade for GVHD prevention have been comprehensively
reviewed recently; the reader is referred to (22). Here we will
focus on clinical trial results to prevent GVHD using CTLA4-Ig
to block B7/CD28 co-stimulation.

The two-signal model of T cell activation required that
both antigen and secondary stimuli are essential for optimal T
cell activation (106, 107). The co-stimulatory CD28, identified
as a receptor for B7-1 (CD80) ligand and B7-2 (CD86), is
constitutively expressed on T cells (108–112). CD28 signals
support T cell growth and survival. The co-inhibitory receptor
CTLA-4, which also binds to B7-1 and B7-2, serves to temper T
cell responses in part by down-regulating CD28 expression.

Linsley and coworkers developed CTLA-4 Ig, consisting
of the extracellular CTLA-4 domain, and an immunoglobulin
Fc fragment fusion partner to prolong its half-life, as a
therapeutic agent that binds and sequesters B7 ligands from
CD28 engagement (22). Earlier studies from the 1990s, including
from our group, reported the efficacy of CTLA-4 Ig in the
prevention of autoimmunity, solid organ allograft rejections
and GVHD lethality (113–115) in murine models. The results
from these studies laid the foundation for the first clinical
trial (NCT01012492) in GVHD using abatacept (humanized
CTLA4-Ig fusion protein) that showed a reduced GVHD
incidence (62). Phase II studies (NCT01743131) testing the
efficacy of abatacept against standard GVHD prophylaxis has
been completed for in 7–8/8 HLA matched related or unrelated
donor transplants.

The immunomodulatory effect of abatacept was associated
with increased expression of PD-1 on T cells of the clinical
responders. The role of the PD-1 pathway in inducing
immune tolerance and controlling acute GVHD has been
well established (24, 116). Although the beneficial effect of
abatacept depends on blocking CD28 co-stimulation, it can also
interfere with the endogenous CTLA-4 co-inhibition pathway
and can lead to unwanted immune responses (117). The
advent of fusion proteins or antibodies that block only the
CD28 pathway without interfering with CTLA-4 may have
an edge over abatacept due to their specificity. Belatacept,
a 2 amino acid derivative of abatacept, was developed as a
selective co-stimulatory pathway blocker, that has favorable
results in renal transplant rejection compared to cyclosporine
prophylaxis (118). A CD28 antagonistic antibody, FR104, has
been tested in various pre-clinical models (119–121). More
recently, in a non-human primate (NHP) GVHD model,
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compared to CTLA4-Ig or CTLA4-Ig/sirolimus prophylaxis,
FR104 or combined FR104/sirolimus prophylaxis delayed the
onset of GVHD by controlling T cell activation and proliferation
(122). However, there were non-GVHD-related deaths in
the FR104/sirolimus-treated NHP due to sepsis. Detailed
immunological analysis revealed that T cells from those primates
failed to produce IFN-γ. The results from this study still
highlight FR104/sirolimus combination as a promising therapy
to treat GVHD in human patients due to better infection control
compared to NHP.

IMPAIRING ACTIVATING AND
INFLAMMATORY CYTOKINE SIGNALS
DRIVEN GVHD INJURY

Immune Activating Cytokines Contributing
to GVHD
JAKs are intracellular tyrosine kinases and act as downstream of
cytokines, growth factors and hormone signaling. The JAK family
members comprises JAK1, JAK2, JAK3, and TYK2 (123). JAK
signaling supports the development, proliferation, and activation
of T- and B- cells, DCs, macrophages, and neutrophils, all
implicated in GVHD pathogenesis.

Ruxolitinib, a selective inhibitor of JAK1 and JAK2 reduced
GVHD, associated with decreased proinflammatory cytokine
production, Th1 differentiation and increased Tregs proportions
(124, 125). Although ruxolitinib has been primarily reported as a
treatment for steroid refractory or resistant GVHD (63), a recent
study in myelofibrosis patient reported that ruxolitinib, given
during peritransplant period, can reduce GVHD (64). Overall, 1
out of 12 patients developed severe (grade III) GVHD without
major events during conditioning. However, CMV reactivation
was seen in 4 of 6 CMV positive patients and 2 had cytopenias
requiring ruxolitinib discontinuation (64). In other studies (126),
baricitinib, a best-in-class Jak1/2 inhibitor, blunted IFNγR and
IL6R signaling, resulting in complete protection from GVHD
lethality as well as the reversal of active GVHD prevents
GVHD with 100% survival, and reverses ongoing GVHD with
dramatically increased Tregs along with decreased Th1 and Th2
differentiation, MHC class II and B7 ligand expression on APCs
(126). Pacritinib is a potent JAK2 inhibitor that can reduce
GVHD by sparing iTregs and polarizing T cells toward Th2
differentiation (65). A phase I/II trial (NCT02891603) combining
pacritinib with standard immune suppression to prevent GVHD
is currently being investigated.

