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SUMMARY
Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital mi-
crobiome is a key component of the urinary environment. However, changes in the urogenital microbiome
underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture
on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional
and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI sus-
ceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking es-
trogen hormone therapy.We find robust correlations betweenBifidobacterium and Lactobacillus and urinary
estrogens in womenwithout urinary tract infection (UTI) history. Functional analyses reveal distinctmetabolic
and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are
enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our
data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.
INTRODUCTION

Urinary tract infection (UTI) is among the most common adult

bacterial infections and imparts a particularly significant medical

burden on women, with more than 50% of women suffering UTI

in their lifetimes.1,2 Historically, UTI has largely been underpriori-

tized inmedical research due to lowmortalities and the effective-

ness of antibiotics. UTI is a disease of disproportionate burden

as age is one of the strongest associated risk factors for UTI

and the development of recurrent UTI (rUTI).3 Indeed, approxi-

mately 50% of UTIs in postmenopausal (PM) women develop

into rUTI, which is clinically defined as R2 symptomatic UTIs

in 6months or three symptomatic UTI episodes in 12months.1,4,5

rUTI can last for years, dramatically decreasing quality of life

both physically and mentally and, if treatment is unsuccessful,

can develop into life-threatening urosepsis.6 Indeed, a 2019 pro-

spective study concluded that rUTI is significantly associated

with frailty in American adults 65 years of age and older.7 While

preventive strategies, including D-mannose, vaginal estrogen,
Cell Repo
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and methenamine, are often employed, treatment of active UTI

primarily relies on the use of antibiotics to achieve urinary tract

sterility.3,8–10 However, increasing rates of antibiotic refractory

rUTI make this strategy unsustainable.11 Alternate therapeutic

strategies are needed to increase quality of life and reduce

adverse outcomes for women with rUTI.

A promising source of therapies for rUTI lies in modulating or

restoring the urogenital microbiome.12,13 Decades of medical

dogma have assumed sterility of urine and the urinary tract; how-

ever, a robust body of work has established the existence of a

human urogenital microbiome.14–21 Taxonomic analyses have

associated urogenital microbiome dysbiosis with urinary inconti-

nence, overactive bladder, and bladder cancer.22–24 A study of

1,600 twins found that increased urinary microbiome diversity

is associated with advanced age and that previous UTI, meno-

pause, and host genetics are among the most significant host

factors associated with differences in urinary microbiome

composition.25 Recent work has used culture-based techniques

to shed light on the microbial ecology of the urinary microbiome
rts Medicine 3, 100753, October 18, 2022 ª 2022 The Author(s). 1
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in PM women with rUTI.26,27 While PM women have been

included in prior studies, focused representation in the literature

is only now beginning to be established.28 Fundamental knowl-

edge of urogenital microbiome composition and function in the

context of rUTI susceptibility is lacking. As a result, the relation-

ship between the urogenital microbiome and rUTI susceptibility

is poorly understood in PM women. A 2021 report showed that

premenopausal and PM women displayed different core urinary

microbiota at the genus level, providing strong rationale to char-

acterize the PM urogenital microbiome in urogenital disease.29

The female urogenital microbiome is reported to be intercon-

nected with the vaginal microbiome.30 For example, D(-)lactate-

producing lactobacilli, known to acidify the vagina and protect it

from colonization by bacterial and fungal pathogens, have been

consistently observed in the female urogenital microbiome inmul-

tiple independent studies.23,31 Lactobacilli can directly inactivate

urogenital pathogens in vitro and recent work has shown that

phenyl-lactic acid produced by Lactobacillus crispatus is bacteri-

cidal against uropathogenic bacteria, including uropathogenic

Escherichia coli (UPEC).32–34 These observations beg the ques-

tion of whether these protective vaginal lactobacilli serve a similar

role in the urogenital microbiome. A 2011 clinical trial found a

moderate reduction of rUTI incidence among women receiving

an intravaginal L. crispatus probiotic.35 While this study was per-

formed in premenopausal women and has yet to be confirmed

by a larger study, it does suggest that lactobacilli support urinary

tract health. Studies have also begun to establish a relationship

between estrogen hormone therapy (EHT) and urogenital popula-

tions of lactobacilli.36 In 1993, Raz et al. reported that intravaginal

estriol (E3) therapy reduced rUTI incidence and increased vaginal

Lactobacillus populations, and a recent randomized clinical trial

reported a significant reduction in rUTI incidence among PM

women using vaginal EHT (vEHT) compared with placebo.37,38

Given the genomic diversity observed within and among taxo-

nomic clades, metagenomic information beyond 16S rRNA

sequence enrichment is needed to assess the functional poten-

tial of microbial communities.39 Whole-metagenome analysis of

the urogenital microbiome is required to identify the genes

and metabolic pathways associated with urinary tract health.

Here, we present a whole-genome metagenomic sequencing

(WGMS) survey of the urogenitalmicrobiomeof a cross-sectional

cohort of PMwomen separated into three groups defined by rUTI

history and current UTI status. Our taxonomic biomarker analysis

detected a microbial signature that suggests an imprint of past

UTI remains in the urogenital microbiome. In concordance with

previous reports, in this study we also observed an association

between the use of EHT and the presence of lactobacilli in the

urogenital microbiome.36 Throughmeasurement of urinary estro-

gen metabolites, we identified urogenital species whose abun-

dance directly positively or negatively correlated with urinary es-

trogen concentration and found that distinct taxa correlate with

estrogen in PM women with rUTI history compared with those

without. Finally, we found that the resistome (i.e., the encoded

antimicrobial resistance genes [ARGs]) of the urogenital micro-

biome is altered in women with rUTI history even in the absence

of active infection.Our results suggest that both urogenitalmicro-

biome taxonomy and functional potential are shaped by rUTI his-

tory and EHT in PM women.
2 Cell Reports Medicine 3, 100753, October 18, 2022
RESULTS

Cohort curation, metagenomic DNA preparation, and
whole-genome metagenomic dataset generation
rUTI follows a cyclic pattern of infection (Figure 1A). To model

this pattern, PM women were striated into three groups based

on rUTI history. Group 1 served as a healthy comparator and

consisted of PM women with no lifetime history of symptomatic

UTI (No UTI History), group 2 consisted of PM women with a

recent history of rUTI but no active UTI at the time of urine dona-

tion (rUTI History, UTI(�)), and group 3 consisted of PM women

with a history of rUTI and an active, symptomatic UTI at the time

of urine donation (rUTI History, UTI(+)) (Figure 1B). All women in

the rUTI History, UTI(�), and rUTI History, UTI(+) groups passed

strict inclusion criteria for uncomplicated rUTI, meaning they ex-

hibited no compromise of the urinary tract, immune system, or

used indwelling or intermittent catheters.3 We determined that

25 women per group were sufficient to balance a priori sample

size estimation (Figures S1A and S1B) with clinical feasibility

and enrollment rates. The final cohort was balanced for sample

size, race, body mass index (BMI), smoking history, EHT use,

urine pH, and urinary creatinine concentration. It should be noted

as a limitation of this cohort that the women in the rUTI History,

UTI(+) group tended to be older, with a median age of 76 years

compared with 67 years in the No UTI History and 68 in the

rUTI History, UTI(�) groups (p = 0.04) (Table S1). Finally, 37

women in the cohort used EHT, three used D-mannose, and

no women used methenamine (Table S2).

Urine was collected via the ‘‘clean-catch’’ midstreammethod,

which can also sample the urogenital tract and is therefore repre-

sentative of the urogenital microbiome, which is inclusive of the

bladder, urethral, and, in some cases, vaginal microbiomes.40,41

Metagenomic DNA yields reflected the anticipated biomass of

the urogenital microbiome in each (Figure S1C). We observed

an average of 67.6% host (human) contamination within the

WGMSdata (Figure S1D). Previous reports of human contamina-

tion in WGMS sequencing of the urogenital microbiome range

from 1% to 99% of reads.39,42 To measure potential background

and environmental signals, a water sample was randomly in-

serted into the metagenomic DNA isolation and sequencing

workflow.43 Most microbial reads observed in the water mapped

to common kit and environmental contaminants (Figure S2A).44

Except for known members of the human microbiome, these

background taxa were censored from the data.

Validation of viable urogenital microbiome species
through advanced urine culture and WGMS hybrid
taxonomic profiling
To validate the presence of livingmicrobiota within the urogenital

microbiomes, we coupledWGMSwith advanced urine culture, a

modification of the previously reported enhanced quantitative

urine culture protocol.45 Taxonomic profiling byWGMSdetected

a total of 276 bacterial, archaeal, and fungal species across 106

genera. The sampled urogenital microbiomes were dominated

by the kingdom Bacteria, which represented 99.4% of the de-

tected non-viral, microbial taxa (Figure 1C). Consistent with the

observed taxonomic composition of urogenital microbiomes

studied to date.15,16, the detected bacterial taxa belonged to
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Figure 1. Study design and summary of genera detected by WGMS and advanced urine culture

(A) Illustration of rUTI cycle depicting periods of active, symptomatic UTI with positive urine culture followed by periods of remission with negative urine culture.

(B) Diagram of cohort structure and datasets generated for the study created with BioRender.com.
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(D) Venn diagram depicting the coverage of advanced urine culture calculated at the genus level considering all bacterial genera with >5% WGMS relative

abundance in at least one patient.
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four major phyla: Firmicutes (44.7%), Actinobacteria (22.3%),

Proteobacteria (20.6%), and Bacteroidetes (12%) (Figure 1C).

