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Introduction

Many pathological conditions are induced by chemical 
exposures, of which an increase in free radical production 
has been shown to be a primary and ubiquitous event in 
producing toxicity1. Oxidative stress or chemical insults 
that are capable of generating DNA strand breaks cause 
a remarkable increase in poly(ADP-ribose) polymerase-1 
(PARP-1; EC 2.4.2.30) activity2, whose activity is barely 
detectable under normal cellular conditions. When 
DNA damage is moderate, PARP-1 works for its repair. 
Upon binding to DNA strand termini, PARP-1 catalyzes 
the splitting of the ADP-ribose–nicotinamide bond in 

β-nicotinamide adenine dinucleotide (NAD+) with the 
concomitant attachment of ADP-ribose moiety to pro-
tein and then to this protein-bound ADP-ribose, result-
ing in a long and branched chain of up to 200 units, i.e. 
poly(ADP-ribose)3,4. Various proteins serve as acceptors of 
ADP-ribose. In addition, PARP-1 catalyzes the transfer of 
ADP-ribose moieties to acceptor sites on itself, a process 
called “automodification”3,4. This automodification leads 
to the release of PARP-1 from DNA strand termini, due to 
the negative charge repulsion between poly(ADP-ribose) 
and DNA, and allows for other proteins of the DNA excision 
repair pathways to access and work at sites of damage.
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abstract
Carbon tetrachloride (CCl

4
) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can 

be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by 
necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of β-nicotinamide 
adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to 
determine whether inhibition of PARP-1 could decrease CCl

4
-induced hepatotoxicity, as measured by degree of 

poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation, and oxidative DNA damage. 
For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl

4
 with or without 6(5H)-

phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl
4
 exhibited extensive poly(ADP-ribosyl)ation 

in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals 
treated concomitantly with CCl

4
 and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl)

ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless 
of treatment. These results demonstrated that the hepatotoxicity of CCl

4
 is dependent on the overactivation of PARP-1 

and that inhibition of this enzyme attenuates the hepatotoxicity of CCl
4
.
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Overactivation of PARP-1 potentiates the deleterious 
effects of an initial chemical insult by rapidly depleting 
cellular NAD+ and adenosine triphosphate (ATP) and 
leads to an “energy crisis” that culminates in cell death5–10. 
In such situations, PARP-1 inhibitors very often protect 
cells from death8,9,11–15. It seems that PARP-1 is important 
for both, apoptotic and necrotic, modes of cell death, 
but in different ways16–19. DNA-damage-induced PARP-1 
overactivation leads to ATP depletion and necrotic cell 
death10,20,21. Consequently, PARP-1 inhibition attenu-
ates or prevents necrosis in various cell types11,12,21–24. 
During classical apoptosis (i.e., caspase-dependent 
programmed cell death), PARP-1 is cleaved by caspases 
resulting in its inactivation25. PARP-1 cleavage, a hall-
mark of apoptosis, may prevent its overactivation and, 
therefore, ATP depletion and necrosis by preserving cel-
lular energy that is required for apoptosis. Thus, intracel-
lular ATP levels can regulate the mode of cell death26,27. 
A similar effect would be expected from PARP-1 inhibi-
tion. In fact, inhibition of PARP-1 preserves cellular ATP 
levels and in turn minimizes execution of the necrotic 
death pathway28. Moreover, the maintenance of intracel-
lular ATP levels associated with PARP-1 inhibition shifts 
cell death from necrosis to apoptosis and from apoptosis 
to cell survival29. PARP-1 inhibitors (3-aminobenzamide 
and  4-hydroxyquinazoline) prevent hydrogen perox-
ide H

2
O

2
-induced ATP depletion with reversion of the 

mode of cell death from necrosis back to apoptosis30. 
3-Aminobenzamide restores NAD+ and ATP levels and 
decreases both necrosis and apoptosis caused by H

2
O

2
-

injury of PC12 cells31. PARP-1 also plays an important 
role in a caspase-independent programmed cell death 
that is mediated by the  apoptosis-inducing factor, i.e. a 
mitochondrial flavoprotein that is released and trans-
located to the nucleus in response to death stimuli32,33. 
PARP-1 activation is necessary for this translocation. 
Furthermore, during excessive poly(ADP-ribosyl)ation-
dependent cell death, there is a rapid cross-talk between 
the nucleus and mitochondria34,35. Some studies have 
shown that pharmacological inhibition of PARP-1 is 
capable of attenuating the adverse effects of selected 
pharmaceuticals36.