Tofacitinib, a first generation JAK1/JAK3 inhibitor, reduced
murine GVHD lethality (127). Antibodies directed to the IL2R
common gamma chain that signals via JAK3 and STAT5
reduce proinflammatory cytokine production, CD8+ T cell
granzyme B expression and severe GVHD lethality (128). Indeed
JAK3 knockout T cells were unable to cause GVHD mortality
in sublethally irradiated MHC class II disparate recipients.
Pharmacological JAK3 inhibition with WHI-P131 given as
prophylaxis ameliorated GVHD severity with a prolonged
survival when compared to control mice (129). As many of these

reagents are in the clinic including for GVHD prevention they
may become part of an in vivo approach to achieve tolerance.

Alpha-1-antitrypsin to Reduce
Pro-inflammatory Responses
Post-transplant
Alpha-1-antitrypsin (AAT) is an acute phase secretory protein
and a serine proteinase inhibitor, elevated during inflammation
due to its predominant synthesis in hepatocytes (130, 131).
Numerous lines of evidence demonstrated the anti-inflammatory
properties of AAT. Studies have shown that the deficiency of
AAT aggravated the severity of inflammatory disease, whereas
addition of AAT to LPS-stimulated monocytes or mononuclear
cells inhibited the release of pro-inflammatory cytokines (132–
134). In GVHDpatients, there was a negative correlation between
AAT levels in donor plasma and occurrence of GVHD (135).
Indeed, AAT treatment attenuated the lethality of GVHD in
pre-clinical murine models by both increasing IL-10 levels and
numbers of Tregs, and reducing the levels of pro-inflammatory
cytokines such as IL1-β, TNF-α, and IL-6 (66, 135, 136). This
tolerogenic effect of AAT, which induced Tregs expansion, was
mediated by an increase in the numbers of CD8+ CD205+ DCs
(135). AAT strongly inhibits neutrophil elastase and thatmay also
contribute to reduced GVHD lethality due to the pathogenic role
of neutrophils in GVHD (38). In clinical trials (NCT01523821
and NCT01700036), AAT treatment increased the proportion of
Tregs and reduced GVHD manifestations (67), while decreasing
numbers of CD8+ TM cells (68) in steroid refractory (SR) GVHD
patients without clinical toxicity.

Regulating Histone Deacetylase
Histone acetylation epigenetically regulates cell function by
modulating gene expression. Acetylation is often associated with
transcription activation, while deacetylation is associated with
repression. The interplay between histone acetyltransferases
(HATs) and histone deacetylases (HDAC) influences histone
acetylation to impact numerous cellular functions, including cell
differentiation, and apoptosis (56). HDAC inhibitors (HDACi)
function an anti-inflammatory agents in autoimmune and
inflammatory disorders (137). HDACi, namely vorinostat
(SAHA), romidepsin (Istodax) and panobinostat (LBH589), are
FDA-approved agents to treat cancers. HDACi treatment
ameliorated murine GVHD through upregulation of
indoleamine 2,3-dioxygenase (IDO) in DCs, in a STAT-3-
dependent pathway (138, 139). Trytophan depletion and/or the
generation of tryptophan catabolites has proven to be immune
suppressive for murine GVHD (140, 141) as discussed in detail
below. A completed phase I/II clinical trial (NCT00810602) of
vorinostat with standard GVHD prophylaxis in patients who
received matched related donor allo-HSCT reported reduced
GVHD with lower levels of plasma IL-1β, TNF-α, IL-6, and
IL-8 (69–71). Furthermore, HDACi treatment increased Treg
cell numbers and enhanced their function in those patients
(71). Extending this treatment to unrelated donor HCT
(NCT01790568) also showed vorinostat to be result in a low rate
of GVHD (70).
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BLOCKING T CELL CHEMOKINE
RECEPTOR DIRECTED MIGRATION INTO
GVHD ORGANS

