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CHAPTER 4

Acute Lung Injury: Acute Respiratory 
Distress Syndrome
Shazia M. Jamil and Roger G. Spragg

The acute respiratory distress syndrome (ARDS), first
described in the medical literature in 1967,1 consists of
the symptom constellation of acute respiratory distress,
cyanosis refractory to oxygen administration, decreased
lung compliance, and diffuse opacities on the chest 
radiograph not explained by hydrostatic causes.
Although initially called the adult respiratory distress
syndrome because of clinical experience with adult
patients,2 it is now termed the acute respiratory distress
syndrome and is recognized in the pediatric population.

Confusion over the natural history, incidence, and
outcome of this syndrome secondary, in part, to lack of
a uniform definition was addressed in 1994 by the
American-European Consensus Conference (AECC),
which provided operational definitions.3 The Committee
recognized apparent variation in the severity of this 
disorder and recommended criteria for acute lung injury
(ALI) and for ARDS as a more severe subset of ALI.
Both ALI and ARDS were recognized as belonging to
the same clinical spectrum, with acute onset, bilateral
infiltrates on the chest radiograph, and absence of 
evidence of elevated left atrial pressure. However, the
term ALI was used to describe disease in which the
PaO2/FiO2 ratio (partial pressure of arterial oxygen/
fraction of inspired oxygen) is 300 mm Hg or less,
whereas ARDS was considered to be present if this ratio
was 200 Hg mm or less. Although these criteria are
simple to use and are recommended for description of
patient groups, they have several weaknesses. They do
not specify the cause of the disorder; the description of

bilateral pulmonary infiltrates is nonspecific and difficult
to implement reproducibly,4 and response to positive
end-expiratory pressure (PEEP) is not considered.
Finally, it has become apparent that mortality outcome is
not different between patients with only ALI and
patients with ARDS.5

ETIOLOGY

Predispositions

Critical care physicians frequently observe that patients
respond differently to similar predisposing causes of
ALI/ARDS and also respond differently to similar 
treatments. These observations suggest the presence of
underlying genetic predispositions to the development
of ALI. Two different approaches, namely, candidate
gene and genome-wide analysis, may provide new insight.
Leikauf and colleagues, studying gene-environment inter-
actions in inbred mouse strains, examined the relative 
susceptibility to ALI induced by a variety of environmental
agents.6,7 These investigators found a varied response
among different strains and concluded that susceptibility
to ALI is heritable. Using complementary DNA (cDNA)
microarray analysis to identify clusters of coregulated
genes, they found altered expression of relatively few
genes that control the complex responses of lung injury
and repair. These findings suggest candidate genes that

28



may contribute to individual susceptibility to the devel-
opment of ARDS.

Several genetic polymorphisms may predispose
patients to the clinical development of ALI. Asp299Gly
and Thr399Ile mutations affecting the extracellular
domain of the toll-like receptor 4 (TLR-4) are associated
with a blunted response to inhaled lipopolysaccharide in
humans.8 The Asp299Gly mutation occurred in 5.5% of
patients with septic shock (a recognized predisposition
to development of ALI), as opposed to 0% of 73 healthy
blood donors. For patients in whom exposure to
lipopolysaccharide is a critical determinant of the devel-
opment of ALI, the presence of the Asp299Gly mutation
may be a predisposing factor.

The human angiotensin-converting enzyme (ACE)
gene contains a restriction fragment length polymorphism
consisting of the presence (insertion, I) or absence 
(deletion, D) of a 287 base pair alu repeat sequence in
intron 16.9 This (I/D) polymorphism, in a healthy popu-
lation, accounted for 47% of the variance in observed
plasma ACE levels, and it was highest in those with the
DD genotype.10 The ACE DD genotype is reported to be
present with markedly increased frequency in patients with
ARDS compared with patients in intensive care units
(ICUs), patients undergoing coronary artery bypass grafting,
or healthy populations.11 Further, the DD genotype is 
significantly associated with mortality in the ARDS group.
These data suggest a role for the renin-angiotensin 
systems in the pathogenesis of ARDS and further impli-
cate the DD genotype as a predisposing genetic factor.

Additional genetic predispositions for ALI may be
presence of polymorphisms in the SP-B gene. Lin and
associates described the C/T (1580) polymorphism that
results in an amino acid change (Thr131Ile) that may
affect protein glycosylation, and they reported increased
frequency of the C allele in patients with idiopathic
ARDS compared with patients with ARDS secondary to
systemic disease or compared with healthy persons.12 In
addition, the frequency of an I/D variant in SP-B intron
4 was reported to be 46.6% among 15 patients with
ARDS in contrast to 4.3% among control subjects. Gong
and colleagues attempted to reproduce this latter obser-
vation and found a significant association between the
variant polymorphism and ARDS only in women.13

ARDS was described in four children with a functional
defect in a mitochondrial enzyme involved in β-oxidation
of long-chain fatty acids.14 Three of the patients shared a
common mutation in the enzyme. The authors theorized
that accumulating fatty acid metabolites in patients with
3-hydroxylacyl-coenzyme A dehydrogenase and mito-
chondrial trifunctional protein defects may alter the
phospholipid component of surfactant and may impair
its function.

These genetic studies are still in their infancy and
require confirmation in larger populations with ARDS.