Advanced urine culture captured 93.9% of bacterial genera de-

tected in WGMS, with observed relative abundanceR5% in any

sample (Figure 1D). Patient-level culture coverage is reported in

Figure S2B. The most frequent cultivable genera across all sam-

ples were Lactobacillus, Escherichia, Streptococcus, Bifidobac-

terium, Gardnerella, Klebsiella, Staphylococcus, Finegoldia,

Enterococcus, and Facklamia. Pure isolates from every culti-

vable species were assembled into a biobank of 896 bacterial

and fungal isolates (Table S3).

rUTI history is not associated with large-scale
alterations of urogenital microbiome ecological
structure in the absence of active infection
We analyzed the genus- and species-level taxonomic profiles

within the No UTI History, rUTI History, UTI(�) and rUTI History,

and UTI(+) groups (Figures 2A, 2B, and S3A; Table S4). The rUTI

History, UTI(+) groupwasmainly dominatedby single bacterial ur-

opathogenswith littledetectedFungi andArchaea (Figures2Band

S3A). The most prevalent bacterium was UPEC (15 out of 25,
60%), the major uropathogen among most types of UTI.3 We

also detected known uropathogens, Klebsiella pneumoniae

(2 out of 25, 8%), Enterococcus faecalis (1 out of 25, 4%), and

Streptococcus agalactiae (1 out of 25, 4%). We observed fungal

species including Candida glabrata and Malassenzia globosa.

Similarly low relative abundances of archaeal taxa were detected,

such as Methanobrevibacter spp. (Figure S3A). The most

observed viral taxa were JC polyomavirus (4/25 16%), but human

herpes virus 4 (1 out of 25 4%)andEnterobacteria phage lke (1 out

of 25 4%) were also detected (Figure S3B).

The most frequently observed bacterial species in women

without active UTI (No UTI History and rUTI History, UTI(�)) be-

longed to the genera Lactobacillus, Bifidobacterium,Gardnerella,

Streptococcus, Staphylococcus, and Actinobaculum (Figures 2A

and 2B). Fifty-four percent of samples were dominated by one

taxon, while others were diverse and exhibited no single predom-

inant taxon. We observed 13 patients (24%) with a >50% relative

abundance of various Lactobacillus spp., including L. crispatus,

Lactobacillus iners, and Lactobacillus gasseri (Figure 2B). A sub-

set of urogenital microbiomes in the No UTI History and rUTI His-

tory, UTI(�) groupswas dominated byBifidobacterium spp., such
Cell Reports Medicine 3, 100753, October 18, 2022 3

http://BioRender.com


Lactobacillus crispatus

Escherichia coli

Gardnerella vaginalis

−1.0

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0

PC
oA

2 
(1

8.
95

%
)

PCoA1(26.3%)

A

E

0

20

40

60

80

100

R
el

at
iv

e
ab

un
da

nc
e

0

20

40

60

80

100

R
el

at
iv

e
ab

un
da

nc
e Lactobacillus

Aerococcus
Klebsiella
Escherichia
Enterococcus
Bifidobacterium
Streptococcus
Gardnerella

Staphylococcus
Actinobaculum
Finegoldia
Corynebacterium
Propionimicrobium
Facklamia
Anaerococcus
Other

L. crispatus
L. delbrueckii
L. gasseri
L. iners
A. urinae
K. oxytoca
K. pneumoniae
E. coli
Escherichia spp..
E. faecalis

B. breve
B. dentium
B. longum
S. agalactiae
S. anginosus
S. parasanguinis
G. vaginalis
S. epidermidis
S. haemolyticus
A. schaalii

F. magna
C. aurimucosum
C. pyruviciproducens
C. striatum
P. lymphophilum
F. hominis
F. ignava
A. hydrogenalis
A. lactolyticus
A. prevotii
Other

No UTI History rUTI History, UTI(-)

C

B

Bacterial Genera

Bacterial Species
No UTI History

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

Correlation (Pearson)

-lo
g1

0
(P

-v
al

ue
)

Collinsella_Bacteroides
Bacteroides_Eubacterium

Peptoniphilus_Finegoldia
Varibaculum_Peptoniphilus

Atopobium_Gardnerella
Bacteroides_Blautia

Pseudomonas_Comamonas
Finegoldia_Varibaculum

Anaerococcus_Peptoniphilus
Peptoniphilus_Campylobacter

P, Q < 0.05
P < 0.05, Q > 0.05

F G

D
rUTI History, UTI(-)

No UTI History

0

2

4

6

Sh
an

no
n

P=0.542

P

=0.0269P

=0.109

1 2 3
Cohort Group

0

20

40

60

80

100

O
bs

er
ve

d
(C

ou
nt

)

P=0.267

P=0.024

P=0.250

1 2 3
Cohort Group

Cluster 1

Cluster 3
Cluster 2

Coriobacteriaceae

Aerococcus

Mobiluncus

Actinobaculum Finegoldia
Peptoniphilus

Facklamia

Varibaculum

Corynebacterium

Anaerococcus

Blautia

Bacteroides

SubdoligranulumCollinsella

Eubacterium
Lachnospiraceae

Eggerthella

Comamonas

Gardnerella

Atopobium

Staphylococcus

Pseudomonas

Fusobacterium

Porphyromonas
Slackia

Campylobacter

Actinomyces

Brevibacterium

Propionimicrobium

Prevotella

rUTI History, UTI(+)

rUTI History, UTI(-) rUTI History, UTI(+)

rUTI History, UTI(+)
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(A and B) (A) Genus- and (B) species-level taxonomic profiles of the top 15 bacterial genera among groups (No UTI History [n = 25], rUTI History, UTI(�) [n = 25],
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UTI(+)). Solid lines represent medians, while dotted lines represent the interquartile range. p value generated by Kruskal-Wallis test with Dunn’s multiple
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(E) Beta diversity by DPCoA. Samples color coded by group. Vectors (gray) represent top loadings (i.e., species).

(legend continued on next page)
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as Bifidobacterium breve, Bifidobacterium dentium, and Bifido-

bacterium longum, as well as byGardnerella vaginalis (Figure 2B).

Fungal and archaeal species were observed in low abundance

(0%–8.8%) in the No UTI History and rUTI History, UTI(�) urogen-

ital microbiomes and included Candida albicans, C. glabrata, and

Candida dubliniensis, as well asM. globosa, Naumovozyma spp.,

and Eremothecium spp. (Figure S3A). Archaeal species within the

No UTI History and rUTI History, UTI(�) urogenital microbiomes

included Methanosphaera stadtmanae and Methanobrevibacter

spp. Viral taxa were more frequently observed in the No UTI His-

tory and rUTI History, UTI(�) groups than in the rUTI History,

UTI(+) group and included JC, BK, and Merkel cell polyomavi-

ruses (Figure S3B).

We then calculated alpha-diversity indices including the

observed taxa count, Shannon, Simpson, Chao 1, and the abun-

dance-based coverage estimator (ACE) indices. Women in the

No UTI History and rUTI History, UTI(�) groups had similarly

diverse urogenital microbiomes across different indices

(Figures 2C, 2D, and S4A–S4C). These data suggest that, if

there are differences in the urogenital microbiomes of PM

women who are susceptible to rUTI (rUTI History, UTI(�)) versus

those who are not, they are not reflected in alpha-diversity met-

rics. The rUTI History, UTI(+) group exhibited significantly lower

alpha-diversity compared with the rUTI History, UTI(�) cohort

(Figures 2C, 2D, and S4A–S4C).

To assess beta diversity, we used double principal coordinate

analysis (DPCoA).46 Visualization of the first two principal coordi-

nate analyses (PCoAs) revealed that the urogenital microbiomes

of the rUTI History, UTI(+) group clustered along a vector defined

by E. coli and were ecologically distinct from the urogenital micro-

biomes of the NoUTI History and rUTI History, UTI(�) groups. The

No UTI History and rUTI History, UTI(�) groups exhibited relatively

similar clustering patterns (Figure 2E), and clustered along

opposing vectors defined by the enrichment of either L. crispatus

orG. vaginalis, which are associated with vaginal health or bacte-

rial vaginosis, respectively.47,48Thissimilar clusteringof theNoUTI

History and rUTI History, UTI(�) cohorts suggests that a history of

rUTI does not significantly alter the large-scale taxonomic struc-

ture of the urogenital microbiome in PM women.

Taxonomic profile of the PM urogenital microbiome
displays co-occurrence structure
Microbial communities can harbor intricate interactions between

member taxa.49,50 Exceedingly little is known about interactions

and co-occurrence of bacterial species within the urogenital mi-

crobiome. We performed taxonomic association analysis to

determine the co-occurrence structure of the PM urogenital mi-

crobiome and identified 87 statistically significant genus-level as-

sociations (p < 0.05) (Figure 2F; Table S5). After multiple hypothe-

sis testing correction, a total of 17 associations exhibited robust

statistical significance (Q < 0.05) (Figure 2F). Network visualization

of significant positive associations (p < 0.05) revealed three non-

interacting microbial clusters (Figure 2G). Cluster 1 taxa included
(F) Volcano plot depicting co-occurrence of genera by Pearson correlation. p va

corrected p value < 0.05. Blue dots represent associations with a nominal p valu

(G) Network analysis of genus-level co-occurrences with nominal p value < 0.05.

size is proportional to the degree of the node.
genera associated with vaginal infections, such as Bacteroides

and Blautia.51 Cluster 2 exhibited the largest member set and di-

versity, and captured associations between urogenital micro-

biome genera (i.e., Peptoniphilus and Finegoldia) but whose asso-

ciation has not yet been reported.52,53 Cluster 2 grouped strongly

around the genusPeptoniphilus. Cluster 3was identified as a pair-

wise interaction between Gardnerella and Atopobium, taxa asso-

ciated in vaginal dysbiosis and bacterial vaginosis.54–56 We also

observed anti-correlated taxa (Figures 2F and S4D). The two

main hubs of the negative correlation network were Lactobacillus

and Escherichia. Of note, the most significant negative associa-

tion was observed between Lactobacillus and Peptoniphilus

(Figures 2F and S4D). These data define patterns of co-occur-

rence within the urogenital microbiome and suggest candidate

taxa that may act as hubs of community structure.