Several lines of evidence have shown that the toxicity 
of carbon tetrachloride (CCl

4
; Chemical Abstracts Service 

Registry Number: 56-23-5) is dependent on an early 
efflux of calcium (Ca2+) from the endoplasmic reticulum, 
due to intense lipid peroxidation caused by the trichlo-
romethyl radical37,38. Late preventive effects of nicotin-
amide and dimethyl sulfoxide (DMSO) against CCl

4
- and 

bromobenzene-induced hepatotoxicity have already 
been reported39–42. These effects were assumed to be the 
result of the ability of nicotinamide treatment to restore 
mitochondrial Ca2+ transport and the antioxidant effects 
of DMSO. More recently, we showed that increased 
 ADP-ribosylation of hepatocellular proteins occurred 
in mice 24 h after the administration of a hepatotoxic 
dose of CCl

4
43. Further, we found that 6(5H)-phenanthri-

dinone (Chemical Abstracts Service Registry Number: 

1015-89-0), a potent inhibitor of PARP-1 (IC
50

 = 300 nM)44, 
offered a protective affect against CCl

4
-induced hepato-

toxicity by decreasing areas of hepatocellular necrosis 
and serum transaminase levels45. Herein, we report addi-
tional parameters from these previous studies that fur-
ther support the protective effects of PARP-1 inhibition 
in animals poisoned with CCl

4
.

Materials and methods

Reagents and animal treatment
All reagents were purchased from Sigma-Aldrich Corp. 
(St. Louis, MO), unless otherwise indicated. Experimental 
evaluations were performed on tissues from animals 
reported on previously43,45. Briefly, male ICR mice, weigh-
ing approximately 25 g at the time of experiment, were pur-
chased from Harlan Sprague Dawley, Inc. (Indianapolis, 
IN), housed in an air-conditioned vivarium, with a 12-h 
light–dark cycle, and allowed free access to diet, 2018 - 
Teklad Global 18% Protein Rodent Diet (Harlan Teklad, 
Madison, WI), and drinking water. Animals were accli-
mated for 7 days, prior to being randomly assigned to the 
treatment groups (Table 1). Experimental animals were 
administered intraperitoneally 200 µL of an appropriate 
solution and sacrificed by decapitation after 24 h. 6(5H)-
Phenanthridinone was dissolved in DMSO; final DMSO 
concentration in injection solutions (0.2 mL), except con-
trols, was 5.5%. Therefore, assuming an average mouse 
blood volume of 6–8 mL per 100 g of body weight46, inject-
ing a 25 g mice with 0.2 mL of 5.5% DMSO would result in 
a final in vivo DMSO concentration of between 0.5 and 
0.65%. This study was approved by an Institutional Ethics 
Committee.

Measurements of serum enzymes
Mice were decapitated, and whole blood was collected 
in sterile microcentrifuge tubes, left at room temperature 
for 5 min, and centrifuged at 5000g for 10 min. The serum 
(supernatant; ~0.2 mL) was transferred to a new sterile 
microcentrifuge tube and stored at 4°C until assay. The 

Table 1. Experimental design for control and treatment groups.

Group Addition* Number of Animals†

PBS None (only PBS) 4

DMSO‡ 11 µL# 4

6(5H)-
Phenanthridinone§

10 mg/kg‖ in 11 µL# 4

CCl
4

572 mg/kg + 11 µL# 10

CCl
4
 + 6(5H)-

Phenanthridinone
572 mg/kg +  
10 mg/kg in 11 µL#

10

*Total intraperitoneal injection volume, with and without 
addition(s), was 200 µL as made up with PBS for each group.
†Male ICR mice were preconditioned as described in “Materials 
and methods” section.
‡Final concentration of DMSO, when added, in injections was 
5.5%, resulting in an in vivo concentration of less than 0.65%.
§6(5H)-Phenanthridinone was dissolved in 100% DMSO.
‖Kilogram of body weight.
#DMSO.
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pellets were disposed. The activity of lactate dehydroge-
nase (LDH; EC 1.1.1.27) was determined using a com-
mercial kit.