Identification of genes associated with increased suscep-
tibility to ALI should lead to greater understanding of
relevant disease mechanisms and to the development of
targeted therapy.

Clinical Associations

ALI/ARDS is thought to be the uniform expression of a
diffuse and overwhelming inflammatory reaction of the
pulmonary parenchyma to either a direct injury to the
lung (pulmonary ALI/ARDS) or an indirect lung injury
related to a systemic process (extrapulmonary ALI/ARDS)
(Table 4.1).15–18 The most frequent causes include sepsis,
severe pneumonia, peritonitis, and multiple trauma.15,19

However, among these, sepsis is associated with the
highest risk, because approximately 40% of septic
patients develop ALI or ARDS.17,20 The presence of
multiple predisposing disorders substantially increases
the risk of developing ARDS,20 as does the presence of
chronic alcohol abuse.21 Moss and colleagues showed
that the incidence of ARDS in patients with chronic alco-
hol abuse was 70% compared with 31% in individuals
without this history,22 and using a multivariable logistic
regression, these investigators concluded that chronic
alcohol abuse is an independent risk factor in this 
disorder.23 Using animal models of chronic ethanol
ingestion, investigators identified alcohol-mediated
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Table 4-1 Examples of Causes and Clinical Disorders
Associated with Acute Lung Injury/Acute
Respiratory Distress Syndrome

Direct Lung Injury Indirect Lung Injury

Pneumonia Sepsis and septic shock

Aspiration of acid/gastric Multiple trauma
contents

Air or fat emboli Acute pancreatitis

Inhalational injury Cardiopulmonary bypass

Near drowning Transfusion-related acute
lung injury (TRALI)

Pulmonary contusion Drugs

Reperfusion pulmonary Neurogenic pulmonary
edema (post-thrombectomy, edema
post-transplantation)

Severe acute respiratory 
syndrome (SARS)



alterations in epithelial and endothelial function, 
surfactant synthesis and secretion, and alveolar-capillary
barrier function.24

Severe acute respiratory syndrome (SARS) deserves
special mention. This disease, thought to be caused by a
novel coronavirus (SARS CoV), appeared in November
of 2002 and was first described in March of 2003.25 In a
retrospective study of a cohort of patients with SARS
who were admitted to ICUs in Asia, there was a 
25% incidence of progression to ALI/ARDS, 37% 
mortality at 28 days, and 52.5% overall ICU mortality
after 13 weeks.26 One third of the patients with SARS
and ALI/ARDS recovered within 14 days of illness;
however, most patients underwent a protracted course,
with high mortality despite maximum supportive therapy.
ARDS has been described as the most common compli-
cation of this disease.27

Ventilator-Induced Lung Injury

ALI that is directly induced by mechanical ventilation is
recognized both in animal models and clinically and is
designated ventilator-induced lung injury (VILI).28–30

VILI is indistinguishable morphologically, physiologically,
and radiologically from diffuse alveolar damage resulting
from other causes of ALI.31 The contributions of
increased pressure and volume to the development of
ALI were first studied systematically by Webb and
Tierney,28 who found that increases in rat lung volume
were predominantly responsible for development of
acute high permeability lung injury or VILI.
Subsequently, Dreyfuss and colleagues were able to 
dissociate the influence of pressure and volume and 
confirmed, in animal studies, both the central role of
volume in the pathogenesis of VILI and the protective
effect of PEEP.30

Mechanical factors can lead to lung injury through a
variety of mechanisms.32 Tremblay and associates found
a three- to sixfold increase in lung cytokines in ex vivo
isolated rat lungs ventilated with high tidal volumes with
no PEEP or PEEP of 10 cm H2O, respectively.33

The increase in lung cytokines was also associated with
an increase in c-fos messenger RNA, an early response
gene. Alveolar overdistention coupled with the repeated
collapse and reopening of alveoli has also been shown to
initiate a cascade of proinflammatory cytokines.34

Additional mechanisms by which repetitive opening and
closing of lung units may result in damage to alveolar
cells may include activation of complex intracellular 
signaling pathways, stimulation of paracrine stimulation
of pathways, and disruption of alveolar cell plasma 
membranes.35 However, the concept of repetitive opening
and closing of distal lung units has been called into 
question, and the alternative concept of the filling of
dependent lung regions with edema fluid and foam has

been proposed.36 The mechanisms associated with devel-
opment of VILI are reviewed in depth in Chapter 5.

A large body of evidence indicates that ventilation at
low lung volumes may also contribute to lung injury. 
In 1984, Robertson proposed that repeated opening and
closing of lung units during tidal breathing of infants
with respiratory distress syndrome could result in lung
injury.37 Robertson suggested that in an atelectatic lung,
the air-liquid interface may be found proximally in the
terminal conducting airways, rather than in the alveoli.
Opening of these airways would require relatively higher
forces, and the shear stresses produced could cause
epithelial disruption. Other investigators have shown evi-
dence for lung injury from low lung volume ventilation
using various species, lung injury models, PEEP strategies,
and modes of ventilation.38–42

In patients with ALI/ARDS, ventilation at traditional
tidal volumes (10 to 15 mL/kg of predicted body
weight) may overdistend uninjured alveoli, promote 
further lung injury, and contribute to multiorgan failure.34