Chemokine receptors control the trafficking of T cells into tissues,
where they may be primed, re-stimulated in the case of memory
T cells, or cause cytolysis and tissue destruction. Chemokines
produced by tissues injured by the conditioning regimen or
GVHD itself may result in the elaboration of chemokines that
direct the recruitment of specific innate and adaptive immune
cells. Chemokine and chemokine receptor interactions that can
influence GVHD pathogenesis have been reviewed (142). For
example, during tissue damage, the up-regulation of CCR5
directs lymphocyte homing to the inflamed intestine and liver
tissues (143–146). In mouse GVHD models, the efficacy of
CCR5 blockade was dependent upon the degree of conditioning
regimen injury. Whereas, anti-CCR5 mAb prevented T cell
homing to Peyer’s patches in the absence of conditioning (146),
GVHD was accelerated with lethal radiation conditioning due
to increased T cell expansion, IFN-γ and TNF-α production,
and infiltration into the liver and lung (144, 146). In patients,
reduced CCR5 expression correlated with lower GVHD (147,
148). Short-term addition of CCR5 antagonist, maraviroc added
to standard GVHD prophylaxis resulted in reduced GI and
liver GVHD in allo-HSCT patients given reduced intensity
conditioning (72). Compared to this short-term treatment of 1
month (72), the extended course of maraviroc (3 months) was
also safe and resulted in a significantly improved survival and
higher GVHD-free (73). The relationship between conditioning
regimen intensity and efficacy of CCR5 antagonism in allo-HSCT
patients is unknown and warrants investigation.

Studies have demonstrated that the expression of gut-homing
molecules, including α4β7-integrin and chemokine receptor
CCR9, by T cells is required for homing to the intestines.
GI injury due to conditioning is a key trigger for GVHD
pathogenesis and results in the homing of donor T cells to the
injured GI tract. Natalizumab is a potential drug of interest
to mitigate GI GVHD due to its selective inhibition against
α4 integrins of α4β7. Natalizumab and vedolizumab, a specific
anti-α4β7 integrin monoclonal antibody, have been used in for
GVHD treatment but not prevention, which have distinct cellular
infiltrates and pathophysiologies (149, 150). Homing receptor
blockade may potentiate tolerance induction in allo-HSCT as
GVHD by precluding immune cell recruitment into GVHD
organs and amplification of tissue injury.

REGULATING GVHD BY EXPLOITING
CELLULAR METABOLISM MECHANISMS

Intrinsic T Cell Metabolic Energy Sources
Required for GVHD
One way to tailor immune tolerance is to change the metabolic
fitness. Immune cells require considerable bioenergy to generate
and sustain immune responses against pathogens, allografts, and
tumor cells. To accomplish these effector responses, immune
cells utilize multiple metabolic pathways. The major metabolic

pathways involved in cellular growth and proliferation are
tricarboxylic acid (TCA) cycle, glycolysis, amino acids, pentose
phosphate, fatty acid synthesis and oxidation (151, 152). Despite
their diverse end products, these pathways are interdependent
as biosynthesis of one pathway depends on the intermediate
products of other pathways.

The TCA cycle takes place in the mitochondria to generate
energy through oxidation of acetyl CoA, which is derived from
sources such as glucose, fatty acids (FA) and glutamine (151,
152). The end products of the TCA cycle, namely NADH and
FADH2 contribute electrons into the electron transport chain
(ETC). The ETC is involved in highly efficient ATP generation by
supporting oxidative phosphorylation (OXPHOS). Metabolically
quiescent cells, like naive T cells, generate energy via OXPHOS
by fueling TCA cycle with the available nutrients. However, upon
cognate antigen encounter, T cells undergo a metabolic switch
from OXPHOS to glycolysis to meet their energy needs (151–
153). In glycolysis, extracellular glucose enters the cell through
glucose transporters followed by the sequential conversion of
glucose to pyruvate and other products by different enzymes.
The availability of oxygen in the cell influences the fate of
pyruvate. In the case of hypoxia, pyruvate is converted to
lactate and NAD+. However, in normoxia, pyruvate is oxidized
through the TCA cycle. Glycolysis plays a crucial role in
cellular metabolism by providing precursors to other metabolic
pathways. For example, cytoplasmic acetyl-CoA, a metabolite
of glycolysis, promotes lipid synthesis by generating cholesterol
and fatty acids. In a preclinical model, donor T cells shown
to increase oxidative phosphorylation in both syngeneic and
allogeneic recipients (153, 154). Glycolytic activity was only
higher in donor T cells of allogeneic recipients than those of
acute GVHD controls or syngeneic BMT recipients, indicating
that Teffector cells causing GVHD are more dependent upon
glycolysis (154–156). Pharmacological inhibition of mTORC1
or a phosphofructosekinase-2 isoform PFKB3 reduced GVHD
lethality (154). Moreover, mice given T cell deficient in the
glucose transport glut-1 were unable to induce GVHD (157).

Apart from glycolysis, glucose can also be metabolized via
the pentose phosphate pathway (PPP) and glycogen synthesis
(151). PPP is comprised of oxidative and non-oxidative branches.
The oxidative branch of PPP maintains the cellular redox
environment by generating reducing equivalents of NADPH.
Whereas, the non-oxidative branch supports cell proliferation
by generating required nucleotide and amino acid precursors
(151). During GVHD, PPP activity of alloreactive T cells was
increased (154).