Immunohistochemistry and evaluation of  
poly(ADP-ribosyl)ation
Liver samples previously fixed in 10% neutral buffered 
formalin and embedded in paraffin were deparaffinized 
using the xylene/ethanol procedure. After endogenous 
peroxidase was blocked with 3% H

2
O

2
 in methanol at 

room temperature for 10 min, the sections were treated 
with 90, 80, and 70% ethanol for 3 min each. Then, they 
were washed three times for 3 min with phosphate-
buffered saline (PBS). Antigens were unmasked by 
incubating samples with 0.1% trypsin at 37°C for 30 min, 
followed by rinsing three times for 3 min with Tris-
buffered saline and once for 3 min with containing 0.1% 
Tween-20 (TBS-T). The sections were reacted with rabbit 
anti-poly(ADP-ribose) polyclonal antibodies (produced 
in our laboratory)47 diluted 100-fold in TBS-T with 1% 
bovine serum albumin at 4°C overnight. As a control, 
parallel tissue sections of PBS- and CCl

4
-treated ani-

mals were incubated overnight in TBS-T with 1% bovine 
serum albumin and no antibody. After washing with 
TBS-T (3 min × 5), the sections were incubated for 1 h 
at room temperature with EnVision+™ (Code No. K4002; 
DakoCytomation Denmark A/S, Glostrup, Denmark) 
and visualized using 3,3′-diaminobenzidine (0.2 mg/mL 
in PBS containing 0.006% H

2
O

2
).

Measurement of lipid peroxidation
Hepatic levels of malondialdehyde were measured as a 
marker of lipid peroxidation, as described previously43. 
Briefly, liver tissues, collected at the end of experiments, 
were homogenized in 1.15% potassium chloride solu-
tion. An aliquot (0.1 mL) of the homogenate was added 
to a reaction mixture containing 0.2 mL of 8.1% (w/v) 
sodium dodecyl sulfate, 1.5 mL of 20% (v/v) acetic acid 
(pH 3.5), 1.5 mL of 0.8% (w/v) thiobarbituric acid, and 
0.7 mL distilled water. Samples were then heated for 1 h at 
95°C and centrifuged at 3000g for 10 min. The absorbance 
of the supernatant was measured by spectrophotometry 
at 650 nm, and the results were reported as thiobarbi-
turic acid reactive substances (TBARS) per milligram of 
protein.

Measurement of oxidative DNA damage
DNA isolation, hydrolysis, and analysis of 8-hydroxy-
2′-deoxyguanosine (oxo8dG), expressed as a ratio of 
oxo8dG to 2-deoxyguanosine (2-dG), was performed 
as described previously48. Briefly, samples were treated 
with DNase-free RNase followed by digestion with pro-
teinase K. The protein fraction was separated from DNA 
by three consecutive organic extractions. The DNA was 
precipitated by adding two volumes of ethanol (with 
respect to the aqueous volume) and incubated over-
night at −20°C. The purity of the DNA was determined 

by the absorbance of an aliquot of the sample at 260 
versus 280 nm.

Analysis of the ratio of oxo8dG/2-dG was performed 
as described previously48. Purified DNA was prepared 
for high-performance liquid chromatography analysis 
by resolving it into deoxynucleoside components. The 
DNA was digested with nuclease P1 and treated fur-
ther with alkaline phosphatase. The deoxynucleosides 
preparation was then ready for HPLC analysis. The 
amount of oxo8dG and 2-dG was calculated by compar-
ing the peak area of oxo8dG and 2-dG obtained from 
the enzymatic hydrolysate of the DNA sample to a cali-
bration curve for both compounds. Levels of oxo8dG in 
the samples were expressed relative to the content of 
2-dG, for example, as the ratio of fmol of oxo8dG/nmol 
of 2-dG. Because 1 µg of DNA contains 0.648 nmol of 
2-dG, 1 fmol/nmol 2-dG is equivalent to 1.54 fmol/
µg DNA. The mobile phase in the HPLC system was 
100 mM sodium acetate, pH 5.2, with 5% methanol. 
Oxo8dG was detected by an electrochemical detec-
tor (ESA Coulochem Model 5100A; ESA Biosciences, 
Inc., Chelmsford, MA) using a glassy carbon working 
electrode at an applied potential of +0.4 V. 2-dG was 
detected in the same sample by absorbance at 260 nm 
using a Perkin–Elmer 785A Programmable Absorbance 
Detector (Perkin Elmer Corp., Norwalk, CT) arranged 
in series with the electrochemical detector. Data were 
recorded, stored, and analyzed on a PC Pentium com-
puter using ESA 500 Chromatography Data System 
Software (ESA Biosciences, Inc., Chelmsford, MA).