Clinical trials have examined the benefit of protective
ventilatory strategies that reduce alveolar overdistention
and increase the recruitment of atelectatic alveoli. A
National Institutes of Health (NIH) National Heart,
Lung and Blood Institute (NHLBI) trial showed that
the use of a tidal volume of 6 mL/kg ideal body weight
resulted in a 22% decrease in mortality compared with
ventilation with 12 mL/kg ideal body weight in patients
with ALI/ARDS.43 The excess mortality associated with
large tidal volume ventilation may be related to cytokine
response and the development of multisystem organ 
failure.34,44,45 Ranieri and colleagues found that both the
pulmonary and the systemic cytokine responses were
reduced in patients with ARDS who were treated with
low tidal volume ventilation.44

PATHOPHYSIOLOGY

The acute or exudative phase of ALI/ARDS is character-
ized by increased permeability of the alveolar-capillary
barrier leading to the influx of protein-rich edema fluid
and inflammatory cells into distal airways and alveoli.46

The alveolar-capillary barrier is formed of two separate
barriers, the alveolar epithelium and the vascular
endothelium. The importance of endothelial injury leading
to increased vascular permeability and formation of 
pulmonary edema is well established, and a critical role
of epithelial injury in ALI/ARDS has also been recog-
nized.47 The alveolar epithelium is composed of type I
and type II cells, occupying 90% and 10% of the alveolar
surface area, respectively. The loss of epithelial integrity
and injury to type II cells disrupt normal epithelial fluid
transport and impair the removal of edema fluid from
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the alveolar space in animal models of ALI,48,49 as well as
in the majority of patients with ARDS/ALI.50 Injury to
type II cells also reduces the production and turnover of
surfactant.51

The pathogenesis and mechanisms of lung injury have
been extensively reviewed.51–53 In response to an inciting
event, the pulmonary macrophages and endothelium
become activated; surface expression of adhesion 
molecules is increased, and this leads to neutrophil
migration to the alveoli. Activated neutrophils produce a
variety of inflammatory mediators, including reactive
oxygen species, nitric oxide (NO), leukotrienes,
cytokines, chemokines, proteases, platelet-activating
factor, and cationic proteins. Other cells, including 
pulmonary macrophages and alveolar endothelial and
epithelial cells, also produce inflammatory mediators.
Alveolar macrophages are able to secrete cytokines
including interleukin (IL)-1, IL-6, IL-8, IL-10, and
tumor necrosis factor-α (TNF-α). Apart from these
proinflammatory mediators, a host of endogenous 
anti-inflammatory mediators can simultaneously be 
present, including IL-1 receptor antagonist, soluble TNF
receptor, autoantibodies against IL-8, and anti-inflammatory
cytokines such as IL-10 and IL-11.54 In fact, imbalance
between proinflammatory and anti-inflammatory media-
tors may play an important role in the pathogenesis of
lung injury. The end result of this vicious cycle is alveoli
filled with protein-rich edema fluid, cells, cellular debris,
red blood cells, and fibrin-rich hyaline membranes on the
denuded basement membrane.

Extravascular fibrin deposition, and the abnormalities
in the coagulation and fibrinolytic pathways that 
promote it, may be important in the pathogenesis of
ALI.55 Procoagulant activity is increased in bronchoalveo-
lar lavage (BAL) samples from patients with ALI/ARDS,
whereas fibrinolytic activity is markedly decreased or
undetectable. This procoagulant response is mainly
attributable to tissue factor associated with factor VII,55

whereas the decrement in fibrinolytic response is 
attributable to inhibition of urokinase plasminogen 
activator by plasminogen activators or inhibition of plasmin
by antiplasmins.55,56 The concurrent changes in procoagu-
lant and fibrinolytic activity would be expected to 
promote pulmonary fibrin deposition and are likely to
account for the persistence of alveolar fibrin in ALI.

The acute exudative phase of ALI/ARDS may lead
either to rapid resolution of the disorder57,58 or to pro-
gression to a late fibroproliferative phase that may start
as early as 5 to 7 days after the onset of injury.59 At this
latter stage, the alveolar space becomes filled with mes-
enchymal cells, and there is extensive proliferation of
myofibroblasts in the lung interstitium.60 Patients who
die during this stage have increased fibronectin and 
collagen in lung autopsy specimens.61 This stage of
ALI/ARDS may be promoted by early proinflammatory

mediators, including IL-1, that stimulate production by
fibroblasts of extracellular matrix components including
procollagen III peptide.62–64 The findings of alveolar
fibrosis and the appearance of procollagen III in the alve-
olar space correlate with an increased risk of death.65,66

CLINICAL PRESENTATION AND DIAGNOSIS

Symptoms of ALI/ARDS can be nonspecific and consist
of dyspnea and dry cough. After the inciting event,
tachypnea and tachycardia usually develop within the
first 12 to 24 hours, followed by a dramatic increase in
work of breathing and a rapid decrease in oxygenation,
manifested as cyanosis. Lung examination may reveal
bilateral, high-pitched, end-expiratory crackles, although
often only bronchial breath sounds are heard, and lung
compliance is decreased. The patient may initially be 
agitated; however, lethargy and obtundation may ensue,
with worsening respiratory failure. Clinical and chest
radiographic findings may lag behind hypoxemia, and
therefore early measurement of arterial blood gases in
patients at risk of developing this syndrome is warranted.