Taxonomic biomarker analysis reveals that rUTI history
may alter the species-level taxonomic signature of the
urogenital microbiome
Although we did not detect large-scale taxonomic differences be-

tween the rUTI History, UTI(�) and No UTI History groups, we hy-

pothesized that small-scale differences may contribute to differ-

ential rUTI susceptibility. We therefore performed genus- and

species-level differential taxonomic enrichment analysis between

the No UTI History and rUTI History, UTI(�) urogenital micro-

biomes using linear discriminant analysis of effect size (LEfSe),

Analysis of Compositions of Microbiomes with Bias Correction

(ANCOM-BC), and a Bayesian microbial differential abundance

(BMDA) model.57–59 LEfSe performs a non-parametric assess-

ment of differential abundance, ANCOM-BC adopts a linear

regression framework and corrects for latent sampling bias, and

BMDA can account for sparsity, over-dispersion, and uneven

sampling depth, characteristics widely attributed to the urogenital

microbiome. We first sought to validate the ability of BMDA to

control type 1 error in our dataset by permuting the rUTI history la-

bels for the No UTI History versus rUTI history comparison (Fig-

ure 3A) and the current infection status labels for the UTI(�) versus

UTI(+) comparison (Figure 3B). The resulting permuted datasets

should exhibit few discriminating taxa if the statistical model em-

ployed can control type 1 error. Our results demonstrate that

BMDA does control type 1 error on real permuted data like other

robust methods (Figures 3A and 3B). Using a permuted synthetic

dataset,we further show that theBMDAmodelmay possessmore

statistical power compared with other commonly used statistical

models for differential enrichment analysis in sparse microbiomes

such as the skin and urogenital microbiomes (Figure 3C).60 While

LEfSe and ANCOM-BC detected no differentially abundant taxa

between the No UTI History and rUTI History, UTI(�) groups,

BMDA detectedmultiple differentially abundant taxa, an observa-

tion that may be attributable to its higher statistical power. BMDA

detected two genera, Aerococcus and Lactobacillus, as well as

two species of lactobacilli, L. vaginalis and L. crispatus, as en-

riched in the No UTI History group (Figures 3D and 3E). At the
lue generated by permutation. Red dots represent associations with an FDR-

e < 0.05, but an FDR-corrected p value > 0.05.

Nodes represent genera. Edges are defined by Pearson correlation and node
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Figure 3. Bayesian modeling detects the taxonomic imprint of rUTI history on the urogenital microbiome of PM women

(A and B) Analysis of discoveries after permutation (type 1 error) in the taxonomic dataset permuted for (A) rUTI History for the No UTI History versus rUTI History

comparison and (B) current infection status for the UTI(+) versus UTI(�) comparison (n = 50 permutations each) for BMDA compared with other commonly used

differential enrichment analysis tools.

(C) Comparison of average statistical power as a function of false discovery rate for differential enrichment analysis tools on a synthetic dataset with 1,000 taxa

and a sample size of 108 (n = 54 per group).

(D and E) BMDA model comparing genus- (D) and species-level (E) taxonomic enrichment between the No UTI History (n = 25) and rUTI History, UTI(�) (n = 25)

groups. Dots, indicating the log10(posterior effect size), are color-coded by group. Lines indicate the 95% credible interval. PPI, posterior probability index.
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genus level, Klebsiella, Gemella, Bacteroides, Clostridiales Family

XIII Incertae Sedis unclassified, Eggerthella, and Escherichiawere

among themost enriched in the rUTI History, UTI(�) group. Fifteen

species were identified as enriched in the rUTI History, UTI(�)

group, namely Ureaplasma parvum, Bacteroides uniformis, Brevi-

bacteriummassiliense, Anaerococcus hydrogenalis, Actinomyces

turicensis, Prevotella timonensis, E. faecalis, Staphylococcus

hominis, Peptoniphilus lacrimalis, Corynebacterium pseudogeni-

talium, Actinomyces europeaus, Facklamia hominis, Finegoldia

magna, Anaerococcus prevotii, and Staphylococcus epidermidis

(Figure 3E). Many of these taxa, such as the genera Bacteroides,

Streptococcus, Escherichia, Ureaplasma, Finegoldia, and Ge-

mella, have been found in the vaginal microbiome during infec-

tion.51,61 Furthermore, A. turicensis and Actinomyces europaeus
6 Cell Reports Medicine 3, 100753, October 18, 2022
are known to be associated with UTI.62 Taken together, these re-

sults suggest that rUTI history may leave an imprint on urogenital

microbiomecomposition thatmay bemissedby common ecolog-

ical indices (alpha or beta diversity) and differential abundance

pipelines that do not consider the sparsity, over-dispersion, and

uneven sampling that is common in low-biomass microbiomes

such as the urogenital microbiome.40 However, it will be important

to independently validate these findings in future studies involving

larger cohorts.

Urogenital microbiome taxonomic structure differs in
women using EHT
Given that many of the urogenital microbiomes of women

without active rUTI were dominated by lactobacilli (26%, 13



Article
ll

OPEN ACCESS
out of 50) (Figures 2A and 2B), we further characterized this

enrichment in the women of the No UTI History and rUTI History,

UTI(�) groups, who did not have UTI at the time of urine dona-

tion. We screened the clinical metadata for variables associated

with Lactobacillus abundance. We observed that EHT was

strongly associatedwith the presence of Lactobacillus in the uro-

genital microbiome (Figures 4A–4C). Multiple modalities of EHT

were represented among the participants of this study,

including, systemic EHT (n = 12) and local, vaginal EHT (n =

17). Ecological modeling revealed that the urogenital micro-

biomes of EHT(+) (aggregated systemic and vaginal) women

(n = 29) were significantly less diverse than those of EHT(�)

women (n = 21) and tended to be dominated by a single species

of lactobacilli (Figures 4D–4F). To identify taxa associated with

EHT use, we performed differential taxonomic enrichment anal-

ysis using LEfSe and BMDA (Table S6). LEfSe found an enrich-

ment of the genus Lactobacillus in EHT(+) women and the genus

Streptococcus in EHT(�) women (Figure 4G). BMDA captured a

similar result but further resolved species-level differential

enrichment (Figure 4H). L. crispatus and L. vaginalis were signif-

icantly enriched in the urogenital microbiomes of EHT(+) women

and Streptococcus mitis/oralis/pneumoniae (S. m/o/p) group,

Streptococcus infantis, and Atopobium vaginae were enriched

in the EHT(�) group (Figure 4H). Separating women by EHT mo-

dality, we observed that women using oral EHT (oEHT, n = 6) and

patch EHT (pEHT, n = 6) had significant urogenital microbiome

enrichment of Lactobacillus. However, Lactobacillus enrichment

varied widely in women using vEHT (n = 17) from 0% to >99%

relative abundance (Figure S5A).

Urinary estrogen concentration is positively correlated
with urogenital microbiome Lactobacillus abundance in
PM women with no UTI history
In order to identify specific taxa-estrogen associations, we opti-

mized a targeted liquid chromatography-mass spectrometry

(LC-MS) method to quantify excreted urinary estrogen conju-

gates of women in the No UTI History and rUTI History, UTI(�)

groups (Table S7).63 We limited our analysis to the known major

sulfate and glucuronide conjugates of estrone (E1) and

17b-estradiol (E2). We observed significantly higher urinary con-

centrations of E1 and E2 sulfates and glucuronides in women us-

ing oEHT. Women using pEHT had higher urinary concentrations

of E1-sulfate (Figure S5G).We then performed exploratory corre-

lation analysis of creatinine-normalized estrogen metabolite

concentrations and the species-level taxonomic profile

(Table S8). Given that we found evidence that the underlying uro-

genital microbiome is altered by rUTI history (Figures 3C and 3D),

we dichotomized the samples into cohort groups (No UTI History

and rUTI History, UTI(�)). We found a striking difference in estro-

gen-associated taxonomic profiles between the No UTI History

and rUTI History, UTI(�) groups (Figures 5A and 5B). We

observed correlations between urinary E1 and E2 conjugates

and L. crispatus, L. iners, and L. gasseri in the No UTI History

group, correlations that were not detected in the rUTI History,

UTI(�) group (Figures 5A–5C, S5I, and S5J). B. breve, an Actino-

bacterium associated with colon health, exhibited the strongest

positive correlation across estrogen conjugates in the No UTI

History group (Figures 5A and 5C). This correlation was also ab-
sent in the rUTI History, UTI(�) group. A. prevotii was consis-

tently and significantly negatively associated with urinary estro-

gens in the No UTI History group (Figures 5A, 5C, S5I, and

S5J). A smaller, distinct set of species correlated with estrogen

conjugates in the rUTI History, UTI(�) group (Figures 5B, S5I,

and S5J). To assess the robustness of these results, we used a

Bayesian correlation approach to account for over-dispersion.64

Consistent with the non-Bayesian analysis, L. gasseri,

B. dentium, L. crispatus, and Prevotella disiens abundance

were positively correlated with urinary estrogen conjugate sum

in the No UTI History group, while A. prevotii was negatively

correlated. Bayesian analysis also detected a set of new urinary

estrogen-taxa correlations. Of note, E. coliwas significantly anti-

correlated with summed urinary estrogen concentration in the

No UTI History group. Ruminococcus torques, Pantoea spp.,

Pseudomonas spp., Dorea spp., and Collinsella aerofaciens

correlated with estrogen in the rUTI History, UTI(�) group, while

Dialister microaerophilus and Corynebacterium aurimucosum

were anti-correlated with urinary estrogen in the rUTI History,

UTI(�) group (Figures 5D and 5E). These data indicate that

distinct urinary taxa correlate with urinary estrogen metabolites

in women with no UTI history compared with women with rUTI

history.

Functional profiling reveals significant differences in
the metabolic potential of cohort urogenital
microbiomes
We next sought to determine if rUTI leaves a detectable imprint

on the functional metabolic potential of the urogenital micro-

biome. We used the HUMAnN2 pipeline to profile encoded

metabolic potential.65 Principal-component analysis (PCA) per-

formed on the relative abundance of metabolic pathways in the

three groups identified discriminating clusters that separated

the rUTI History, UTI(+) from the rUTI History, UTI(�) and No

UTI History urogenital microbiomes (Figure 6A). These results

were consistent with the taxonomic beta-diversity analysis (Fig-

ure 2E). The rUTI History, UTI(+) group ordinated along vectors

defined by the enrichment of lipopolysaccharide (LPS) biosyn-

thesis (n = 4 pathways), demethylmenaquinol-8 biosynthesis,

fucose and mannose degradation, D-galacturonate degrada-

tion, sucrose degradation, and the tricarboxylic acid (TCA) cycle

(Figure 6B). The rUTI History, UTI(�) and No UTI History groups,

which were not discriminated, ordinated along vectors defined

by the enrichment of nucleotide biosynthesis (n = 8 pathways),

L-lysine biosynthesis II, S-adenosyl methionine biosynthesis,

and UDP-N-acetyl-glucosamine biosynthesis (Figure 6B). These

data suggest that the large-scale genetic potential of the urogen-

ital microbiome is relatively similar between rUTI History, UTI(�)

and NoUTI History groups but is altered during active rUTI.While

we attribute these findings to the predominance of uropathogens

in the rUTI History, UTI(+) urogenital microbiome, we also note

that the median age of the rUTI History, UTI(+) group was higher

than the No UTI History and rUTI History, UTI(�) groups.