Fatty acid oxidation (FAO) generates energy by converting
FA to acetyl CoA, which enters into the TCA cycle (151, 153).
In addition, FAO supports the ETC production of ATP by
generating NADH and FADH2. Short and medium chain FA
passively diffuse into the mitochondria, whereas the carnitine
palmitoyl transferase (CPT) system regulates long chain FA
(C14 to C18) metabolism (158). Discordant results have been
reported about the activity of FAO in alloreactive T cells with
some studies reporting increased FAO (155, 159), while a recent
one demonstrated diminished FAO (154). FA synthesis plays a
crucial role in sustaining T cell proliferation by generating lipids
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through utilization of products derived from other metabolic
pathways (151, 153). Lipid synthesis is regulated by enzymes such
as acetyl-CoA carboxylases (ACC 1 and 2) and fatty acid synthase
(151, 153, 154). Deficiency of ACC1 in donor T cells ameliorated
GVHDdue to impaired de novo FA synthesis (160). Sphingolipids
are major components of eukaryotic cell membranes and play
a crucial role in cellular survival, proliferation, differentiation
and growth arrest. A recent study reported that ceramide, a
metabolite of sphingolipids, modulate GVHD lethality (161).
Targeting ceramide synthase 6, a ceramide biosynthetic enzyme,
by either genetic deletion in donor T cells or pharmacological
inhibition ameliorated GVHD due to reduced donor T cell
proliferation and Th1 differentiation (161).

Glutamine, a key amino acid and readily available resource
in serum, is required for T cell activation (5). Glutamine is
involved in nucleotide synthesis and its metabolite glutamate
also fosters the TCA cycle, glutathione and amino synthesis
(151, 153). In allo-HSCT, donor T cells upregulated glutamine
transport channels namely glutaminase 2, phosphoribosyl
pyrophosphate amidotransferase, and glutamine-fructose-6-
phosphate transaminase to increase the uptake of glutamine
(25, 154). Furthermore, only donor T cells from allo-HSCT had
increased levels of glutamate products aspartate and ornithine,
which indicate that donor T cells can restore the exhausted
intermediates of TCA cycle by increasing glutaminolysis (153,
154). Based on these studies, strategies inhibiting glycolysis, fatty
acid oxidation, oxidative phosphorylation, or glutaminolysis may
be an area of great potential to control GVHD (5).

Extrinsic Regulation of Cellular Metabolism
in GVHD
A defense mechanism against GVHD lethality can be conferred
by essential amino acid depletion results in a state of metabolic
starvation. For example, high host tissue expression of IDO
that catabolizes and hence depletes L-tryptophan was critical
to reduce colonic GVHD (140). Donor T cell-derived IFN-
γ upregulated the expression of IDO in colonic epithelial
cells which in turn, diminished T cell proliferation and
inflammation (141). Similarly, IDO expression was upregulated
in the duodenal epithelial cells of GVHD patients and may
be involved in the control of GI GVHD (162). The metabolic
products of tryptophan catabolism has been shown to be
immune suppressive. Whereas, combined administration of
three tryptophan metabolites suppressed GVHD, kynurenines
given in this way did not appear to be tolerogenic since GVHD
was controlled only during the continuous administration period
(141). In other studies, arginine depletion by myeloid-derived
suppressor cell production of arginase I or infusion of pegylated
L-arginase I was shown to reduce the vigor of the GVHD lethality
response (163).

Mammalian hosts harbor a large number and a wide variety
of commensal bacteria on surfaces of the body, especially in
the GI tract. Commensal bacterial density in the GI ranges
from 1011 to 1014 per gram of luminal content (164). The
interaction between GI commensals and host immune cells plays
a critical role in the development of the immune system and

the maintenance of intestinal immune homeostasis. For example,
germ-free mice have impaired immune systems with smaller
Peyer’s patches, lower numbers of IgA-producing plasma cells
and lower numbers of CD8+ intraepithelial cells (165, 166).
Dysregulation of GI microbiota has been associated with various
inflammatory diseases (167–169).