Statistical analysis
One-way analysis of variance was used to compare differ-
ences between treatment groups for the serum biochem-
istry, lipid peroxidation, and oxidative DNA damage 
experiments, followed by a Student–Newman–Keuls 
post-test. A probability value of less than 5% was consid-
ered significant. Statistical tests were performed using 
GraphPad Prism™ version 3.0 for Windows (GraphPad 
Software, Inc., San Diego, CA).

results

Protective effects of PARP-1 inhibitor against   
CCl

4
-induced damage of hepatocytes

Serum LDH activity confirmed the protective effects 
of 6(5H)-phenanthridinone against CCl

4
-induced tis-

sue damage and the lack of effect of DMSO and 6(5H)-
phenanthridinone administered alone (Figure 1). A 
statistically significant increase in LDH activity was 
observed in animals treated with CCl

4
 versus PBS, DMSO, 

and 6(5H)-phenanthridinone controls. A statistically sig-
nificant decrease in LDH activity was detected between 
CCl

4
-treated animals and animals treated concomitantly 

with CCl
4
 and 6(5H)-phenanthridinone. No statisti-

cally significant difference in LDH activity was detected 
between animals treated with PBS, DMSO, or 6(5H)-
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phenanthridinone, and animals treated concomitantly 
with CCl

4
 and 6(5H)-phenanthridinone.

Induction of poly(ADP-ribosyl)ation in hepatocytes 
by CCl

4
A minimal degree of poly(ADP-ribosyl)ation of cells 
was observed in tissues from animals administered PBS 
(Figure 2A), DMSO (data not shown), or 6(5H)-phenan-
thridinone (data not shown) controls; however, exten-
sive poly(ADP-ribosyl)ation was observed throughout 
the centrilobular region of CCl

4
-treated animals (Figure 

2B). In contrast, animals treated concomitantly with CCl
4
 

and 6(5H)-phenanthridinone had markedly decreased 
levels of poly(ADP-ribose) (Figure 2C).

Induction of lipid peroxidation in hepatocytes by CCl
4

No statistically significant differences were observed 
between any groups with regard to markers of lipid per-
oxidation (Figure 3). However, a 7-fold increase of the 
average in lipid peroxidation was observed in animals 
treated with CCl

4
 versus animals treated with either PBS 

or 6(5H)-phenanthridinone. Animals treated concomi-
tantly with CCl

4
 and 6(5H)-phenanthridinone exhibited a 

5-fold decrease in lipid peroxidation products versus CCl
4
-

treated animals. Interestingly, animals treated with DMSO 
had an approximately 2.5-fold increase in lipid peroxida-
tion products over animals treated concomitantly with 
CCl

4
 and 6(5H)-phenanthridinone and nearly a 3.5-fold 

increase over PBS and 6(5H)-phenanthridinone controls.

No oxidative DNA damage by CCl
4

The levels of oxidative DNA damage were not statistically 
significant between any groups (Figure 4). Moreover, 
no apparent trend appeared to exist with any of the 
treatments.

Discussion

This study was undertaken to further evaluate the pro-
tective effect of PARP-1 inhibition on CCl

4
-induced 

hepatotoxicity49. The ability of DMSO to intervene in 
the development of bromobenzene- and chloroform-

induced hepatotoxicity has been shown when animals 
are treated up to 24 h after administration of the toxicant. 
This effect would be independent of the bioactivation 
of CCl

4
 to the trichloromethyl radical, which occurs 

between 6 and 10 h after treatment49. The in vivo concen-
tration of DMSO utilized in the aforementioned studies 
was between 2.5 and 3.2% based on the average mouse 
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Figure 1. Serum LDH activity for control (S, D, P) and treated (C, 
C + P) male ICR mice 24 h after treatment. n = 4 for PBS (S), DMSO 
(D), and 6(5H)-phenanthridinone (P); n = 10 for CCl

4
 (C) and 

CCl
4
 plus 6(5H)-phenanthridinone (C + P). Results are expressed 

as the mean ± the standard deviation. *Indicates a statistically 
significant difference from controls (P < 0.05). **Indicates a 
statistically significant difference between CCl

4
 and CCl

4
 plus 

6(5H)-phenanthridinone treated animals (P < 0.05).