Early laboratory abnormalities include hypoxemia,
widening of the alveolar-arterial oxygen gradient, and
respiratory alkalosis. The hypoxia is attributable to 
ventilation-perfusion mismatch, intrapulmonary shunting,
oxygen diffusion impairment, and hypoventilation.67,68

As the disease progresses, sometimes rapidly, the patient
develops severe hypoxemia unresponsive to oxygen 
(secondary to increased intrapulmonary shunting) and
respiratory acidosis resulting from respiratory muscle
failure and increased pulmonary dead space. The clinical,
radiographic, and laboratory findings can be indistin-
guishable from those of cardiogenic pulmonary edema,
and therefore measurement of pulmonary arterial wedge
pressure is sometimes considered necessary to differentiate
between the two conditions.

Chest Radiography

In the first 12 to 24 hours after lung injury, the chest
radiograph is often normal; however, when ARDS has
followed direct lung injury such as massive aspiration of
gastric contents or pneumonia, the chest radiograph is
likely to be abnormal at the outset. In the next 36 hours,
with greater exudation of fluid in alveolar spaces, a 
characteristic bilateral diffuse interstitial infiltrate may
progress to ground-glass opacification and frank consol-
idation, as illustrated in Figure 4.1A.69 As shown in
Figure 4.2, the patient may also develop pleural 
effusions, and their presence should not sway the 
physician from making the diagnosis of ARDS. This pro-
gression is typical but not pathognomonic of ARDS.
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Radiographic findings may resolve rapidly in patients with
near drowning, opiate-related ALI/ARDS, or uncompli-
cated viral pneumonia. However, in most cases, the radi-
ographic findings resolve over weeks. During this time,
the development of new focal areas of air space opacities may
indicate the development of nosocomial pneumonia.70 In
addition, ARDS may be complicated by pneumothorax
and pneumomediastinum secondary to the disease itself or
as a complication of mechanical ventilation. With the com-
plete resolution of the disease, the chest radiograph may
either revert to normal or reveal coarse reticular opacities,
diffuse interstitial fibrosis, and cysts, likely as a consequence
of the effects of both lung repair and barotrauma.71–74

The radiographic criterion of bilateral diffuse infiltrates 
in the AECC definition of ALI/ARDS shows high 
interobserver variability when applied by investigators
expert in the fields of mechanical ventilation and ARDS.4

Computed Tomography Patterns

Computed tomography (CT) scans in patients with
ALI/ARDS have revealed that lung disease in
ALI/ARDS is not a homogeneous process and that the
scan pattern may vary with cause, time, mechanical ven-
tilation, and prone positioning. The most striking CT
finding in the early phase of disease is the heterogeneous
nature of detectable lung injury (see Figs. 4.1 and 4.2).

Three areas of lung are easily recognized: (1) normal or
almost normal lung regions, most frequently located in
nondependent lung; (2) ground-glass opacification,
defined as a hazy increase in lung attenuation, with
preservation of bronchial and vascular margins, in the
midlung area; and (3) consolidation in the most depend-
ent lung.75,76 During the late or fibroproliferative phase
of the disease, fluid is reabsorbed, leading to a decrease
in CT density of the lung. There is also an increase in
subpleural cysts or bullae.77 In patients who survive
ALI/ARDS, a reticular pattern is described in the non-
dependent normal lung regions; this pattern has been
correlated with the length of mechanical ventilation and
the use of inverse ratio ventilation.78

Differences in CT findings in patients with direct as
opposed to indirect ALI/ARDS were described by
Goodman and colleagues. Abnormalities in patients with
direct ARDS tended to be a mixture of consolidation
and ground-glass opacification, whereas patients with
indirect ARDS had predominantly symmetric ground-
glass opacification. In both groups, pleural effusions and
air bronchograms were common.79

Puybasset and associates found differences between
these groups to be less distinct.80 These investigators
showed that in patients with ARDS, the cardiorespiratory
effects of PEEP were affected predominantly by lung 
morphology rather than by the presence of a direct or 
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Figure 4.1 A, The chest radiograph of a 54-year-old man with acute respiratory distress syndrome of unknown
cause demonstrates diffuse opacification of all quadrants. B, A computed tomography scan demonstrates marked
heterogeneity of parenchymal involvement, with dense consolidation posteriorly, and with air bronchograms 
evident. The anterior lung areas are relatively spared.
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indirect ARDS. In their study, PEEP induced marked alve-
olar recruitment without overdistention in patients with dif-
fuse CT attenuations, whereas in patients with lobar
attenuation, PEEP induced mild alveolar recruitment associ-
ated with overdistention of previously aerated lung regions.

Study of the relationship between CT data and lung
mechanics in patients with ALI/ARDS showed that 
respiratory compliance was not related to the amount of
nonaerated or poorly aerated tissue, but rather was
closely related to the amount of normally aerated tissue.
Thus, the respiratory compliance in early ALI/ARDS
appears to be a direct measure of normally aerated tissue,
a finding suggesting that in ALI/ARDS the aerated lung
is not stiff, but rather small.81 The value of the information
gained from CT scans must be balanced against the
potential risk of transporting critically ill patients, the
additional costs, and the additional radiation dose.
Therefore, CT scanning of the lungs of patients with
ALI/ARDS is most clearly indicated for solving clinical
dilemmas, such as detecting occult complications in
patients who are deteriorating or not improving at the
expected rate, or for formal research protocols.