In addition to metabolizing host dietary components,
microbes produce their ownmetabolites that can have substantial
immune system effects (170–173). In GVHDmice (174, 175) and
patients (176–178), the diversity of the intestinal microbiota is
significantly altered, which can be associated with the lethality
of the disease. For example, butyrate, a short chain fatty acid
microbial metabolite is an HDACi serves as the main energy
source of intestinal epithelial cells (IECs) (179, 180). In a
mouse model of GVHD, the reduction in intestinal butyrate
resulted in decreased histone acetylation within CD326+ IECs
(181). Administration of exogenous butyrate mitigated GVHD
by increasing both anti-apoptotic and junctional proteins of
IECs. This beneficial effect was not found to be mediated by
donor Tregs, however the role of host Tregs in this model
remains to be explored. Similarly, intragastric gavage of 17
rationally-selected strains of high butyrate–producing Clostridia
also reduced GVHD and improved survival (181). A clinical
trial (NCT02763033), which aims to increase butyrate levels in
the intestines using dietary supplements containing potato-based
resistant starch, is ongoing. Overall, these results demonstrate
that HDACi can mitigate GVHD lethality.

In addition to butyrate, a recent study (182) reported that
allo-HSCT conditioning regimens reduced indole or indole
derivatives due to altered intestinal microbiome. Importantly,
either supplementation with exogenous indole derivative or
colonization of bacteria that can deliver indole metabolites into
intestines of allogeneic murine recipients ameliorated GVHD
lethality with reduced mucosal damage and pro-inflammatory
cytokines (182). Beyond GVHD amelioration, recipient-specific
tolerance was developed in donor T cells of recipients that
were administered with the tryptophan metabolite and indole
derivative, indole-3-carboxaldehyde, found in foods such as
collard greens and broccoli.

TISSUE TOLERANCE MECHANISMS

It is a known fact that the survival of host against infections
depends on the capacity of host’s immune system. Recently, the
role of parenchymal tissues on reducing disease severity and
protecting from immunopathology has been gaining attention
as tissues can modulate immune responses (183, 184). In non-
infectious disease settings like GVHD, tissue tolerance is defined
as an intrinsic and protective mechanism of parenchymal tissue
to ameliorate GVHD against ongoing alloimmune responses.
Studies from our laboratory demonstrated that the expression
of the co-inhibitory molecule by parenchymal tissues promoted
tolerance and reduced the lethality of GVHD. Experimental
evidence has demonstrated the increased expression of co-
inhibitory molecules such as programmed death-1 ligands and
B7-H3 on T cells in GVHD targeted tissues (27, 156). The absence
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of these molecules accelerated GVHD lethality due to augmented
T cell effector responses. Thus, co-inhibitory pathways induced
during alloresponses serve to dampen alloreactive donor T cell
responses and hence GVHD.

REPARATIVE PROCESSES

Emerging data suggest that tissue tolerance can also be
mediated through the regeneration of damaged tissues. In a
recent study, administration of the Wnt-agonist R-spondin1
mitigated GVHD by protecting intestinal stem cells (ISC) and
facilitating repair of the intestinal epithelium (185). In line
with this finding, IL-22, which has been shown to activate
ISC, enhanced intestinal epithelial regeneration and ameliorated
GVHD (186). A phase I/II clinical trial (NCT02406651) is
currently investigating the safety and efficacy of use of IL-22 in
combination with corticosteroids for the treatment of patients
with newly diagnosed GI GVHD.

Tregs and innate lymphoid cells 2 (ILC2) aid tissue repair
by secreting amphiregulin, an epidermal growth factor that
promotes tissue repair under inflammatory conditions (187).
Non-lymphoid cells, in particular, mesenchymal stem cells
(MSCs), have also been shown to facilitate tissue repair
by polarizing tissue macrophages to the anti-inflammatory
phenotype (188). These macrophages help repair tissues through
enhanced fibroblastic proliferation and also reduce donor T cell
proliferation and so limit GVHD. Furthermore, MSCs promote
tissue repair by increasing the proliferation of ILC3 and their
subsequent IL-22 production (189). Overall, strategies harnessing
tissue tolerance represent a novel and expanding area of research
in GVHD.

CELLULAR THERAPIES

Infusions of tolerogenic cells are one of the most attractive
strategies to achieve long-term immune tolerance in clinical
studies due to the long-term persistence of those cells. There are
numerous immunoregulatory cells that have been used to induce
transplantation tolerance in clinical models, but herein we will
focus on Tregs, invariant natural killer T (iNKT) cells (see also
Dominik Schneidawind’s chapter) and MSCs.

Mixed Hematopoietic Chimerism and
Tolerance Induction
Mixed hematopoietic chimerism also has been shown to be
to facilitate kidney and liver solid organ graft acceptance in
mice and humans (190–193), with high levels causing central
deletional tolerance albeit at the risk of GVHD and transient
chimerism allowing for peripheral tolerance that begins with
Treg mediated mechanisms and transitions into peripheral
tolerance likely including deletion of donor alloreactive T cells
(74, 194–196). While transient T cell chimerism in hematological
malignancy patients can decrease GVHD (75), mixed donor T
cell chimerism present on day 90 in allo-HSCT patients receiving
a reduced intensity conditioning regimen did not preclude
GVHD generation; however the incidence was significantly lower

than those with full donor T cell chimerism (35 vs. 61%),
providing a platform upon which to tolerance induction may be
more likely to be achieved (76).

