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The cardiovascular system is affected broadly by severe acute respiratory syndrome coronavirus 2 infection. Both direct

viral infection and indirect injury resulting from inflammation, endothelial activation, and microvascular thrombosis occur

in the context of coronavirus disease 2019. What determines the extent of cardiovascular injury is the amount of viral

inoculum, the magnitude of the host immune response, and the presence of co-morbidities. Myocardial injury occurs in

approximately one-quarter of hospitalized patients and is associated with a greater need for mechanical ventilator

support and higher hospital mortality. The central pathophysiology underlying cardiovascular injury is the interplay

between virus binding to the angiotensin-converting enzyme 2 receptor and the impact this action has on the renin-

angiotensin system, the body’s innate immune response, and the vascular response to cytokine production. The purpose

of this review was to describe the mechanisms underlying cardiovascular injury, including that of thromboembolic disease

and arrhythmia, and to discuss their clinical sequelae. (J Am Coll Cardiol 2020;76:2011–23) © 2020 by the American

College of Cardiology Foundation.
C ardiovascular disease (CVD) is the leading
cause of death worldwide, accounting for
17.8 million deaths in 2017 (1). As a percent-

age of deaths, communicable diseases, such as that
from infection, have been decreasing over the past 2
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decades while those from noncommunicable dis-
eases, such as CVD and cancer, have been increasing.
At the time of this writing, almost 10 million people
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syndrome coronavirus 2 (SARS-CoV-2) infection, and
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HIGHLIGHTS

� The cardiovascular system is affected in
diverse ways by severe acute respiratory
syndrome coronavirus 2 infection
(COVID-19).

� Myocardial injury can be detected in
w25% of hospitalized patients with
COVID-19 and is associated with an
increased risk of mortality.

� Described mechanisms of myocardial
injury in patients with COVID-19 include
oxygen supply–demand imbalance, direct
viral myocardial invasion, inflammation,
coronary plaque rupture with acute
myocardial infarction, microvascular
thrombosis, and adrenergic stress.

ABBR EV I A T I ON S

AND ACRONYMS

ACE2 = angiotensin-converting

enzyme 2

ADAM-17 = a disintegrin and

metalloproteinase domain 17

Ang = angiotensin

ARDS = acute respiratory

distress syndrome

CI = confidence interval

CMR = cardiac magnetic

resonance

COVID-19 = coronavirus

disease 2019

CVD = cardiovascular disease

CYP = cytochrome P450

DVT = deep venous thrombosis

HCQ = hydroxychloroquine

hERG = human ether-a-go-go

related gene

IL = interleukin

MI = myocardial infarction

OR = odds ratio

RNA = ribonucleic acid

SARS = severe acute

respiratory syndrome

SARS-CoV-2 = severe acute

respiratory syndrome

coronavirus 2

STEMI = ST-segment elevation

acute myocardial infarction

TMPRSS2 = transmembrane

serine protease 2

TNF = tumor necrosis factor
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close to 500,000 have died of the disease.
Although originally believed to be a syn-
drome characterized by acute lung injury,
respiratory failure, and death, it is now
apparent that severe coronavirus disease
2019 (COVID-19) is further characterized by
exuberant cytokinemia, with resultant endo-
thelial inflammation, microvascular throm-
bosis, and multiorgan failure (2).

Involvement of the cardiovascular system
is common in COVID-19 (3–8). Somewhere
between one-fifth and one-third of hospital-
ized patients will have evidence of myocar-
dial injury, defined as the presence of
elevated cardiac troponin levels at the time
of admission (9–12). Such patients are
generally older and have a higher prevalence
of hypertension, diabetes mellitus, coronary
artery disease, and heart failure than those
with normal troponin levels. Myocardial
injury is associated with a greater need for
mechanical ventilatory support and higher
in-hospital mortality.

The purpose of the current review was to
describe the mechanisms producing cardio-
vascular damage among hospitalized pa-
tients with severe COVID-19 infection,
including that of thromboembolic disease
and arrhythmia, and to discuss their clinical
sequelae.

PATHOPHYSIOLOGY OF

CARDIOVASCULAR INVOLVEMENT

IN COVID-19
The cardiovascular system is affected broadly by SARS-
CoV-2 infection (Central Illustration). Both direct viral
infection and indirect injury resulting from inflam-
mation, endothelial activation, and microvascular
thrombosis occur in the context of COVID-19. What
determines the extent of CVD is the amount of viral
inoculum, the magnitude of the host immune
response, and the presence of co-morbidities.