Figure 2. Immunohistochemistry for poly(ADP-ribose) of 
male ICR mice treated for 24 h with CCl

4
. Representative 

photomicrograph (100×) of [A] PBS controls (S); [B] CCl
4
 (C), and 

[C] animals co-treated with CCl
4
 and 6(5H)-phenanthridinone 

(C + P). (See colour version of this figure online at www.
informahealthcare.com/enz)
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blood volume of 6–8 mL per 100 g of bodyweight46. 
Interestingly, DMSO has been shown to cause a 20% 
reduction in PARP-1 activity at a concentration of 4% in 
vitro50. Therefore, it was hypothesized that the late pro-
tective effects of DMSO may occur, in part, by preventing 
the overactivation of PARP-1, thereby allowing partially 
damaged cells to overcome the initial insult through 
reparative processes or facilitating apoptosis in exces-
sively damaged cells.

Many of the known PARP-1 inhibitors are water 
insoluble, and organic solvents must be used as the 
vehicles for administration. DMSO is the most com-
monly used50. Previous studies have shown that DMSO 
can increase the acute lethality of CCl

4
51, but decrease 

its hepatotoxicity52. Furthermore, several studies have 
shown that in human hepatocytes DMSO can alter the 
activity of various isoforms of cytochrome P450 (CYP), 
including CYP2E1 that bioactivates CCl

4
 to the trichlo-

romethyl radical53; however, an in vitro inhibitory effect 
was observed only at concentrations greater than 0.1% 
DMSO. Further, an in vivo concentration of DMSO at 
1.66% or lower does not provide any protection against 
bromobenzene- or chloroform-induced hepatotoxic-
ity, both of which are bioactivated by CYP2E154–56. As 
presented herein, the administered amount of DMSO 
(<0.65% in vivo) was maintained sufficiently low 
enough so as to prevent it from altering the hepatotox-
icity of CCl

4
.

An important consideration in interpreting our 
previous findings and the results presented herein is 
which of the inhibitory and antioxidant effect of DMSO 
or the inhibitory effect of 6(5H)-phenanthridinone on 
the bioactivation of CCl

4
 via CYP2E1 dominated. Since 

6(5H)-phenanthridinone is predominantly eliminated 
as a glucuronide conjugate and is not further metabo-
lized in benzo[a]pyrene-induced animals57,58, our 
results suggest that 6(5H)-phenanthridinone protects 
against CCl

4
-induced hepatotoxicity independently of 

its metabolism.
Recently, Cover et al.59 suggested that PARP-1 activa-

tion might not contribute to acetaminophen-induced 
cell death under the experimental conditions used in 
their study. In the report, two PARP-1 inhibitors were 
tested and gave mixed results.  3-Aminobenzamide 
completely protected against acetaminophen hepa-
totoxicity, whereas 5-aminoisoquinolinone lacked 
protective effects. The authors hypothesized that 
3-aminobenzamide might reduce metabolic activa-
tion of acetaminophen or act as an antioxidant, and, 
in view of the results with the more potent inhibitor 
 5-aminoisoquinoline (IC

50
 = 10 μM), concluded that 

PARP-1 activation was not a relevant event for acet-
aminophen-induced oncotic necrosis. Based on their 
results, it is possible that the 5-aminoisoquinoline used 
in the study was partially degraded or rapidly metabo-
lized when administered by the intraperitoneal route, 
as the administered dose did not appear to inhibit 
PARP-1 to the degree that such a potent inhibitor 

should inhibit. For instance, the authors report that the 
staining intensity of poly(ADP-ribose)-positive cells 
was not significantly reduced in animals treated with 
acetaminophen and 5-aminoisoquinoline.