T Regulatory Cell Infusion for Tolerance
Induction
Tregs play a crucial role in maintaining immune homeostasis and
tolerance by preventing autoimmunity and immunopathology.
Tregs may be derived from the thymus (thymic-derived or
natural Tregs (tTregs or nTregs), peripherally derived Tregs
(pTregs), and in vitro induced Tregs (iTregs) (197). In this
review, we will focus on both basic and clinical studies using
different subsets of Tregs for the prevention of GVHD and
discuss their limitations.

Thymic-Derived Tregs
Phenotypic features of tTregs include the constitutive expression
of CD25, the high- affinity IL-2 receptor, CTLA-4, and Forkhead
box P3 (Foxp3), a lineage transcription factor. Adoptive transfer
of tTregs has been demonstrated to control allograft rejection and
GVHD by limiting alloimmune responses (198–200). Preclinical
studies have shown a high efficacy of Treg infusion and GVHD
prevention (201–203). In allo-HSCT patients, there was an
inverse correlation between Treg frequency and risk of acute
GVHD (204).

Translation to the clinic proved challenging due to the
low frequency of tTregs (typically 2–3% of CD4+ T cells) in
the peripheral blood (205). The phenotypic profile of human
tTregs was not as readily demarcated in peripheral blood as
in the spleen and lymph nodes of mice. Moreover, compared
to non-Treg T cells, Tregs were found to be hyporesponsive
resulting in poor expansile properties and a preponderance
of contaminating non-Tregs even when the latter represented
a minor proportion of input cells. The first acute GVHD
prevention clinical studies were reported by two groups (77,
78). In our study (77), umbilical cord blood cells were used
as a source of tTregs (NCT00602693). Advantages included
ease of tTreg isolation as a result of higher frequency of
CD4+CD25bright cells and reduced likelihood of CD25+ Teffs
contamination due to fetal microenvironment that minimizes
external antigen exposure. Ex vivo expansion permitted tTreg
activation, maximizing expansion and suppressor function.
GVHD was reduced but not eliminated at Treg:Teff ratios of
≤1:6 in patients receiving cyclosporine A or sirolimus and
mycophenolate. In the second study by our group, tTreg
expansion was dramatically increased by restimulating tTregs
with cell-based artificial antigen presenting cells and when
given to patients receiving sirolimus and mycophenolate mofetil,
GVHD was virtually eliminated (79). In the study by Martelli
and coworkers (78), tTregs were freshly isolated from peripheral
blood and allowed to become activated and expanded in vivo
prior to the infusion of haploidentical T cells and in the absence
of post-transplant immune suppression. GVHD was very low
considering the high T cell dose given. Since tTregs could not be
detected in peripheral blood beyond ∼2 weeks post-transplant,
these studies suggest that tTregs have tolerized the donor T
cell graft. In other studies, antigen-specific tTregs have been
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generated and expanded in vitro in rodents (206) and are being
tested in the clinic for GVHD prevention.

Tregs rely on IL-2 for their generation, proliferation, lineage
stability and survival; however, they are poor producers of
IL-2 (207). In patients, ultra-low dose IL-2 given as GVHD
prophylaxis days 7–30 resulted in Treg expansion in vivo and
no instances of GVHD in 16 pediatric allo-HSCT recipients
(208). In patients with cGVHD, low dose IL-2 administration
ameliorated cGVHD lethality by preferentially allowing in vivo
Treg expansion, increasing the Treg:Teff ratio and thus favoring
tolerance (209, 210). Since both Tregs and activated Teffs respond
to IL-2, it is currently unknown whether these studies can be
extrapolated to the higher risk adult population, which may
be benefitted by more selective Treg expansion approaches.
For example, two recent studies employed novel approach to
selectively target Treg expansion. In one of the studies (211),
investigators engineered IL-2 cytokine-receptor orthogonal pairs
that interact with one another but not with their natural
cytokine and receptor counterparts. Introduction of a mutated
IL-2Rβ into T cells that preferentially binds orthogonal but
not natural IL-2 enabled the selective cellular targeting of
engineered T cells in vitro and in vivo, with limited off-target
effects and negligible toxicity, suggesting a clinical strategy
to selectively target Tregs in vivo in patients. In a different
study, the same group employed complexes of human IL-2
with a unique conformational structure that stabilized IL-2
and promoted preferential STAT5 phosphorylation and Treg
expansion (212).