Respiratory Mechanics

Patients with ALI/ARDS are frequently found to have
smaller tidal volumes and higher peak airway and plateau
pressures than physiologically normal subjects. Gattinoni
and colleagues found a markedly higher static lung 
elastance in patients with pulmonary ARDS and a high

static elastance of the chest wall in patients with extrapul-
monary ARDS.82 Increasing PEEP to 15 cm H2O caused
an increase in static elastance of the total respiratory
system in patients with pulmonary ARDS. These investi-
gators proposed that this difference in respiratory
mechanics and response to PEEP is consistent with a
prevalence of consolidation in pulmonary ARDS, as
opposed to the presence of predominantly edema and
alveolar collapse in extrapulmonary ARDS. Patients with
ARDS also have increased resistance to airflow,83 and this
is substantially reduced by inhalation of a β-agonist.84

TREATMENT

Hypoxic and hypercapnic respiratory failure is a common
component of ALI/ARDS, and it requires mechanical
ventilation to reduce the work of breathing and to
ensure adequate gas exchange. The support provided by
mechanical ventilation allows time for antibiotics (in
infected patients), innate immunity, and endogenous
reparative processes to overcome the acute inflammatory
state. As a result, approximately 60% or more of patients
with ALI survive to hospital discharge.52

Lung Protective Ventilation Strategies

Historically, there was a great disparity in physicians’
approach to mechanical ventilation of patients with
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Figure 4.2 A, The chest radiograph of a 64-year-old man with acute respiratory distress syndrome secondary to
bacterial pneumonia demonstrates patchy involvement of all quadrants. B, A computed tomography scan demon-
strates diffuse heterogeneous involvement of all lung fields and the presence of bilateral pleural effusions.
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ALI/ARDS, largely because of a lack of clear guidance
from clinical studies and the absence of standards for 
initiating, monitoring, and adjusting ventilator settings.
For example, in a survey of ventilation practices, critical
care physicians reported using a broad range of tidal 
volumes (5 to 17 mL/kg) in patients with ALI.85 In the
1990s, several clinical trials were conducted to guide 
clinicians in the choice of tidal volumes.43,86–89 Amato
and colleagues evaluated the effects of a lung protective
ventilation strategy on pulmonary complications and
mortality at 28 days in patients with ARDS.86 Patients
were randomized to either a conventional study group or
a lung protective ventilation group. Patients in the 
conventional group received tidal volumes of approxi-
mately 12 mL/kg of body weight and a mean PEEP of
approximately 8 cm H2O during the first 7 days of treat-
ment, whereas those in the lung protective strategy
group received tidal volumes of approximately 6 mL/kg
and a mean PEEP level of 16.4 cm H2O during the first
36 hours of treatment. The tidal volumes in this latter
group were further decreased if inspiratory airway pres-
sures exceeded 40 cm H2O. The results showed that
patient survival, frequency of barotrauma, and rate of
weaning from mechanical ventilation were all improved
in the group receiving lower tidal volumes and higher
PEEP. In this small study, it was unclear whether the
improvement in outcome was attributable to the lower
tidal volumes, the inspiratory pressure limits, or the
higher PEEP. There have been four subsequent randomized
clinical trials to investigate the role of different tidal
volume ventilation strategies in patients with ALI or at
risk of developing ALI.43,87–89 In three of these trials, the
volume- and pressure-limited approach was not associated
with improved clinical outcome.87–89 However, a trial43

by the NHLBI’s Acute Respiratory Distress Syndrome
Network (ARDS Network) was stopped after enrollment
of 861 patients because the mortality was significantly
lower in the group treated with lower tidal volumes than
in the group treated with traditional tidal volumes 
(31% versus 39.8%). Further, the lower tidal volume
group had more ventilator-free and end-organ
failure–free days during the first 28 days and a greater
reduction in plasma IL-6 levels compared with patients
treated with larger tidal volumes and higher pressures.
Results of the ARDS Network ALVEOLI study showed
no survival benefit when a low tidal volume ventilation
strategy was used in conjunction with a higher, as
opposed to lower, PEEP value.90

Application of a lung protective strategy is associated
with reduction in BAL concentrations of polymor-
phonuclear cells, TNF-α, IL-1β, soluble TNF-α receptor
55, and IL-8. In both plasma and BAL, concentrations
of IL-6, soluble TNF-α receptor 75, and IL-1 receptor
antagonist are reduced.44 Reduction in the circulating
levels of proinflammatory mediators is associated with

reduction in the development of multiorgan failure, the
major cause of mortality in patients with ARDS.91

Open Lung Approach

The low tidal volume ventilation strategy endorsed by
the NHLBI study results in a modest decrement in gas
exchange over the first several days of treatment, as 
compared with the higher tidal volume ventilation strategy.
A contrasting “open lung” strategy is to adjust tidal
volume and PEEP based on gas exchange and airway
pressure measurements (see Chapter 25). Although use
of the open lung strategy is effective in animal models of
ALI,92,93 the effect was short-lived in patients with
ALI/ARDS who were treated with a low tidal volume
strategy and 30-second applications of continuous positive
airway pressure of 35 to 40 cm H2O.94,95