Because dimensional reduction techniques often miss fine-

scale discriminating features, we next used LEfSe to identify

metabolic pathway enrichments between the study groups

(Table S9).58 We tested the hypothesis that rUTI history imparts

functional changes on the urogenital microbiomes of PMwomen
Cell Reports Medicine 3, 100753, October 18, 2022 7
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Figure 4. Estrogen hormone therapy shapes the urogenital microbiome of PM women

(A and B) (A) Genus- and (B) species-level taxonomic profiles of the relative abundance of the top 22 bacterial genera among EHT(�) (n = 21) and EHT(+) (n = 29)

women in the No UTI History and rUTI History, UTI(�) groups. Taxa not within the top 22 are combined into ‘‘Other.’’

(C) Comparison of Lactobacillus relative abundance between EHT(�) (gray) and EHT(+) (pink) women in the No UTI History and rUTI History, UTI(�) groups. Solid

lines represent medians, while dotted lines represent the interquartile range. p values generated by Wilcoxon rank-sum.

(D–F) (D) Observed species count, (E) Shannon index, and (F) Simpson index for EHT(�) (gray) and EHT(+) (pink) women in the No UTI History and rUTI History,

UTI(�) groups. Solid lines represent medians, while dotted lines represent the interquartile range. p values generated by Wilcoxon rank-sum.

(G) Two significantly differentially enriched genera (LDA > 4.5) detected by LEfSe between EHT(�) (gray) and EHT(+) (pink). LDA: log10(linear discriminant analysis

score). p value was generated by LEfSe.

(H) Differentially enriched taxa between EHT(�) (gray) and EHT(+) (pink) women in the No UTI History and rUTI History, UTI(�) cohorts detected by BMDA. Dots

indicate log10(posterior effect size). PPI, posterior probability index. S. m/o/p, Streptococcus mitis/oralis/pneumoniae. EHT(+) is the aggregate of both systemic

and vaginal EHT modalities. Lines indicate the 95% credible interval.
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Figure 5. Distinct taxa-urinary estrogen metabolite associations between PM women with and without rUTI history

(A and B) Spearman correlation of bacterial species with summed Cr-normalized urinary estrogens in (A) No UTI History and (B) rUTI History, UTI(�) groups. p

value generated by permutation. Red and blue dots represent significant (p < 0.05) positive and negative associations, respectively.

(legend continued on next page)
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by comparing the No UTI History and rUTI History, UTI(�)

groups. Forty-five discriminatory metabolic pathways were

significantly enriched in the rUTI History, UTI(�) and four meta-

bolic pathways significantly enriched in the No UTI History uro-

genital microbiomes with a false discovery rate (FDR)-corrected

p < 0.05 and LDA > 2 (Figure 6C). The top 40 discriminating path-

ways were carbohydrate metabolism (n = 14), electron carrier

biosynthesis (n = 8), amino acid metabolism (n = 5), cell envelope

biosynthesis (n = 4), vitamin and cofactor biosynthesis (n = 4),

and polysaccharide degradation (n = 3) (Figure 6C). While most

carbohydrate metabolic pathways were enriched in the rUTI His-

tory, UTI(�) urogenital microbiomes (13 out of 14, 92.9%), we

observed an enrichment of D-galactose degradation in the No

UTI History group (LDA = 3.06, p = 0.028). Conversely, electron

carrier biosynthesis, namely biosynthetic pathways for ubiquinol

7–10 as well as menaquinol 6, 9, and 10 and demethylmenaqui-

nol 9, were enriched in the rUTI History, UTI(�) urogenital micro-

biomes (Figure 6C). L-lysine biosynthesis, L-threonine biosyn-

thesis, and L-tryptophan degradation were enriched in No UTI

History, while L-ornithine biosynthesis and L-arginine degrada-

tion were enriched in rUTI History, UTI(�) samples. The remain-

ing discriminating metabolic pathways were enriched in the rUTI

History, UTI(�) urogenital microbiomes and included cell enve-

lope biosynthesis, vitamin metabolism, polysaccharide degra-

dation, cinnamate and hydroxy cinnamate degradation, and

ppGpp biosynthesis (Figure 6C). These data suggest that the

metabolic landscape of the urogenital microbiome may be

altered by rUTI history.

Differential enrichment analysis between theNoUTIHistory and

rUTI History, UTI(+) groups identified 183 metabolic pathways

(Figure 6D). In line with the taxonomic enrichment of gram-nega-

tivespecies,weobservedanenrichmentofbiosyntheticpathways

for lipopolysaccharide (LPS) within rUTI History, UTI(+) urogenital

microbiomes. Top discriminating pathways included carbohy-

drate (n = 13), nucleotide (n = 9), and amino acid metabolism

(n = 6), as well as cell envelope biosynthesis (n = 5) (Figure 6D).

Diversecarbohydratedegradationandcentral carbonmetabolism

pathways, including rhamnose, fucose, glyoxylate, and fructuro-

nate degradation, were enriched in rUTI History, UTI(+) samples

(Figure 6D). This was coupled with a significant enrichment of

TCAcyclemetabolism, particularly 2-oxoglutarate decarboxylase

and ferroreductase (Figure 6D). Only four metabolic pathways

involved in carbohydrate metabolism, including glycolysis from

glucose and glucose 6-phosphate, pyruvate fermentation, and

N-acetyl glucosamine biosynthesis, were significantly differen-

tially enriched in the No UTI History group (Figure 6D). Nucleic

acid biosynthesis pathways were enriched in the No UTI History

group, while the rUTI History, UTI(+) group was enriched for nu-

cleic acid degradation pathways (Figure 6D). Differentially en-

richedaminoacidmetabolismpathways includedL-lysine, L-thre-

onine, and L-isoleucine biosynthesis in the No UTI History group

and L-phenylalanine biosynthesis in the rUTI History, UTI(+) group
(C–E) Taxa-estrogen correlation scatter plots among No UTI History (n = 25) (blue

(solid line) is shown with 95% confidence intervals. Bayesian correlation point esti

10 taxa and Cr-normalized summed urinary estrogen conjugates in the (D) No UT

indicates positive correlation. Significant correlations also found in the non-Bayes

posterior sampling, and lines indicate the 95% credible interval.
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(Figure6D).These results suggest that theurogenitalmicrobiomes

of the rUTIHistory,UTI(+) group have the potential to utilize amore

diverse nutrient set.

Antibiotic resistance genes are enriched in the
urogenital microbiomes of women with rUTI history
Resistance to front-line antibiotics, such as trimethoprim-sulfa-

methoxazole (TMP-SMX), fluoroquinolones, and nitrofurantoin,

is becoming a significant barrier to the successful treatment of

rUTI.11 Using the Graphing Resistance out of Metagenomes

(GROOT) pipeline, we generated a detailed profile of the en-

coded antimicrobial resistance genes (ARGs) and detected 55

high-confidence ARGs distributed among all three groups

(Table S10).66 We observed significantly more ARGs in the uro-

genital microbiomes of the rUTI History, UTI(�) (p = 0.0455)

and rUTI History, UTI(+) (p = 0.0302) groups compared with the

No UTI History group (Figure 7A). Interestingly, there was no sig-

nificant difference in ARG count between rUTI History, UTI(+)

and rUTI History, UTI(�) groups. These data suggest that a his-

tory of rUTI leaves an imprint on the resistome of the urinary mi-

crobiota in PM women even in the absence of active infection.

To assess specific ARG enrichments associated with rUTI his-

tory, we used a Bayesian model of proportional enrichment.67

The TEM b-lactamase family, sulfonamide resistance genes

sul1 and sul2, and the straA aminoglycoside 30-phosphotransfer-
ase were significantly enriched in the rUTI History, UTI(+) group,

while the aminoglycoside 30-phosphotransferase genes,

aph(30)-III and aph(30)-Ia; the macrolide resistance gene, ermB;

the b-lactam resistance gene, mecA; and the aminoglycoside

O-nucleotidyltransferase gene, ant(6)-Iawereenriched in theuro-

genital microbiomes of the rUTI History, UTI(�) group (Figure 7B).

Conversely, no ARGs were significantly enriched in the No UTI

History group.