In a non-IL-2 based approach, investigators have used
reagents that stimulate death receptor 3 (DR3, TNFRSF25),
a member of the tumor necrosis factor (TNF) receptor
superfamily primarily expressed on Tregs, lymphoid tissue
inducer cells, and NKT cells (213). The natural ligand of DR3,
TL1a, is expressed on endothelial cells and APCs (213). An
agonistic αDR3 mAb significantly expanded Tregs in vivo and
prevented the development of allergic lung inflammation (214)
and cardiac allograft survival by increasing the proportion
of Tregs (215). Treating donors with αDR3 preferentially
allowed Tregs expansion with reduced Tcon activation and
those donor T cells reduced GVHD (216). A key role of
TNF binding to TNFR2 was discovered to be critical to
Treg control of GVHD (217, 218). Collectively, strategies
to increase the tTreg/Teffs in vivo represent a promising
therapeutic option to reduce GVHD and remain an active area
of research.

Inducible Tregs (iTregs)
Although tTreg cellular therapy has great potential in controlling
GVHD, higher doses of Tregs are required and it has been
challenging to achieve uniform and robust tTreg expansion
in clinics. Generation of iTregs is an alternative strategy to
overcome the obstacle of limited nTreg cell numbers. Previous
studies have established the potency of iTregs in controlling
various autoimmune disorders (219, 220). In an experimental
GVHD study, antigen-specific iTregs were generated and they
were able to reduce GVHD by inhibiting the activation,
proliferation and migration of donor T cells (221). The

methylation status of the Treg-specific demethylated region
(TSDR) of the Foxp3 promoter determines the stability of
Tregs by maintaining the stable expression of Foxp3 (222,
223). Unlike tTregs, iTregs are completely methylated at the
TSDR and tend to be unstable in GVHD mice (80, 224).
Hence, studies have attempted to use various agents such as
rapamycin, retinoic acid, and IL-6 blockade to induce and
maintain iTregs (224). However, only the usage of sirolimus
both in vitro and in vivo was shown to improve CD4+
iTreg stability in a mouse model of GVHD (80). Given the
role of iTregs in controlling GVHD, there is an ongoing
phase-I trial (NCT01634217) initiated by our institute to test
the safety of CD4+ iTregs, generated using sirolimus, TGF-
β, and IL-2, when given as GVHD prophylaxis to matched
sibling donors along with CNI and mycophenolate thereby
reducing the inflammatory environment. Intriguingly, CD4+
tTregs and iTregs were shown to be synergistic in controlling
colitis in mice (81). A previous study reported that CD8+
iTregs can be induced by activating CD8+ CD25- T cells
with allogeneic CD11c+ DCs, IL-2, TGF-β and retinoic acid.
Although CD8+ iTregs expressed higher levels of suppressive
molecules like CD39+CD73+, CTLA-4, and granzyme than
CD4+ iTregs, there was no difference observed between
their in vitro suppressive functions (82). In contrast to their
in vitro suppressive functions, CD8+ iTregs are less potent
than CD4+ iTregs in controlling GVHD due to their pro-
apoptotic phenotype and thus reduced survival but are more
effective in eliminating leukemia cells (82, 225). Intriguingly,
CD8+ iTreg expression of FoxP3 can be stabilized by JAK2
targeting (226).

Type 1T Regulatory (Tr1) Cells
Type 1 T regulatory (Tr1) cells are a distinct pTreg subset
discovered by Bacchetta and Roncarolo and colleagues in severe
combined immune deficiency patients who did not develop
GVHD but had anti-host reactive T cell clones that produced
high IL-10 and low IL-2 protein (227, 228). Tr1 cells lack
constitutive expression of Foxp3, and have been shown to exert
immune tolerance mainly via production of cytokines such as
IL-10 and TGF-β (229, 230) that can inhibit murine GVHD
lethality (228).