DIRECT VIRAL MYOCARDIAL INVASION. SARS-CoV-2 is
a single-stranded ribonucleic acid (RNA) virus
whose outer membrane spike protein (S protein)
binds with high affinity to the angiotensin-converting
enzyme 2 (ACE2) receptor (13). ACE2 serves as a
master regulator of the renin-angiotensin system by
metabolizing the vasoconstricting and pro-
inflammatory angiotensin II (Ang II) to the vaso-
dilating peptide angiotensin 1-7. While binding to
ACE2, SARS-CoV-2 uses a host protease,
transmembrane protease serine 2 (TMPRSS2), to
prime the S protein and facilitate cell entry (14). Once
inside the cell, the virus uses the host machinery to
translate RNA into polypeptides, including an RNA-
dependent RNA polymerase that the virus uses to
replicate its own RNA. After synthesis of structural
proteins and particle assembly, new virus is released
from the cell by exocytosis. Host cells may be
disabled or destroyed in the process, potentially
triggering an innate immune response (15).

ACE2 and TMPRSS2 are co-expressed in a number
of tissues, including the heart, lung, gut smooth
muscle, liver, kidney, and immune cells (15). In an
autopsy study of patients who died of severe acute
respiratory syndrome (SARS), 7 (35%) of 20 hearts
were shown to harbor the related coronavirus
SARS-CoV (16). Given the extensive homology of
SARS-CoV-1 and SARS-CoV-2, and the intensity of
SARS-CoV-2 binding to ACE2, it is reasonable to pre-
sume that SARS-CoV-2 directly invades human
myocardium. To date, there have been only a few
reports confirming the presence of viral inclusion
bodies or the identification of SARS-CoV-2 genomic
RNA from myocardial tissue taken from biopsy-
proven COVID-19 myocarditis cases (17–22). In a
report of 104 patients with COVID-19 infection who
developed acute heart failure and underwent endo-
myocardial biopsy, 5 were positive for the SARS-CoV-
2 genome in the myocardial tissue and associated
with typical features of myocarditis, including pro-
nounced intramyocardial inflammation, microvas-
cular thrombosis, and myocardial necrosis. More
recently, in a larger autopsy series of consecutive
patients, SARS-CoV-2 positivity in cardiac tissues
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could be documented in 24 (61.5%) of 39 patients (23).
Interestingly, cardiac tissues of patients with high
viral load in the myocardium had higher expression of
proinflammatory cytokines, but this finding was not
associated with greater inflammatory cell infiltrates.

SARS-CoV-2, ACE2, AND INFLAMMATION. Macro-
phages are a key component of the innate immune
system, and they are a major source of the inflam-
matory cytokine tumor necrosis factor (TNF)-a. Their
activation is driven by a disintegrin and metal-
loproteinase domain 17 (ADAM-17), a transmembrane
protease, which is also responsible for the proteolysis
and ectodomain shedding of ACE2 (24,25). In the
setting of SARS-CoV-2 infection, membrane-bound
ACE2 is internalized, leading to decreased receptor
density. Because ACE2 is primarily responsible for the
conversion of Ang II to angiotensin 1-7, the loss of
ACE2 receptor density and down-regulation of ACE2
activity leads to an accumulation of Ang II (Figure 1).
In turn, increased binding of Ang II to the Ang II type 1
receptor triggers a signaling cascade that leads to
ADAM-17 phosphorylation and enhanced catalytic
activity (13,24). Activated ADAM-17 increases ACE2
shedding, resulting in further reductions of Ang II
clearance, increased Ang II–mediated inflammatory
responses, and a vicious positive feedback cycle.