Identification of ARGs in metagenomes is only a prediction of

microbiota phenotype.39 To begin to understand how well meta-

genomic ARG analysis predicts phenotype, we measured anti-

biotic resistance phenotypes of 22 unique bacterial uropatho-

gens each isolated from an individual rUTI History, UTI(+)

patient. Species tested included E. coli, K. pneumoniae, Klebsi-

ella oxytoca, Streptococcus anginosus, S. agalactiae, E. faecalis,

and S. epidermidis. Three of the 15 strains with complete or in-

termediate ampicillin resistance did not have a detected ampi-

cillin resistance gene (Figure 7C). Resistome profiling detected

cefixime resistance genes in 50% of the metagenomes (2 out

of 4) associated with isolates that were completely or intermedi-

ately resistant to cefixime (Figure 7C). The cefixime-resistant

strains without detected ARGs were both streptococci. We

observed that 50% of isolates with TMP/SMX resistance were

isolated from urogenital microbiomes for which resistome

profiling detected ARGs sul I/II and drfA1 (Figure 7C). For amino-

glycoside resistance, 50% (1 out of 2), 60% (3 out of 5), 100%

(1 out of 1), and 88.9% (8 out of 9) of the isolates with complete
) and rUTI History, UTI(�) women (n = 23) (purple). Linear regression trend line

mates and 95% credible interval of posterior correlation (Spearman) for the top

I History and (E) rUTI History, UTI(�) groups. Blue indicates negative, while red

ian analysis are bolded. Dots represent the median of the Spearman correlation
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or intermediate resistance to gentamicin, kanamycin, amikacin,

and streptomycin, respectively, had corresponding ARGs in their

associated metagenomes (Figure 7C). ARG analysis was rela-

tively poorly predictive of fluoroquinolone resistance, with resis-

tance genes detected in only 27.3% (3 out of 11) and 33.3% (2

out of 6) of the associated metagenomes of isolates with com-

plete or intermediate resistance to ciprofloxacin and levofloxa-
cin, respectively (Figure 7C). This is likely because GROOT

does not detect single-nucleotide polymorphisms (SNPs) and

fluoroquinolone resistance is often conferred by SNPs in gyrase

and topoisomerase I genes.68 While all gram-positive bacterial

strains were resistant to erythromycin, macrolide ARGs were

only detected in the associated metagenomes of three strains.69

Tetracycline and phenicol ARGs were respectively detected in
Cell Reports Medicine 3, 100753, October 18, 2022 11
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Figure 7. rUTI history and active infection shape the resistome of the PM urogenital microbiome

(A) Comparison of ARGs detected within the urogenital microbiomes of the No UTI History, rUTI History, UTI(�), and rUTI History, UTI(+) groups. Solid lines

representmedian, while dotted lines represent interquartile range. p value generated by Kruskal-Wallis test with uncorrected Dunn’smultiple correction post hoc.

(B) Bayesian differential enrichment analysis of ARGs within cohort urogenital microbiomes. Group comparisons were determined by pairwise differences in

ARG(+) proportions. 95% credible intervals, Bayes factor, posterior probability, Fisher exact p values are presented.

(legend continued on next page)
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42.9% (3 out of 7) and 0% (0 out of 1) of the metagenomes asso-

ciated with strains with intermediate or resistant phenotypes

(Figure 7C).

DISCUSSION

Adecadeof research has identified and characterized the urogen-

italmicrobiome.14–19 It has become evident that the urogenital mi-

crobiome is involved in or affected by urologic disease. Given the

connection between host health and microbiome composition,

the urogenital microbiome has drawn significant attention in

further understanding rUTI susceptibility. Here, we use WGMS

to specifically probe urogenital microbiome ecology and function

associated with rUTI in PM women. The main uropathogen de-

tected in the rUTIHistory,UTI(+) groupwasUPEC,while urogenital

microbiomesof theNoUTIHistory and rUTIHistory,UTI(�) groups

were either dominated by a single bacterial species or were

diverse. Both the No UTI History and rUTI History, UTI(�) groups

exhibited subsets of women with urogenital microbiomes domi-

nated by L. crispatus, L. gasseri, L. iners, B. breve, B. dentium,

B. longum, andG. vaginalis. These data support the observations

by Thomas-White et al. of an interconnected urogenital micro-

biome.30 We detected low abundances of fungal and archaeal

taxa in all groups; however, little is known about the role of Fungi

and Archaea in the female urogenital microbiome.

We identified differentially enriched urogenital microbiome

taxa between healthy PM women and those with a history of

rUTI that may serve as microbial biomarkers of urogenital tract

health. Many of the genera enriched in the rUTI History, UTI(�)

group were members of the largest co-occurrence network

that clustered strongly around Peptoniphilus, a known member

of the vaginal microbiome associated with dysbiosis.70–72 These

data suggest that mutualistic relationships between Peptoniphi-

lus and co-occurring taxa may define community structure in

urogenital microbiomes of women with increased rUTI suscepti-

bility.73 Conversely, while lactobacilli were enriched in No UTI

History urogenital microbiomes, co-occurrence analysis re-

vealed a negative association between Lactobacillus and Pepto-

niphilus, suggesting an antagonistic relationship. Taken

together, these observations give insight into potentially biolog-

ically relevant interactions in the urogenital microbiome that may

underlie rUTI susceptibility. These observations are supported

by a 2021 report by Vaughan et al. that used 16S rRNA amplicon

sequencing to identify taxonomic differences between PM

women with rUTI and healthy controls and identified differences

in the orders Clostridiales and Prevotellaeceae, which contain

the genera Peptoniphilus and Prevotella, respectively.28 Critical

future research will validate signatures of urinary dysbiosis asso-

ciated with rUTI susceptibility in longitudinal studies.

EHT is a common intervention to reduce discomfort associated

with menopause.74 EHT, especially vEHT, is also gaining preva-

lence for rUTI prophylaxis in PM women because estrogen is

thought to favor Lactobacillus colonization of the vaginal and uri-
(C) Agreement betweenWGMSARG detection and antibiotic resistance phenotyp

patient (E. coli (n = 15), Klebsiella (n = 3), Streptococcus (n = 3), E. faecalis (n = 1

results (blue = ARG (+), white = ARG(�)). Lower diagonal color represents phenoty

(1) No UTI History: no history of UTI, no active UTI. (2) rUTI History, UTI(�): histo
nary microbiomes.37,38,75 Here, we identify L. crispatus and

L. vaginalis as associated with EHT use in PM women. Strepto-

cocci as well as A. vaginae, a gram-positive species associated

with G. vaginalis in bacterial vaginosis, were enriched in women

not using EHT.56Multiple independent studies have evaluated as-

sociations between EHT and vaginal and urinary lactobacilli with

varying results. For example, Anglim et al. found that vEHT did

not significantly alter urinary lactobacilli among PM women with

and without rUTI, while Thomas-White et al. reported that vEHT

led to a significant enrichment of urinary lactobacilli in PMwomen

with overactive bladder symptoms.36,53 A recent randomized-

controlled trial by Lillemon et al. did not find significant changes

in urogenital Lactobacillus enrichment following local EHT.76 We

observed that Lactobacillus-dominated urogenital microbiomes

were associated with women using oEHT (n = 6) and pEHT (n =

6). While reports of systemic EHT-associated urogenital Lactoba-

cillus enrichment are few, a 2016 interventional study using oral

conjugated estrogens demonstrated a rapid and significant in-

crease in vaginal Lactobacillus spp.77 Additionally, an indepen-

dent 2001 report observed an increase in vaginal Lactobacillus

spp. in PM women taking a short-term course of oral estriol.78

While the EHT composition and dosagemay differ from the cohort

studied here, these independent reports are supportive of our

findings associating urogenital Lactobacillus enrichmentwith sys-

temic EHT (oral or transdermal patch).

Although we did observe some Lactobacillus enrichment in

women using vEHT (n = 17), this group exhibited much larger

variance in Lactobacillus relative abundance than the oral and

patch modalities, and 41.2% (7 out of 17) of women using

vEHT exhibited a >40% relative abundance of urogenital Lacto-

bacillus. We do not interpret these data as not supporting vEHT-

mediated Lactobacillus enrichment. Rather, we hypothesize

that, perhaps due to differences in compliance or dosage, the

association between vEHT and urogenital Lactobacillus enrich-

ment may be more variable between individuals. Importantly,

we identified disease-state-specific taxa-estrogen metabolite

correlations. B. breve, L. iners, L. crispatus, and L. gasseri posi-

tively correlatedwith urinary estrogen conjugate concentration in

the No UTI History group but not the rUTI History, UTI(�) group.

Future mechanistic research in relevant model systems and lon-

gitudinal human cohorts is needed to define the effects of rUTI

history on EHT urogenital microbiome modulation.

Frequent and repeated treatment of rUTI with antibiotics is

thought to spur the evolution of antibiotic resistance among uro-

pathogenic bacteria and perhaps within the urogenital micro-

biome.11,79,80 Despite the urgent need to understand the impact

of antibiotic therapy on the urogenital microbiome, differences in

urogenital microbiome ARG prevalence associated with rUTI

and rUTI history had not been previously investigated. We found

that the urogenital microbiomes of both the rUTI History, UTI(+)

and rUTI History, UTI(�) groups contained significantly more

ARGs than the NoUTI History group, suggesting that rUTI history

may enrich for ARG-containing urogenital microbiomes.
es of isolates of themost abundant species present in each rUTI History, UTI(+)

), and S. epidermidis (n = 1)). Upper diagonal colors represent WGMS profiling

pe (red = resistant, yellow = intermediate, white = sensitive, gray = not tested).

ry of rUTI, no active UTI. (3) rUTI History, UTI(+): history of rUTI, active UTI.
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This controlled WGMS analysis of urogenital microbiome

structure and function in PM women with different histories of

rUTI provides a robust foundation for further mechanistic

studies of the role of the urogenital microbiome in rUTI suscep-

tibility and disease progression that are necessary for the

development of urogenital microbiome-aware alternative thera-

pies for a rUTI.

Limitations of the study
While our observations are in line with previous work and may

serve as independent support, it should be noted that methodol-

ogies differ between urinary microbiome studies.36,37 Here, we

use clean-catch midstream urine, which samples the urinary

tract and, in some cases, the vulvovaginal niche. Because

different sampling techniques are used to study individual sites

within the urinary system and given the observations made by

prior comparisons of sampling techniques, studies of the uro-

genital microbiome may not be completely translatable to

studies of specific spatial niches such as those using suprapubic

aspiration to study the bladder microbiome.40,41

While we were able to culture most high-abundance genera

detected by WGMS, our culturing method used urine cryopre-

served in glycerol. As of the writing of this report, culture

methods using cryopreserved urine have not been benchmarked

against those using fresh samples. Future studies quantitatively

assessing culture recovery of diverse urinary microbiota species

from fresh versus frozen urine will be of great utility to the field. It

should also be noted that while 16S rRNA gene sequencing is

able to confidently distinguish species with divergent se-

quences, some members of the urogenital microbiota, namely

Gardnerella spp., possess highly similar 16S rRNA sequences

and their speciation requires further genetic information.81

Because taxonomic biomarker analysis in sparse micro-

biomes, such as that of the urogenital tract, is challenging, we

explicitly stress that these identified microbial biomarkers are

putative and need to be validated in future independent studies.