High-Frequency Oscillatory Ventilation

During high-frequency oscillatory ventilation (HFOV)
use in adults, tidal volumes approaching 150 to 260 mL
can be delivered when respiratory rates are set between 
3 and 5 cps, mean distending airway pressures are set
between 25 and 45 cm H2O, and pressure amplitudes
are set between 60 and 90 cm H2O. Frequent small
breaths augment diffusive exchange of respiratory gases.
Use of HFOV theoretically avoids the high peak airway
pressure common with conventional ventilation, prevents
alveolar overdistention, and maintains a higher peak end-
expiratory pressure, thus possibly avoiding lung injury
resulting from repetitive recruitment and derecruitment
of alveoli. Derdak and associates reported on a multicen-
ter, randomized, controlled trial of oscillatory ventilation
for ARDS.96 Although this trial was not powered to 
evaluate mortality differences, a trend toward overall
improved mortality was observed in the HFOV-treated
group (37%) versus the group treated with conventional
mechanical ventilation (52%). However, the group
treated with conventional mechanical ventilation was not
ventilated with a lung protective ventilation approach,
because the tidal volumes in this group were approxi-
mately 10 mL/kg.

In summary, HFOV is an alternative method of
mechanical ventilation for patients with severe adult
ARDS, and it may be considered in those who require
high mean airway pressures (≥20 cm H2O) with conven-
tional ventilation, especially if the FiO2 requirement
exceeds 0.60 and the inspiratory plateau pressure cannot
be maintained at less than 30 cm H2O.

Avoidance of Oxygen Toxicity

Both laboratory data and clinical experience suggest that
exposure of humans to elevated levels of inspired oxygen

34

Section 1 Causes of Respiratory Failure Requiring Ventilatory Support



results in lung injury.97.98 This injury, which may occur as
a result of increased generation in the lung of reactive
oxygen species, may be mitigated by the presence of
antioxidants. Levels of critical components of the antioxidant
defense system are induced during exposure to modest
levels of inspired oxygen, and thus the patient who
requires high levels of inspired oxygen may be at some-
what less risk of lung injury than the patient with a
sudden requirement for sustained high levels of inspired
oxygen. Thus, a high FiO2 may be used for brief periods
as a temporizing measure; however, it is recommended
that aggressive steps be taken to reduce the FiO2 whenever
it exceeds 0.65. These measures include increasing mean
airway pressure, improving cardiovascular function,
inducing diuresis, or accepting somewhat lower values
for hemoglobin oxygen saturation.

Use of Sedation and Paralysis

Deep sedation is frequently used in severely affected
patients who are undergoing mechanical ventilation
when oxygen consumption demands must be minimized
to relieve hypoxemia. Sedation may occasionally be 
supplemented by nondepolarizing muscle relaxants
when an uncomfortable or poorly tolerated ventilatory
pattern, such as inverse ratio ventilation, is needed. Any
use of a paralytic agent should be brief, with frequent
reassessment of depth and continued need, because such
use may be associated with the development of neuro-
muscular dysfunction.99

Prone Positioning

Use of the prone position may improve oxygenation in
patients with ARDS. Mechanisms that may account for
this effect include an increase in end-expiratory lung
volume, better ventilation-perfusion matching, and
regional changes in ventilation associated with alterations
in chest wall mechanics.100–103 In addition, this modality
has also been shown in animal models to lessen VILI.104

Gattinoni and colleagues conducted a multicenter 
randomized trial to evaluate use of the prone position for
7 hours per day for up to 10 days in the treatment of
ventilated patients with ALI or ARDS.105 The study
showed a significant improvement in oxygenation with
prone positioning, no effect on complication rate and no
effect on mortality. Post hoc analysis suggested a survival
benefit when prone positioning was used for patients
with the most severe disease.

Glucocorticoids

Glucocorticoids exert their effects through binding to
cytoplasmic glucocorticoid receptors. These receptors, in
turn, modulate the transcription rates of many inflammatory

response elements, including augmenting synthesis of 
I-κB that binds and thus limits the proinflammatory
action of nuclear factor-κB.106 Glucocorticoids thus act
as natural inhibitors of proinflammatory cytokine 
production.107 Glucocorticoids also inhibit fibroblast
proliferation and collagen deposition, stimulate T-cell,
eosinophil, and monocyte apoptosis, and inhibit neutrophil
activation. Glucocorticoid treatment in ARDS/ALI is
controversial. Short courses of high-dose glucocorticoids
were shown to be ineffective, and possibly harmful, in
clinical trials of ARDS prevention in patients with severe
sepsis and in patients with established ARDS.108–111

A small randomized placebo-controlled trial suggested a
beneficial effect of prolonged use of glucocorticoids in
late ARDS.112 However, the NIH ARDS Network con-
ducted a larger study of methylprednisolone for patients
with ARDS of 7 to 28 days’ duration that suggests no
outcome benefit.113 Though use of glucocorticoids
improved the cardiopulmonary physiology and increased
the number of ventilator-free days, ICU-free days, and
shock-free days during the first 28 days, it failed to
reduce hospital stay or improve the in-hospital mortality
and was associated with an increased incidence of neu-
romyopathy. In fact, initiation of glucocorticoids two or
more weeks after the onset of ARDS was associated with
an increased mortality rate when compared with the
placebo group. The ARDS Network investigators con-
cluded that their results did “not provide support for 
the routine use of methylprednisolone in patients with
persistent ARDS and suggest that methylprednisolone
therapy may be harmful when initiated more than two
weeks after the onset of ARDS.”113