FIGURE 1 Interaction Between SARS-CoV-2, ACE2 Transmembrane Protein, and Ang II Levels in Patients With COVID-19
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Giving the key role of the ACE2 receptor in the
pathophysiology of COVID-19, some have postulated
both in favor and against a potential protective
benefit of renin-angiotensin-aldosterone system in-
hibitors. In a large observational study including
>10,000 patients who were tested for COVID-19 in the
New York University Langone Health electronic
health record, treatment with ACE inhibitors or
angiotensin-receptor blockers was not associated
with a higher incidence of COVID-19 infection or with
the likelihood of severe illness (defined as intensive
care, mechanical ventilation, or death) among pa-
tients who tested positive (26). Similar findings were
observed in a large case control study in the Lom-
bardy region of Italy (27). More recently, in a ran-
domized controlled trial testing the role of ramipril in
elderly patients undergoing transcatheter aortic valve
replacement, treatment with ramipril had no effect
on the incidence of COVID-19 in the study cohort (11
cases of 102 patients enrolled) (28). Multiple ran-
domized controlled trials are testing whether
continuing or interrupting treatment with ACE in-
hibitors and angiotensin receptor blockers has an
effect on the clinical outcomes of patients with
COVID-19 (NCT04338009; NCT04364893).

ENDOTHELIAL ACTIVATION AND THROMBOSIS.

ACE2 is expressed extensively throughout the circu-
latory system. Vascular smooth muscle co-expresses
the ACE2 receptor and TMPRSS2 (15). Similarly, both
arterial and venous endothelial cells are characterized
by high levels of ACE2 receptor expression (29). Viral
replication in localized tissue incites innate immune
responses characterized by the release of interferon-g,
resulting in macrophage activation to the M1 pheno-
type. The subsequent release of interleukin (IL)-1b and
IL-6 promotes endothelial activation with the expres-
sion of cell adhesion molecules. Inflamed and
dysfunctional endothelium soon becomes proadhe-
sive and prothrombotic with increased expression of
tissue factor and plasminogen activator inhibitor-1
(Figure 2) (30). In addition, significant elevations in
von Willebrand factor levels have been observed in
patients with severe COVID-19 infection, which sug-
gest ongoing endothelial activation and damage
(31,32). Histological studies have shown evidence of
endotheliitis caused by SARS-CoV-2 infection (33).

ACUTE CORONARY SYNDROMES (TYPE 1 MYOCARDIAL

INFARCTION). Myocardial infarction (MI) caused by
atherosclerotic disease with plaque disruption is
termed type 1 MI (34). Several potential mechanisms
contribute to the high risk of plaque destabilization
and link systemic viral infection with acute coronary
ischemic syndromes (35). Viral products known as
pathogen-associated molecular patterns entering the
systemic circulation activate immune receptors on
cells in existing atherosclerotic plaques and

https://clinicaltrials.gov/ct2/show/NCT04338009?term=NCT04338009&amp;draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT04364893?term=NCT04364893&amp;draw=2&amp;rank=1
http://BioRender


FIGURE 2 Endothelial Activation, Inflammation, and Thrombosis in COVID-19
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Image created with BioRender.com. PAI ¼ plasminogen activator inhibitor; TF ¼ tissue factor; vWF ¼ von Willebrand factor; other abbrevi-

ations as in Figure 1.
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predispose to plaque rupture (36). Such pathogen-
associated molecular patterns are also believed to
activate the inflammasome and result in conversion of
nascent pro-cytokines into biologically active cyto-
kines (37). Infection and inflammation can also lead to
dysregulation of coronary vascular endothelial func-
tion and cause vasoconstriction and thrombosis (38).

Despite these multiple plaque-destabilizing mech-
anisms through which COVID-19 could precipitate
acute coronary syndromes, the clinical frequency of
this occurrence and the relative preponderance of one
mechanism over another remain uncertain. One of
the primary reasons for this uncertainty is the relative
infrequency of performing diagnostic angiography in
the setting of COVID-19 due to appropriate concerns
regarding the safety of health care workers. To mini-
mize the transmission of this contagious virus, car-
diac catheterization with coronary angiography has
been performed in a relatively small proportion of
patients with symptoms and electrocardiographic
evidence of acute myocardial injury. The diagnostic
confirmation of COVID-19 using real-time reverse
transcriptase polymerase chain reaction assays ob-
tained from nasopharyngeal swabs can often take
hours or days. Delaying catheterization while waiting
for test results in patients with uncertain COVID-19
status exceeds the time frame within which primary
revascularization is beneficial for myocardial salvage.
Consequently, urgent coronary angiography and
percutaneous revascularization have been reserved
only for patients with ST-segment elevation acute MI
(STEMI) in specific settings and are usually avoided in
non-STEMI cases, as recommended by professional
societies (39–41).