Limitations of our urogenital microbiome ARG analysis include

that the analytical pipeline does not distinguish between TEM al-

leles and does not detect common SNPs known to confer fluo-

roquinolone resistance, for example.

Although all participants who used EHT reported being fully

compliant with the prescribed treatment regimen, it is a limitation

that a detailed history of day-to-day EHT use was not recorded.

EHT modalities may also differ in dosage, composition, patient

compliance, or primary metabolism. Indeed, we found that both

oral and patch EHT were associated with elevated urinary estro-

gens, while vEHT was not. While it has been shown that vEHT is

systemically absorbed at low levels, it is possible that dosage,

administration frequency, and sub-physiologic absorption

affected the urinary accumulation of excreted estrogens.82–85

While the variable association between vEHT and urogenital

Lactobacillus abundance is in line with previous observations,

the relatively small sample size of this study is a limitation.36,53,76

Given the inherent variability in human-derived data, future longi-

tudinal studies with large, controlled cohorts as well as appro-

priate animal models will be critical to gaining a mechanistic un-

derstanding of the relationship between EHT and urogenital

microbiome composition.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nicole J.

De Nisco (nicole.denisco@utdallas.edu).

Materials availability
All bacterial and fungal strains generated for this study are available from the lead contact with a completed Materials Transfer

Agreement.

Data and code availability
Whole genome metagenomic sequencing read data (FASTQ files) have been deposited onto the NIH Sequence Read Archive

(SRA) under the BioProject number [NCBI]: PRJNA801448. Prior to depositing, all human-mapping reads were removed from

the data. All original code and simulation study data has been deposited at https://github.com/klutz920/BMDA-Simulation,

https://github.com/klutz920/Bayes-Correlation-Test, and https://github.com/klutz920/Bayes-Proportion-Test. Any additional in-

formation required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
A-priori sample size and power estimation

To estimate the number of patients needed to enroll into each group and predict statistical power, we performed a series of power

analyses using the ‘pwr’ package (https://github.com/heliosdrm/pwr) in the R-statistical language based on ranging effect sizes from

small to large for both multivariate analysis of 3 groups with equal sample size and pairwise-based comparisons of two groups.

Balancing cost and clinical feasibility with predicted statistical power, we chose a sample size of 25 for each group. A priori power

analysis found that a sample size of 25 per group was sufficient to generate a power of 0.8 to detect and effect size (f) of 0.366 for an

ANOVA and an effect size (d) of 0.808 for a pairwise comparison (T-test) with an alpha of 0.05. Therefore, the cohort is sufficiently

powered to observe medium to large effect sizes (Figures S1A and S1B). It should be noted that the associations with EHT were

observed on a subset of data following the completion of data collection and were accordingly not part of the a priori sample size

calculations used during cohort construction. The No UTI History and rUTI History, UTI(�) groups (n = 50) were grouped by EHT

use (EHT(�) n = 21, EHT(+) n = 29) or by EHT modality (EHT(�) n = 21, oEHT n = 6, pEHT n = 6, vEHT n = 17). All reported differences

between these groups achieve sufficient statistical significance to reject the null hypothesis of no difference between groups.

Patient recruitment and cohort curation

The current study is approved under IRBs STU032016-006 (University of Texas Southwestern Medical Center) and 19MR0011 (Uni-

versity of Texas at Dallas). Patients were recruited from the Urology Clinic at the University of Texas Southwestern Medical Center

between April 2018 and October 2019. Written informed consent was obtained from each patient prior to recruitment into the study

cohorts. All patients were PM females. The following set of exclusion criteria were used to initially screen patient’s candidacy for

enrollment into the cohort: pre- or perimenopausal status; complicated rUTI; antibiotic exposure within the 4 weeks prior to urine

sample donation unless an active infection was detected by culture; pelvic malignancy or history of pelvic radiation within 3 years

before urine sample donation; currently receiving chemotherapy; exhibiting renal insufficiency (creatinine >1.5 mg/dL); most recent

post void residual (PVR) greater than 100 mL; greater than stage 2 prolapse; pelvic procedure for incontinence within 6 months prior

to urine sample donation; use of intermittent catheterization; neurogenic bladder; any upper urinary tract abnormality which may

explain rUTI; and Diabetes Mellitus (DM) type 1 or 2. One participant, PF21, from the rUTI History, UTI(+) group had a culture-

confirmed, active UTI and antibiotic exposure within the preceding 4 weeks. Among all participants, EHT was either prescribed

for rUTI or vaginal atrophy. All urine samples were obtained by ‘‘clean-catch’’ midstream urine collection and therefore were repre-

sentative of the urogenital microbiome, rather than specifically just the bladder microbiome.41 Patients were educated about the
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cleaning and urine collection needs for this sampling technique prior to urine collection. Urine samples were stored at 4�C for nomore

than 3 h before sample processing, aliquoting, and biobanking at�80�C. In total, 258 patients were recruited and screened for enroll-

ment candidacy through interview, clinical assessment, and electronic medical records.

Cohort group definition and curation

Candidates for the No UTI History group both self-reported as having no lifetime history of symptomatic UTI and had no clinically

documented history of UTI diagnosis through analysis of electronic clinical records. Urine was screened by both standard clinical

urine culture and by plating 100 mL on BDCHROMagar Orientation within 3 h of collection to screen for the presence of uropathogens

and asymptomatic bacteriuria.45 Participants were enrolled in the No UTI history groups if they had no self-reported or clinical history

of UTI, no UTI symptoms at the time of urine collection, and <104 CFU/mL of known uropathogen by urine culture screening.

Candidates for the rUTI History, UTI(�) group were identified from a pool of patients who had previously sought treatment for clin-

ically diagnosed rUTI in the Urology clinic at the University of Texas SouthwesternMedical Center. All candidates for the rUTI History,

UTI(�) group had experienced at least 2 UTIs in the preceding 6 months or 3 UTIs in the preceding 12 months to the day of urine

sample collection but did not currently present with symptomatic UTI. Culture-based assessment of UTI status was performed as

described for the No UTI history cohort. rUTI History, UTI(�) group participants passed the general exclusion criteria, had a clinical

history of rUTI within the preceding 12 months, were not experiencing symptomatic UTI at the time of urine collection, and had <104

CFU/mL of known uropathogens by urine culture screening.

Candidates for the rUTI History, UTI(+) group were identified from a pool of patients seeking treatment for clinically diagnosed rUTI

in the Urology clinic at the University of Texas Southwestern Medical Center. All candidates for the rUTI History, UTI(+) group had

experienced at least 2 UTIs in the preceding 6 months or 3 UTIs in the 12months prior to urine collection and presented with a symp-

tomatic, culture confirmedUTI on the day of urine collection. Culture-based confirmation of UTI status was performed as described in

the No UTI History group section using a cutoff of >104 CFU/mL of known uropathogen.86,87 rUTI History, UTI(+) group participants

passed the general exclusion criteria, had a clinical history of rUTI in the last 12months, andwere experiencing symptomatic, culture-

proven UTI at the time of sampling.

Bacterial strains
Advanced urine culture and isolate biobanking

Glycerol-stocked urine samples (stored at�80�C)were thawed at room temperature, and then diluted 1:3 and 1:10 in sterile 1X Phos-

phate Buffered Saline to adjust plating density for high and low biomass samples. 100 mL of urine from each dilution as well as 100 mL

of undiluted urine was plated onto blood agar plates (BAP), CHROMagar Orientation, DeMan, Rogosa, and Sharpe (MRS) agar, Rab-

bit BAP (R-BAP), BD BBL CDC anaerobe blood agar (CDC AN-BAP), and Columbia Colistin Naladixic Acid Agar (CNA). Following

plating, BAP was incubated in ambient and 5% CO2 atmospheres, CHROMagar Orientation in 5% CO2, MRS and R-BAP in micro-

aerophilic conditions, BD BBL CDC anaerobe blood agar (CDC AN-BAP) in microaerophilic and anaerobic conditions and CNA in all

four atmospheric conditions. Plates were incubated at 35�C for 4 days in the respective atmosphere. It should be noted that we were

unable to culture Gardnerella spp. using these methods. However, WGMS profiling frequently detected G. vaginalis in the sampled

urogenital microbiomes. For targeted isolation ofGardnerella spp., 100 mL urinewas plated onto Human polysorbate-80 (HBT) bilayer

medium in microaerophilic atmosphere for 3 days. To isolate fungal species, 100 mL urine was plated onto Brain Heart Infusion Agar

supplemented with 20 g/L glucose and 50 mg/mL of chloramphenicol (BHIg-Cam) and incubated at 5% CO2 for 3 days.

Bacterial identification was performed by PCR amplification and Sanger sequencing of the 16S rRNA gene from well-isolated col-

onies as described previously.88 Briefly, the16S rRNA gene was amplified using primers 8F (50-AGAGTTTGATCCTGGCTCAG-30) and
1492R (50-GGTTACCTTGTTACGACTT-30) by colony PCR89 using DreamTaq Master Mix (ThermoFisher Scientific) and 0.2mM

primers. Amplicon size was confirmed on 1% agarose gel, followed by gel purification (Bio basic) and Sanger Sequencing (Genewiz)

using the 8F primer. Sequenceswere analyzed using BLASTn against theNCBI 16S ribosomal RNA (Bacteria and Archaea) database.

For fungal identification, ITS1 and ITS2 regions were amplified using the primer sequences ITS1: 50-TCCGTAGGTGAACCTGCGG-

30 and ITS2: 50-GCTGCGTTCTTCATCGATGC-30 from well-isolated colonies and Sanger sequenced (Genewiz, South Plainfield, NJ,

USA). Sequences were analyzed using BLASTn against the NCBI ITS from Fungi type and reference material database.

All the isolated and taxonomically identified isolates (n = 896) were assigned a distinct ID and biobanked at�80�C in glycerol. The

isolates were grown in Brain Heart Infusion broth, Tryptic Soy Broth, MRS broth or NYCIII according to their growth preferences and

stocked in 16% sterile glycerol for long-term storage at �80C.