Catheter and Fluid Management

ARDS Network investigators have also shown that 
the routine use of a pulmonary artery catheter (PAC) 
to guide fluid therapy in ARDS/ALI patients neither
decreases mortality nor reduces the incidence or the
duration of organ failure. Such use is associated with
higher complications such as atrial and ventricular
arrhythmias when compared with central venous
catheter (CVC)-guided therapy in patients with
ARDS.114

The optimal fluid management of ALI and ARDS has
long been controversial. The ARDS Network has
reported results of a large clinical trial comparing a con-
servative and liberal fluid management strategy in
patients with ALI. Although, there was no difference in
mortality between the two groups, those in the conser-
vative strategy group had significantly improved lung
function and central nervous system function, and a
decreased need for sedation, mechanical ventilation, and
intensive care, without an increase in nonpulmonary
organ failures or shock.
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Surfactant Therapy

Pulmonary surfactant is found at the air-liquid interface
of the alveoli and functions to reduce the surface tension,
particularly at low lung volumes. It is composed of
approximately 90% lipids and 10% surfactant proteins
(SP-A, SP-B, SP-C, and SP-D). Analysis of BAL fluid
samples obtained from patients with ARDS and from
various animal models of lung injury demonstrated changes
in the endogenous surfactant system. Specifically, decreased
amounts of dipalmitoylphosphatidylcholine and phos-
phatidylglycerol and decreased amounts of the 
surfactant-associated proteins were documented in
patients with ARDS compared with control subjects.116

Several randomized controlled clinical trials have 
evaluated exogenous surfactant treatment in patients
with ARDS. Anzueto and colleagues showed no difference
between patients receiving very small doses of the exoge-
nous synthetic surfactant Exosurf by aerosol and control
subjects with respect to physiology, ventilator-free days,
and mortality rates.117 A trial in which the modified 
natural surfactant Survanta was instilled directly into the
airways of patients with ARDS evaluated eight doses of
50 mg/kg, four doses of 100 mg/kg, and eight doses of
100 mg/kg over a 28-day period. The middle-dose
group had the best outcome, with a mortality of 18.8%
compared with 43.8% in the control group.118 Spragg
and colleagues performed a phase I/II randomized 
clinical trial of a short course of a recombinant surfactant
protein C–based surfactant (Venticute) as treatment for
ARDS.119 The results showed no benefit, but they 
established safety of the intervention. In subsequent
phase III studies, treatment with the same surfactant was
associated with improvement in oxygenation and with a
suggestion of benefit in the subgroup of patients with
direct lung injury.120

Liquid Ventilation

Tidal liquid ventilation is a technique of respiratory sup-
port during which gaseous functional residual capacity
(FRC) and tidal volume are replaced with a perfluorocar-
bon (PFC) liquid.121 Liquid ventilation has been shown
to improve lung mechanics and ventilation-perfusion
matching effectively, decrease intrapulmonary shunt, and
thereby support pulmonary gas exchange and cardiovas-
cular stability in animal models of ALI/ARDS.122–124

Moreover, studies have demonstrated that partial liquid
ventilation (during which the lung FRC is partially or
completely filled with PFC, and gaseous tidal breaths are
delivered) and tidal liquid ventilation are associated with
a decrease in oxidative lung damage in animal models of
ARDS/ALI.125,126 A prospective randomized controlled
trial of partial liquid ventilation compared with conventional

mechanical ventilation in adult patients with ARDS/ALI
failed to show a significant improvement in the number
of ventilator-free days or in mortality in patients treated
with partial liquid ventilation.127 In addition, transient
and self-limited episodes of bradycardia, hypoxia, and respi-
ratory acidosis occurred more frequently in the group
treated with partial liquid ventilation. In summary, although
liquid ventilation may be more effective than conventional
mechanical ventilation in selected laboratory models, this
advantage has not been shown in clinical studies.

Extracorporeal Membrane Oxygenation

Extracorporeal membrane oxygenation (ECMO) is a
technique of providing life support in the treatment of
failing lungs that are unable to maintain blood oxygenation.
Several terms have been used to describe the variety of 
techniques that have been designed to oxygenate blood
and remove carbon dioxide extracorporeally. These
include ECMO, extracorporeal carbon dioxide removal
(ECCO2-R) and extracorporeal life support (ECLS). 
In the typical ECMO setting, a femoral-jugular venovenous
bypass is established with oxygenation of the circulating
blood by the membrane oxygenator. ECMO was intro-
duced into the treatment of ARDS in the 1970s. 
In adults with ARDS, two randomized controlled trials
failed to show an advantage of ECMO over conventional
ventilation.128,129 However, both these trials were 
performed before the development of modern
heparinized tubings and membrane oxygenators, which
may reduce the complications of this modality.