SUPPLY–DEMAND IMBALANCE (TYPE 2 MI). MI
resulting from an imbalance between myocardial ox-
ygen supply and demand is classified as type 2 MI (34).

http://BioRender.com
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In particular, 4 specific mechanisms in the context of
COVID-19 seem relevant: 1) fixed coronary athero-
sclerosis limiting myocardial perfusion; 2) endothe-
lial dysfunction within the coronary microcirculation;
3) severe systemic hypertension resulting from
elevated circulating Ang II levels and intense arteri-
olar vasoconstriction; and 4) hypoxemia resulting
from acute respiratory distress syndrome (ARDS) or
from in situ pulmonary vascular thrombosis. In the
setting of sepsis, lung injury, and respiratory failure,
severe physiological stress can be associated with
elevations in biomarkers of myocardial strain and
injury (42–44). Individuals with atherosclerosis are
susceptible to myocardial ischemia and infarction in
the setting of systemic inflammatory states and se-
vere infections, including H1N1 influenza and coro-
navirus pneumonia (8,45,46). Infection in general,
and pneumonia in particular, can disrupt the balance
between myocardial oxygen supply and demand. The
physiological demands triggered by systemic infec-
tion can be so great that this supply–demand imbal-
ance may exist even in the absence of
atherothrombotic plaques. It is challenging to
distinguish patients with non-STEMI from those with
myocarditis or demand-based myocardial injury in
the setting of fever, tachycardia, or hypoxemia due to
ARDS. It is very likely that multiple concurrent
mechanisms of myocardial injury overlap within in-
dividual patients.

PRE-HOSPITAL DEATH IN CVD (TYPE 3 MI). Suspi-
cion of MI without the ability to obtain biomarker
confirmation is termed type 3 MI. During the surge of
COVID-19, patients avoided hospital-based care
(47–51). Therefore, sudden death and unexplained
death at home in persons with known coronary heart
disease suspected of having COVID-19 could have
been secondary to type 3 MI.

MYOCARDIAL INJURY RESULTING FROM SEVERE

SYSTEMIC INFLAMMATION. Severe systemic inflam-
mation is a postulated cause of myocardial injury in
cases of COVID-19 (52). Patients with sepsis-
associated cardiomyopathy have an inflammatory
profile, characterized by high circulating levels of a
number of cytokines, including IL-6 and TNF-a (53).
In vitro exposure to IL-6 reduced cultured rat car-
diomyocyte contractility (54), and administration of
recombinant TNF-a in a canine model produced left
ventricular systolic dysfunction (55). The mediators
of these toxic responses include modulation of cal-
cium channel activity (56–58), and nitric oxide pro-
duction, which is believed to govern myocardial
depression in systemic hyperinflammatory states,
including sepsis. Compounding these adverse
responses is the potential for several antiviral drugs
to cause mitochondrial dysfunction and cardiotox-
icity (59).

INCIDENCE AND CLINICAL IMPACT OF

MYOCARDIAL INJURY IN COVID-19

The incidence of major cardiovascular events,
including both types 1 and 2 MI, increases in associ-
ation with respiratory infections and carries a poor
prognosis (8). In the setting of COVID-19, a substan-
tial proportion of hospitalized patients exhibit signs
of myocardial injury based on biomarkers and elec-
trocardiographic or imaging criteria (3,4,7,9,10,12,60).
Significant variation exists in myocardial injury defi-
nitions used in published reports (Table 1). Myocar-
dial injury has been defined as any evidence of serum
troponin elevations (with variations in the troponin
assay used) with or without accompanying electro-
cardiographic or echocardiographic evidence of acute
ischemia (3,4,7,9,10,60). The incidence ranges be-
tween 7% and 40%, reflecting the significant hetero-
geneity of the definitions used and the population
studied. Irrespective of its definition, myocardial
injury has been consistently associated with
increased risk of in-hospital complications and mor-
tality. Cardiac troponin elevation correlates with
higher levels of inflammatory biomarkers (e.g.,
ferritin, IL-6, C-reactive protein), coagulation bio-
markers (e.g., D-dimer), and the severity of hypox-
emia and respiratory illness (e.g., lower partial
arterial pressure of oxygen/fraction of inspired oxy-
gen ratio and need for mechanical ventilation).