METHOD DETAILS

DNA isolation and sequencing
Prior to WGMS, we assessed the quality and reproducibility of 3 metagenomic DNA extraction techniques: a modified genomic DNA

(gDNA) isolation based on the Qiagen blood and tissue DNAeasy Kit, the Zymo Research DNA/RNA microbiome miniprep kit, and a

modified phenol/chloroform/isoamyl alcohol extraction as demonstrated by Moustafa et al.42 After assessing the quality and yield of

metagenomic DNA isolated using the three methods, we chose the Zymo Research kit. Urine samples were allowed to thaw on ice at

4�C. 10–20 mL of urine was centrifuged for 15 min at 40003 g at 4�C. Urine pellets were resuspended in 750 mL of DNA/RNA Shield

(ZymoResearch), transferred to a bead beating tube, and subjected to ten 30 s cycles ofmechanical bead beating, with 5min cooling
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between each cycle. After mechanical lysis, the maximum volume of sample was collected and transferred to a newmicrocentrifuge

tube with DNA/RNA lysis buffer (Zymo). Nucleic acids were purified via the Zymo Research DNA/RNA microbiome miniprep kit per

the manufacturer’s instruction. Elution of DNA from the column was performed in nuclease-free water and each column was eluted

twice to maximize DNA recovery. As a control to internally assess gDNA extraction efficiency and WGMS limit of detection (LOD),

gDNA was concurrently extracted from commercially available community standards (Zymo Research) using the same methods.

gDNA was also extracted from nuclease-free water to account for kit and environmental contamination. All DNA samples were sub-

jected to 16S rRNA gene amplification by PCR and visualized by agarose gel electrophoresis to ensure microbial DNA was present

before proceeding with WGMS. DNA yield and purity for all samples were assessed by agarose gel electrophoresis, and by fluores-

cence-based Qubit quantitation of DNA, RNA, and protein. Prior to library preparation the DNA concentration of each sample was

normalized and 20pg of spike-in gDNA was added (Zymo Research High Bacterial Load Spike-in), which contains gDNA from the

bacterial species Imtechella halotolerans and Allobacillus halotolerans, which are known to not be associated with humans.

WGMS was performed at the University of Texas at Dallas Genome Center using 2 3 150 bp paired-end reads on a Illumina

NextSeq 500. Library preparation was performed using Nextera DNA Flex kit. Library preparation of the entire cohort and community

standard and water controls was distributed over 2 batches with overlapping samples. All samples were sequenced using 2 3 150

base pair paired-end sequencing in high output mode with a target of R50 million paired end reads per sample.

Bioinformatic analyses
All taxonomic, functional, and resistome bioinformatic analyses were performed on an in-house Dell PowerEdge T630 server tower

with 256GB RAM, 12 core Intel Xenon processor with 16TB storage capacity or at the Texas Advanced Computing Center (TACC).

Data preprocessing
The fastq files were checked for read quality, adapter content, GC contents, species contamination using fastqc (v0.11.2) and

fastq_screen (v0.4.4).90,91 Low-quality reads (a quality score of less than Q20) and adapter were removed using Trim galore (v

0.4.4).92 (Figure S1D). Human DNA sequences were removed using KneadData.93 After host removal, the dataset contained an

average of 2.6 3 107 non-human reads per sample.

Taxonomic profiling analyses
The taxonomic assignment and estimation of composition of microbial species present in each sample was performed using Meta-

PhlAn2.43 MetaPhlAn2 estimates the relative abundance of species by mapping the metagenomic reads against a clade specific

marker gene database. The database consists of bacterial, archaeal, viral and eukaryotic genomes. We further used merge_meta-

phlan_tables module of MetaPhlAn2 to combine the relative abundance estimates of samples in a cohort into one table.

To identify kit, environmental, and background contaminating taxonomic signals, we sequenced a water sample which was

randomly inserted into the metagenomic DNA preparation protocol. Sequencing and taxonomic analysis of this sample revealed

known kit and environmental contaminants, such as Delftia, Stenotrophomonas, Ralstonia, Bradyrizobium, and others.44 Unless a

known member of the human microbiome, these taxa were censored. We observed a small relative abundance of taxa salient to

the human urogenital microbiome in the water control, such as Pseudomonas, Escherichia, Klebsiella, Enterococcus, Staphylo-

coccus, and Corynebacterium. These signals ranged from 0.051%–11.5% of approximately 3 million mappable reads observed in

the water control (Figure S2A). We further assessed the WGMS limit of reliable detection using a commercially available log commu-

nity standard (Zymo Research), which is composed of multiple Gram-positive and Gram-negative bacterial and fungi. We observed a

strong linear correlation between the theoretical and observed relative abundance above 0.001%. We therefore set a relative abun-

dance threshold of 0.001% for a taxon to be considered as detected within a sample (Figure S1E). Species-level MetaPhlAn 2 taxo-

nomic assignments were not included in analysis if they were ‘‘unclassified’’.

Alpha-diversity analysis was performed at the species-level using phyloseq (version 1.16.2).94 Beta-diversity analysis was per-

formed using DPCoA on the species-level taxonomic relative abundance dataset using phyloseq (version 1.16.2).94 Taxonomic

co-occurrence was performed with CCREPE pipeline using the Pearson correlation and compositionally corrected P-values

(https://github.com/biobakery/biobakery/wiki/ccrepe#22-ccrepe-function). Network analysis of taxonomic co-occurrences was

performed using CytoScape (Version 3.8.2) with edges defined by the correlation coefficients between taxa nodes in the default pre-

fuse force directed layout.

Taxonomic correlation with urinary estrogens
The Spearman correlation was calculated between a given taxa and urinary estrogen conjugate or conjugate sum using the associate

function from the regclass R package. To account for the compositionality of the taxa when computing the correlations, the species-

level taxonomic composition dataset was transformed using the centered log ratio (CLR) transformation using the clr function from

the rgr R package. Nominal P-values were calculated by permutation. No multiple hypothesis correction was performed on nominal

P-values as we considered this an exploratory analysis.95

The Bayesian correlation analysis employed a posterior distribution with the Dirichlet-Multinomial (DM) mode for the full data likeli-

hood and a non-informative uniform prior proportional to one.64 The DM models the non-transformed count data directly and esti-

mates their normalized abundances while accounting for overdispersion in the species-level count data. We then computed the
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Spearman correlation between each of the estimated normalized abundances and urinary estrogen conjugate sum. For posterior

inference, we computed the 95% credible intervals and posterior means for the correlation between each of the normalized abun-

dances and urinary estrogen conjugate sum. The correlation of a taxa-estrogen pair was significant if zero was not contained in the

credible interval. Furthermore, for the significant pairs, we calculated the ratio of the proportion of posterior samples with correlations

greater than 0.3 to those less than or equal to 0.3. This ratio (Posterior Ratio) indicates correlation strength where a ratio higher than

one indicates a more moderate or strong correlation and less than one indicates a weak correlation.

Functional metabolic profiling
Functional metabolic profiling was performed using HUMAnN 2.0.65 HUMAnN2 uses a tiered approach to identify the functional pro-

file of microbial communities. Firstly, it maps the sample reads to clade specific markers and creates a database of pangenomes for

each sample. In the second tier, it performs the nucleotide level mapping of sample reads against pangenome database. Lastly, a

translated search against Uniref90 is performed for unaligned reads in each sample.96 The output result is the mapping of reads

to gene sequences with known taxonomy. The reads are normalized to gene sequence length to give an estimate of per-organism

and community total gene family abundance. Next, gene families were analyzed to reconstruct and quantify metabolic pathways us-

ing MetaCyc.97 Different modules of HUMAnN such as humann2_join_table and humann2_renorm_table were used to merge the

pathway abundance of all the samples in a cohort and normalize the abundance to counts per million (cpm) respectively. We filtered

the results to only include pathways whose taxonomic range included bacteria. We further censored pathways which were specif-

ically associated with a particular taxon due to database bias toward commonly isolated and studied species. PCA of functional path-

ways was performed on the pathway level relative abundance dataset using factoextra (https://cran.r-project.org/web/packages/

factoextra/readme/README.html). Pathway differential abundance analysis was performed using LEfSe58 on the pathway-level rela-

tive abundance dataset. LEfSe uses Kruskal Wallis and Wilcoxon tests to find the differential pathways between microbial commu-

nities. Finally, it uses LDA model to rank the pathways.

Resistome profiling and arg enrichment
We used GROOT (Graphing Resistance Out Of meTagenomes) to generate a profile of antimicrobial resistance genes within the uro-

genital microbiomes of the present study.66 The default database ARG-ANNOT was used for alignment of the metagenomics reads.

Subsequently GROOT report command was used to generate a profile of antibiotic resistance genes at a read coverage of 90%.

Filtering of the GROOT results was performed to insure high confidence in ARG presence within the urogenital microbiomes. We

used a cutoff of a sufficient amount of reads to generate 103 coverage of an ARG to qualify its detection within a urogenital micro-

biome. We further collapsed alleles of the b-lactamase genes TEM, CTX, OXA, OXY2, SHV, and cfxA as well as the aminoglycoside

ARG Aac3-IIa and Aac3-IIe alleles into single gene-level features to account for multiple-mapping reads.

Bayesian modeling of the resistome data was performed as follows. Resistome data for the three cohorts (No UTI History = 1, rUTI

History, UTI(�) = 2, rUTI History, UTI(+) = 3) consisted of 186 antimicrobial resistance genes (ARG) which were collapsed into family-

level genes (G = 55). Each cell in the data set contained a binary indicator of no detection (0) or detection (1) of the resistance family-

level gene within each patient sample such that xgik = f0;1g; g = 1;/; 55; i = 1;/;25; k = 1;2;3 indicates no detection or detection

of resistance family-level gene g respectively for sample i in cohort k.