Alternatively, the discrepancy between the results of 
Cover et al.59 and the results presented herein may be due 
to the different pathways by which acetaminophen and 
CCl

4
 cause hepatotoxicity. For instance, the metabolic 

activation of acetaminophen generates a reactive metab-
olite, N-acetyl-p-benzoquinone imine, that covalently 
binds to cellular proteins, whereas the bioactivation of 
CCl

4
 to the trichloromethyl free radical results in lipid per-

oxidation. Wan et al.60 showed that metabolic activation of 
acetaminophen resulted in an increase in oxidative DNA 
damage, due, in part, to significantly reduced levels of 
8-oxoguanosine DNA glycosylase, a base-excision repair 
enzyme that removes oxidatively modified DNA bases. In 
comparison, the types of DNA lesions, commonly called 
ethenobases, resulting from CCl

4
 are predominantly 

those originating from products of lipid peroxidation 
(e.g. malondialdehyde and 4-hydroxynonenol) and not 
an increase in oxo8dG, as shown herein. However, the 
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Figure 3. Lipid peroxidation in liver samples of male ICR mice 
treated with CCl

4
. No statistically significant differences were 

detected with a P < 0.05; n = 4 for PBS (S), DMSO (D), and 6(5H)-
phenanthridinone (P); n = 9-10 for CCl

4
 (C) and CCl

4
 plus 6(5H)-

phenanthridinone (C + P).
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Figure 4. Oxidative DNA damage in liver samples of male ICR 
mice treated with CCl

4
. No statistically significant differences were 

detected with a P < 0.05; n = 4 for PBS (S), DMSO (D), and 6(5H)-
phenanthridinone (P); n = 9-10 for CCl

4
 (C) and CCl

4
 plus 6(5H)-

phenanthridinone (C + P).
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ethenobases are repaired via the base-excision repair 
pathway, specifically alkyl-N-purine-DNA glycosylase 
(ANPG). The recent findings of Ogawa et al.61 indicate 
that differences exist with regard to the protective effects 
of PARP-1 inhibition and the type of DNA damage to be 
repaired via the nucleotide-excision repair pathway or 
the base-excision repair pathway, with inhibitors confer-
ring a protective effect in the latter case. It is possible that 
inactivation of Ogg1 during acetaminophen intoxication 
prevents the activation of PARP-1, given that glycosylases 
initiate base-excision repair by removing the altered 
DNA base, followed by excision of the sugar-phosphate 
backbone, which triggers the activation of PARP-1. Since 
CCl

4
 generates lipid peroxidation with the subsequent 

formation of ethenobases, the protective effect of PARP-1 
inhibition on CCl

4
 intoxication may be due to a possible 

increase in ethenobase removal by ANPG, which, in the 
absence of PARP-1 inhibition, may lead to PARP-1 overac-
tivation. If the activity of ANPG is inducible as with other 
glycosylases, the enhanced removal of ethenobases may 
ultimately lead to overactivation of PARP-1 following exci-
sion of the sugar-phosphate backbone and DNA strand 
break formation62. Finally, the degree to which a parent 
compound and its metabolites may or may not alter the 
activity of PARP-1 remains an area of investigation that has 
not been readily explored. In studies where high doses of 
chemicals are used to treat animals, as performed in this 
study, saturation of metabolic pathways may end up pro-
viding some degree of protection if the parent compound 
inhibits PARP-1. Some insight into such phenomena was 
recently reported with several different types of hetero-
cyclic amines, many of which inhibited PARP-1 in their 
unmetabolized form; however, some compounds caused 
a significant increase in PARP-1 activity62.

In summary, our data demonstrated that 6(5H)-
phenanthridinone treatment attenuated CCl

4
-induced 

hepatotoxicity. This effect does not appear to be a result 
of the use of DMSO as a carrier because the DMSO + 
CCl

4
 produced intense centrilobular necrosis. Since 

6(5H)-phenanthridinone is predominantly eliminated as 
a glucuronide conjugate and is not further metabolized 
in control or benzo[a]pyrene-induced animals [57, 58], 
our results suggest that 6(5H)-phenanthridinone pro-
tects against CCl

4
-induced centrilobular hepatotoxicity 

without altering CCl
4
 bioactivation. Moreover, when 

viewed in toto with our previous findings, these results 
show the predominant role of PARP-1 overactivation in 
chemical-induced hepatotoxicity and strongly suggest 
the possibility of pharmacological intervention with 
PARP-1 inhibitors for chemical-induced hepatotoxicity 
and possibly other cytotoxicities.
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