The largest available outcomes study of myocardial
injury is a multicenter retrospective analysis from a
health care system in New York City (10). A total of
2,736 patients were included, of whom 985 patients
(36%) had evidence of myocardial injury at the
time of presentation, based on any elevation of car-
diac troponin I above the upper limit of normal
(0.03 ng/ml). Patients experiencing myocardial injury
were older than those without troponin increases and
had more co-morbidities, but only w30.0% had a
history of coronary artery disease. After adjusting
for baseline confounders, troponin elevations >0.03
to 0.09 ng/ml and >0.09 ng/ml were both associated
with increased risk of in-hospital mortality (adjusted
odds ratio [OR]: 1.75; 95% confidence interval
[CI]: 1.37 to 2.24, and adjusted OR: 3.03; 95% CI: 2.42
to 3.80, respectively). Similar findings were
also reported in another large single-center study
from China of 671 patients (60). Of note, the area
under the receiver-operating characteristic curve
of initial cardiac troponin I for predicting in-hospital



TABLE 1 Selected Studies (With Sample Size $100 Patients) Reporting the Incidence and Association of Myocardial Injury With Mortality in Patients With COVID-19

First Author
(Ref. #) Country No.

Definition of
Myocardial Injury Incidence Age* (yrs) Male Impact of Myocardial Injury on Outcomes

Lala et al. (10) United States 2,736 Serum levels of
TnI >0.03 ng/ml

985/2,736 (36%) 66 59.6% TnI elevations >0.03–0.09 ng/ml and >0.09 ng/ml
were both associated with increased risk of in-
hospital mortality after multivariable adjustment
(adjusted OR: 1.75; 95% CI: 1.37–2.24, and
adjusted OR: 3.03; 95% CI: 2.42-3.80,
respectively)

Shi et al. (60) China 671 Serum levels of
TnI >99th

percentile URL

Not reported 63 48.0% TnI elevations >0.026 ng/ml were strongly
associated with increased risk of in-hospital
mortality (adjusted OR: 4.56; 95% CI: 1.28–16.28)

Shi et al. (4) China 416 Serum levels of
TnI >99th

percentile URL

82/416 (19.7%) 64 49.3% TnI elevations were associated with increased risk of
mortality (51.2% vs. 4.5%), ARDS (58.5% vs.
14.7%), AKI (8.5% vs. 0.3%), and coagulopathy
(7.3% vs. 1.8%)

TnI elevations were associated with increased risk of
in-hospital mortality after multivariable
adjustment (adjusted HR: 3.41; 95% CI: 1.62–7.16)

Guo et al. (3) China 187 Serum levels of
TnT >99th

percentile URL

52/187 (27.8%) 58.5 48.7% Associated with increased risk of mortality (59.6% vs.
8.9%), ARDS (57.7% vs. 11.9%), VT/VF (17.3% vs.
1.5%), AKI (36.8% vs. 4.7%), and coagulopathy
(65.8% vs. 20.0%)

Mortality associated with myocardial injury was
increased among those with pre-existing
cardiovascular disease

Zhou et al. (5) China 191 High-sensitivity
cardiac TnI
>28 pg/ml

24/45 (17%) 56 62% Associated with increased risk of in-hospital mortality
(univariate OR: 80.07; 95% CI: 10.34–620.36)

*Mean or median, as reported.

AKI ¼ acute kidney injury; ARDS ¼ acute respiratory distress syndrome; CI ¼ confidence interval; COVID-19 ¼ coronavirus disease 2019; HR ¼ hazard ratio; OR ¼ odds ratio; TnI ¼ troponin I; URL ¼ upper
reference limit; VF ¼ ventricular fibrillation; VT ¼ ventricular tachycardia.
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mortality was 0.92 (95% CI: 0.87 to 0.96; sensitivity:
0.86; specificity: 0.86) with a cutoff concentration
of cardiac troponin I of 0.026 ng/ml. After multivari-
able adjustment, cardiac troponin I elevations
>0.026 ng/ml were strongly associated with increased
risk of in-hospital mortality (adjusted OR: 4.56;
95% CI: 1.28 to 16.28). Of note, in this study, other
cardiac biomarkers were associated with increased
risk of in-hospital mortality, including creatine-
kinase myocardial band elevations and N-terminal
pro–B-type natriuretic peptide elevations (20).