A Bayesian Beta-Bernoulli model with Jeffreys prior was used to model the posterior distributions of group proportions and pair-

wise differences for the g family-level genes. Two posterior inferences were performed. First, we removed any family-level genes that

had no significant pairwise contrast of cohort proportions using 95% credible intervals as criteria. We determined that a significant

family-level gene does not have zero contained in a 95% credible interval for at least one pairwise contrast.98 Second, we computed

the posterior probability and Bayes Factor (BF) to make inferences on each pairwise contrast of cohort proportions of only the sig-

nificant family-level genes. The posterior probability of a particular contrast was computed as the proportion of posterior samples

satisfying that contrast. The BF computed for each contrast represented the odds of H1 : ‘‘at least one cohort’s proportion (u) for

gene g is different’’ in favor of H0 : ug1 = ug2 = ug3.

Taxonomic biomarker analysis
We applied multiple methods of taxonomic differential abundance analysis employing the robust and widely used LEfSe pipeline as

well as ANCOM-BS, and BMDA, a recently described Bayesian model of differential abundance.57 LEfSe and ANCOM-BC analyses

were performed as previously described.58,59 For the BMDA model we first applied the quality control step (detailed in the supple-

ment of Li et al., 2019) to the raw count data. We then fitted the BMDAmodel, which is a Bayesian hierarchical framework that uses a

zero-inflated negative binomial model to model the raw count data and a Gaussian mixture model with feature selection to identify

differentially abundant taxa. The BMDA can fully account for zero-inflation, over-dispersion, and varying sequencing depth. We

chose weakly informative priors on all parameters of the model to avoid biased results. For model fitting and posterior inference,

BMDA implements the Metropolis-Hastings algorithm within a Gibbs sampler. For prior specification in the top level of the BMDA

framework, we used the following default settings. We set the hyperparameters that control the selection of discriminatory features,

u � Betaðau = 0:2; bu = 0:8Þ, resulting in the proportion of taxa expected a priori to discriminate among the K groups to be

au=ðau +buÞ = 10%. As for the inverse-gamma priors on the variance components s20j and s2kj, we set the shape parameters

a0 = a1 = / = ak = 2 and the scale parameters b0 = b1 = / = bk = 1 to achieve a fairly flat distribution with an infinite variance.
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We further set the default values of h0 and hk to 100. For the bottom level of BMDA, we used the following weakly informative settings.

The hyperparameters that controlled the percentage of extra zeros a prioriwere set to p � Betaðap = 1;bp = 1Þ. As for the gamma

prior on the dispersion parameters, i.e. 4j � Gammaða4;b4Þ, we set both a4 and b4 to small values such as 0.001, which led to a vague

prior with expectation and variance equal to 1 and 1,000. For the Dirichlet priors on the size factors si, we followed Li et al. (2017) by

specifying M = n=2;ss = 1;tn = 1;at = bt = 1, and am = bm = 1.99 For each dataset, we ran a MCMC chain with 10,000 iter-

ations (first half as burn-in). The chain was initialized from amodel with 5% randomly chosen gj set to 1. The marginal posterior prob-

ability of inclusion (PPI) was used to identify the set of discriminating taxa between the control and disease groups.Marginal PPI is the

proportion of MCMC samples in which a taxon is selected to be discriminatory if it is greater than a pre-specified value. We chose a

threshold such that the expected Bayesian false discovery rate (FDR) was less than 0.05.

To assess the ability of BMDA to control for type 1 error, we compared it with commonly used methods for microbial differential

abundance analysis, all of which can be implemented in R: DESeq2,100 Wilcoxon, and ANCOM-BC.59 To do so, we generated the

negative-control datasets by randomly permuting the two-condition labels (rUTI status or history) our rUTI microbiome data. Specif-

ically we permuted the rUTI status label for the UTI(-)versus UTI(+) comparison and the rUTI history label for the No UTI history versus

rUTI history comparison. Any differentially abundant taxa reported from the permuted datasets for each comparison are considered

as false discoveries. A method that can control adequately for type 1 error should report few or zero differentially abundant taxa. We

conducted this permutation 50 times for each comparison and implemented the ANCOM-BC, BMDA, DESeq2, and Wilcoxon rank-

sum tests on the data. DESeq2 employs a Wald test by adopting a generalized linear model based on a negative binomial kernel.

ANCOM-BC adopts a linear regression framework and corrects for latent sampling bias. For all competing methods we used default

settings. To control for a false discovery rate of 5%, we further adjusted the nominal p-values computed by ANCOM-BC, DESeq2,

and Wilcoxon using the Benjamini-Hochberg (BH) method as was performed in Nearing et al. and choose the threshold of posterior

probability of inclusion estimated by BMDA following methods outlined in Newton et al.101,102

To further evaluate the performance of BMDAand alternativemethods,wegenerated synthetic data, following the schemeoriginated

byWeissetal.103Note that themultinomial distribution-basedgenerativemodel is substantiallydifferent fromBMDA,whichassumes the

counts follow the zero-inflatednegativebinomial distribution.Abrief descriptionof thedatagenerativescheme isdescribedbelow,while

detailed information can be found in the supplement ofWeiss et al. Let a n-by-p countmatrixY be the simulated taxonomic abundance

table,where thenumberof taxap is set tobe1000and thenumber of truly discriminatory taxaamong twoequally sizedgroupspg = 50.

To incorporate real taxaabundance information, letO = ðO1;.;Opg=2;Opg=2+ 1;.;Opg
;Opg +1;.;OpÞT beacountvector,where ðO1;.;

Opg=2Þ = ðOpg=2+1;.;Opg
Þ, and each Oj;pg=2< j%p was the sum of operational taxonomic unit (OTU) counts for one randomly

selected taxon (without replacement) from all the skin samples in a real microbiome study.104 We defined two p-by-1 vectors, P and

Q, as

Pj =

�
expðsÞOj for 1% j%pg

�
2

Oj otherwise
and Qj =

�
expðsÞOj for pg

�
2% j%pg

Oj otherwise
;

where s represented the log effect size. Note that
Pp

j = 1Pj =
Pp

j = 1Qj. We further drew the observed counts yi, from a multinomial

model MultiðNi;ci,Þ, where Ni = 10;000 and ci, = Ið1 % i % n =2Þ PPp

j = 1
Pj

+ Iðn =2 % i % nÞ QPp

j = 1
Qj

. Here, Ið ,Þ denotes the indicator

function and n is the total sample size. This would yield the first pg taxa to be truly discriminating between the two equally sized

groups. Finally, we permuted the columns of the taxonomic abundance table, Y , to disperse the taxa. We repeated the steps above

to generate 50 replicates. We then assessed the power of each model as a function of FDR.

Antibiotic susceptibility testing (AST)
Assessment of antibiotic (abx) susceptibility was performed via the Kirby-Bauer disk diffusion susceptibility test.105 Antibiotic disks

were prepared by aliquoting 10uL of antibiotic stock (GEN 1mg/mL, AMP 1mg/mL, CIP 0.5mg/mL, LVX 0.5mg/mL, ERM 1.5mg/mL,

CHL 3mg/mL, TMP/SMX 1.25/23.75mg/mL, NIT 30mg/mL, DOX 3mg/mL) onto the disk in a sterile petri dish and drying at room tem-

perature in the dark. Vehicle control disks were prepared similarly using the diluents of each antibiotic. Strains were streaked from

frozen glycerol stocks onto CHROMagar or Blood Agar (species dependent) and incubated overnight at 37�C in ambient conditions

or 35�C in 5%CO2. Single, well-isolated colonies were inoculated into 3 mL Brain-Heart-Infusion broth and incubated at the respec-

tive atmospheric conditions for 16–18 h. After incubation, cultures were normalized to 0.5 McFarland standard, washed, and resus-

pended in sterile 1X Phosphate-Buffered Saline (PBS). 150 mL of standardized culture were pipetted onto 150 mm Mueller-Hinton

Agar plates and spread using sterile glass beads. Plates were dried in sterile conditions before abx-infused disks were placed on

the surface of the agar. E. coli strain ATCC25922 was used for quality and vehicle controls. Sterile 1X PBS was plated as sterility

control. Plates were incubated inverted per the recommendation of Clinical and Laboratory Standards Institute (CLSI) M100-

ED30: 2020 Performance Standards for AST, 30th Edition (https://clsi.org/standards/products/microbiology/documents/m100/). Af-

ter incubation, antimicrobial susceptibility was evaluated by measurement of the zone of inhibition and using CLSI established zone

diameter breakpoints.
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Liquid chromatography mass spectrometry
Direct measurement of urinary estrogen metabolites was performed via a modification of previously reported methods.63 Briefly,

urine (500 mL) was diluted and spiked with 100 ng stable isotope-labeled internal standards of d3-Estradiol 3-Glucuronide and

d4-Estrone 3-Sulfate. Diluted and spiked samples were loaded onto an equilibrated Phenomenex C18 cartridge for solid phase

extraction to separate conjugated estrogens. Following aqueousmethanolic extraction of estrogen conjugates and non-polar extrac-

tion of free estrogens with methanolic acetone, fractions were dried by vacuum centrifugation and prepared for LC-MS/MS analysis.

Estrogen conjugates (sulfates and glucuronides) were directly assayed using a curated and optimized MRM library by LC-MS/MS.

High sensitivity quantitative LC-MS/MS was performed on a Waters Xevo TQ tandem quadrupole MS lined to an ACQUITY UPLC

with a Selectra C8 RP column (1003 2.1 mm 1.8mm, UCT). MRM libraries of estrogen conjugates have been curated to include both

analytical and confirmatory transitions for each analyte at optimal retention times to maximize separation. Briefly, data analysis was

performed by integrating the peak area of the analytical transition for each analyte. Peak areas were normalized to molecular class-

matched internal spike-in standards and mapped to a standard curve to accurately estimate analyte concentration. Urine estrogen

metabolite concentrations were then normalized to urinary creatinine, which was measured by colorimetric assay (Sigma).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R statistical programing, GraphPad Prism 9, and Microsoft Excel. For hypothesis testing,

non-parametric Mann-Whitney U-test was used for pairwise comparisons and the Kruskal-Wallis non-parametric ANOVA with mul-

tiple comparison post-hoc was used for non-paired and unmatched comparisons of 3 or more groups. Multiple comparison adjust-

ment was performed using false discover rate (FDR) when appropriate. An alpha of 0.05 was used to control type I error.
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