ECMO may be a useful adjunct to the lung protective
ventilation strategy in severe ARDS. In profoundly ill
patients, use of low tidal volumes and airway pressures
may not result in sufficient levels of hemoglobin satura-
tion to sustain life. In such settings, ECMO is able to
support gas exchange to the extent that ventilator settings
(tidal volume, PEEP, respiratory rate, peak inspiratory
pressure, fractional inspired oxygen) may be adjusted to
avoid inducing VILI.130

Treatment of Pulmonary Hypertension by Inhaled
Nitric Oxide

Early in the evolution of ARDS, pulmonary vasocon-
striction, thromboembolism, and interstitial edema 
contribute to the development of pulmonary hypertension.
Inhaled NO (iNO) selectively vasodilates the pulmonary
vasculature with few systemic effects. Randomized 
controlled trials comparing iNO treatment with conven-
tional therapy in adult patients with ARDS showed acute
improvement in oxygenation and hemodynamics.131,132

However, because no reduction in mortality has been
demonstrated, iNO has an unproven role in the treatment
of patients with ALI/ARDS.
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OUTCOME

Numerous factors influence the risk of death for a patient
with established ARDS. Since publication of the 1992
AECC criteria, most clinical series have reported mortality
rates for patients with ARDS that range from 25% to
70%. Differences in the application of ALI/ARDS 
definitions, associated risk factors and comorbidities, and
the time period during which mortality is recorded are
likely to contribute to this variation. The mortality rate
from ARDS appears to have decreased since the mid- to
late 1990s.5,133131,132 136

Although the annual age-adjusted mortality, as
observed by Moss and colleagues, may have increased
from 1979 (5.0 deaths per 100,000 individuals) to 1993
(8.1 deaths per 100,000 individuals), a decrease in 
mortality was observed from 1993 to 1996 (7.4 deaths
per 100,000 individuals). Reasons for the decline in
ARDS-associated mortality are varied. In a 9-year retro-
spective review of surgical and trauma patients, Rocco
and colleagues found, predominantly in trauma patients,
a declining death rate from ARDS largely resulting from
the use of lung protective ventilation strategies.137 The
predictors of death in this study at the onset of ARDS
were advanced age, a Multiple Organ Dysfunction Score
of 8 or more, and a Lung Injury Score of 2.76 or more.
In a similar study, the decrease in mortality of patients
with ARDS was attributed mostly to a decreased inci-
dence of nonpulmonary organ failure.138 Consistent with
this view, Page and associates found that, for patients
with ARDS who were managed with a lung protective
ventilation strategy, the strongest predictor of death was
not the degree of pulmonary failure, but rather the 
presence and severity of circulatory failure.139 The dom-
inant influence on mortality of comorbidities was noted
by Estenssoro and associates, who prospectively studied
all patients who developed ARDS in four ICUs for 
1 year.140 Hospital mortality was reported to be 58%, and
the main causes of mortality were multiple organ 
dysfunction syndrome, sepsis, and septic shock. In this
study, independent predictors of death included organ
dysfunction and PaO2/FiO2. A decrease in pulmonary
dead space fraction has also been identified as a separate
risk factor.141 The influence of comorbidities was also
observed by Davidson and colleagues, who, in a prospective
cohort study of 127 patients with ARDS associated with
trauma or sepsis, found no difference in the long-term
mortality rate for the patients with ARDS compared with
127 control subjects matched for age, risk factors for
ARDS, comorbidity, and severity of illness.142

It is unclear whether patients with mild ALI (those with
PaO2 between 200 and 300 mm Hg) have a mortality that
differs from that of patients with ARDS. In a study of
patients in Scandinavian ICUs, Luhr and associates

found a similar mortality of approximately 40% in both
groups.5 However, in a study of patients in 78 ICUs in
Europe, Brun-Buisson and colleagues found ICU and
hospital mortality to be 49.4% and 57.9%, respectively,
for patients who developed ARDS and 22.6% and 32.7%,
respectively, for patients with ALI.143 Mortality was 
associated with age, immunocompetence, physiologic
measures of injury, organ dysfunction, and early air leak.

The long-term health consequences in ARDS survivors
are significant. Herridge and associates studied 1-year
outcomes in 109 survivors of the ARDS.144 Muscle
weakness and fatigue were the major reasons for the
functional limitation observed after 1 year, whereas 
normalization of lung volumes and spirometric measure-
ments were seen by 6 months. Other studies found residual
obstructive or restrictive defects to persist for a year or
more in a subset of patients.145,146 All three of the 
foregoing studies, however, found diffusing capacity to
remain low on long-term follow-up. Orme and colleagues
found no significant differences in pulmonary function
between surviving patients treated with a low or high
tidal volume strategy.146

Direct measures of the quality of life in patients who
survive ARDS indicate impairment in general physical
health, mental health, and neuropsychological func-
tion.147,148 Hopkins and associates stressed the significant
cognitive impairments in memory, attention, concentration,
or mental processing speed exhibited by 78% of the 
55 ARDS survivors they evaluated at 1 year after the
onset of ARDS.149 Decrements in quality of life and
functional status appear to stabilize by 6 months. An
unresolved issue is the extent to which the decrement in
quality of life is the result of ARDS or of other factors
such as prior health status or other elements of the acute
illness. Further research is needed to characterize
patients’ recovery from ARDS and ALI and the extent to
which recovery may be influenced by treatment in the
ICU and during rehabilitation.
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