Using novel transgenic mice, Hill’s group recently reported
that Tr1 cells are the dominant immunoregulatory cells after allo-
HSCT due to defective tTreg homeostasis (231). Infusion of Tr1
cells reduced GVHD, while Tr1 deficiency aggravated GVHD
lethality. Murine and human Tr1 cells are typically generated
by alloantigenic stimulator cell exposure in the presence of high
IL-10 (83, 228, 229, 232). As with antigen-specific tTregs, Tr1
cells may have a reduced capacity for global immunosuppression
due to their allospecificity. A recently completed phase-I trial
demonstrated the feasibility of host-specific donor Tr1 therapy in
GVHD patients. Infusions of Tr1 cells reduced GVHD, enhanced
immune reconstitution and promoted tolerance induction (84).
There are ongoing clinical trials testing the efficacy of Tr1 cell
therapy in controlling autoimmunity and other inflammatory
disorders (230).
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Invariant Natural Killer T (iNKT) Cells
iNKT cells are a rare lineage of immunomodulatory cells and
they produce large quantities of anti-inflammatory cytokines
such as IL-4 and IL-10 (85). Numerous lines of evidence
have highlighted the potency of iNKT cells in promoting
immune tolerance in GVHD (233). Studies from the early
2000s demonstrated that a combined regimen of fractionated
total hematopoietic irradiation and depletion with anti-T cell
antibodies reduced GVHD in rodent models (234, 235). The
protective effect against GVHD was meditated by the expansion
of host immunoregulatory iNKT cells, which secreted IL-4 and
supported donor Treg proliferation (234–236). Pharmacological
approaches to expand iNKT cells, using a synthetic iNKT
TCR ligand, α-galactosylceramide (alphaGalCer), also attenuated
GVHD (237). An important consideration in these studies was
the usage of reduced conditioning regimens that may help in
the survival of host iNKT cells and their expansion. However,
using lethally irradiated GVHD mouse models, Negrin’s group
demonstrated that the lethality of GVHD could be mitigated
by adoptive transfer of low numbers of recipient-type, donor-
type, or third party iNKT cells (238–240). These studies shed
light on the role of iNKT cells in expanding both donor Tregs
and myeloid derived suppressor cells (MDSCs). Interestingly, the
protective effects of iNKT cell and donor Treg expansions were
dependent on MDSCs and thus, crosstalk between these distinct
cell populations promoted immune tolerance in GVHD settings.
Results from these experimental models led to the initiation of
a phase-II trial (NCT01379209) in GVHD patients. This clinical
trial used a single dose of RGI-2001, the liposomal formulation of
α-GalCer to expand iNKT cells. While there was reduced GVHD
and increased expansion of Tregs observed in some patients,
iNKT cells were very low in number and difficult to detect in the
peripheral blood (241). Clinical studies testing infusions of iNKT
cells hold promise to control GVHD.

Mesenchymal Stem Cells (MSCs)
Therapeutic infusions of MSCs are one of the leading options
to treat GVHD. Although MSCs are rare non-hematopoietic
cells in bone marrow, these cells are easy to isolate and can
be expanded rapidly in vitro due to their multipotent and self-
renewable properties (205). Immunomodulatory effects of MSCs
in attenuating GVHD are mediated by secretion of cytokines
(IL-6, TGF-β), soluble receptors (PDL-1, PDL-2) and effector
molecules (nitric oxide, PGE2). MSCs also downregulate a wide
range of chemokine (CCL1, CCL3, CCL8, CCL17, CCL22)
expressions on donor T cells to limit T cell effector migration
into target tissues (86, 205). The suppressive capacity of MSCs is
enhanced by IFN-γ produced during GVHD, which up-regulates
PDL-1 and IDO expression on MSCs to control T cell activation
(205, 242). In other studies, high host anti-donor cytotoxic

T lymphocyte (CTL) activity serves to eliminate donor MSCs
and at the same time induce IDO and immune suppression by
perforin-dependent host CTL mediated donor MSC apoptosis
(243). Additionally, MSCs participate in the reparative process of
tissue by promoting angiogenesis, regeneration, and remodeling
(205). These properties have led to multiple clinical trials
(NCT03158896, NCT00284986, NCT00361049, NCT00366145,
NCT02336230) exploring the use of MSC infusion as an
adjunctive strategy for GVHD prevention (87).

CONCLUDING REMARKS

Recently, there have been significant advances in the field of
allo-HSCT to treat GVHD. Early phase studies involving AAT,
HDACi and co-stimulation blockade have shown promising
results, although randomized clinical trials and longer follow-
up will be required to validate these existing results. Adoptive
cellular therapies are powerful strategies to achieve peripheral
tolerance swiftly in allo-HSCT recipients by blunting the
inflammatory component of GVHD. Clinical trials using
tTregs have reported promising results, but the long-term
effects of Tregs on immune responses against infections and
tumors have yet to be determined. To reduce non-specific
immunosuppression and increase potency of antigen-specific
suppression, generation of antigen-specific Tregs by a variety of
approaches including engineering Tregs using chimeric antigen
receptors (CAR) or designated T-cell receptors reactive against
antigens present in GVHD organs may be an attractive approach.
The first clinical trial evaluating CAR Treg therapy in the
prevention of organ transplant rejection is expected to start
by next year. Gene augmentation and gene editing techniques
may be employed to direct Tregs to particular GVHD organs
such as the gut or to increase Treg stability under inflammatory
conditions. Renewed efforts are required to gain insight into
tolerance induction in allo-HSCT and to develop safe and
effective strategies to combat GVHD.
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