The presentation of COVID-19–related myocardial
injury is atypical. Most patients with myocardial
injury do not have previously diagnosed CVD and
frequently present without chest pain (3,4).
Myocardial injury and other manifestations of end-
organ damage appear to occur later (>14 days) after
the onset of initial symptoms, possibly reflecting a
more advanced stage of the disease. At the present
time, it remains uncertain whether myocardial injury
is simply a marker of disease severity or directly
contributes to COVID-19 morbidity and mortality.
Most available studies do not include echocardio-
graphic data, and therefore the prevalence and
severity of left ventricular dysfunction associated
with myocardial injury are unknown. In several
modest-sized studies reporting the echocardio-
graphic findings in patients with COVID-19, the most
common echocardiographic abnormalities were right
ventricular dilatation and right ventricular dysfunc-
tion, with only a small percentage of patients having
left ventricular systolic dysfunction (61–63). Also
poorly defined is the true incidence of type 1 MI. In
an 18-patient case series of COVID-19 STEMI, 14 pa-
tients had focal ST-segment elevations and 4 had
diffuse ST-segment elevations (64). Focal ST-
segment elevation was associated with greater left
ventricular dysfunction and regional wall motion
abnormalities. Only 9 patients underwent diagnostic
coronary angiography, of whom 6 (67%) had
obstructive coronary artery disease. Patients with
type 1 MI had higher levels of troponin and D-dimer
but lower in-hospital mortality compared with those
with nonischemic myocardial injury. A high preva-
lence of nonobstructive disease in patients with
COVID-19 presenting with ST-segment elevation on
electrocardiography was also shown in a larger series
of 28 patients who underwent invasive coronary
angiography in northern Italy (65).

Takotsubo or stress-induced cardiomyopathy is
another potential mechanism of myocardial injury in
the setting of COVID-19. A single-center study from
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New York City included 118 consecutive patients with
laboratory-confirmed COVID-19 infection who un-
derwent formal transthoracic echocardiographic
evaluation; 5 (4.2%) had imaging features compatible
with a diagnosis of takotsubo cardiomyopathy (i.e.,
circumferential hypokinesis or akinesis of the apical
and mid-wall segments without a discrete epicardial
coronary artery distribution) (66). Of note, all pa-
tients were male and had higher degrees of cardiac
troponin elevations compared with patients with
myocardial injury without features of takotsubo car-
diomyopathy on transthoracic echocardiography.
Patients with myocardial injury and features of
takotsubo cardiomyopathy had higher rates of in-
hospital mortality and major complications from
COVID-19 compared with patients without myocar-
dial injury.

The precise incidence of confirmed acute myocar-
ditis at the time of symptomatic COVID-19 infection is
currently unclear and mostly limited to case reports
in the literature (19,22,67–72). However, in a pro-
spective cohort study conducted in Germany of 100
patients recently recovered from COVID-19 who un-
derwent cardiac magnetic resonance (CMR) imaging
at a median time interval of 71 days since infection,
CMR revealed cardiac involvement in nearly 80% of
patients and ongoing myocardial inflammation in
60%. CMR abnormalities included low left ventricular
ejection fraction, greater left ventricular volumes,
raised native T1 and T2, late gadolinium enhance-
ment, and pericardial enhancement (73). Of note,
these findings correlated with higher levels of high-
sensitivity troponin and active lymphocytic inflam-
mation on endomyocardial biopsy specimens. These
findings support the need for ongoing investigation
and longitudinal follow-up to evaluate the long-term
cardiac consequences of COVID-19.

THROMBOEMBOLIC AND

PULMONARY VASCULAR DISEASE

The most catastrophic consequences of COVID-19 are
ARDS and sudden death. Among patients with respi-
ratory failure, profound gas exchange abnormalities
with relatively preserved pulmonary mechanics have
raised questions about pulmonary vascular involve-
ment. Thromboembolic disease is increasingly
recognized as a key contributor to the rapid decline of
hospitalized patients with severe COVID-19 (74,75).

VENOUS AND ARTERIAL THROMBOEMBOLISM

PATHOGENESIS. There are several postulated
mechanisms by which thrombotic disease inclusive of
deep vein thrombosis (DVT) and pulmonary
thromboembolism may occur at increased frequency
in the setting of acute COVID-19 (74). These include
inflammation, hypoxia, off-target therapeutic effects,
and consequences of hospital care. As discussed
previously, excessive inflammation, endothelial
activation, and stasis predispose to both arterial and
venous thrombosis. Hypoxia, a defining feature of
moderate or severe COVID-19, decreases S protein
production and increases risk of thrombosis (76). In
addition, the high incidence of supraventricular
tachyarrhythmias may contribute to the observed
high incidence of arterial thromboembolism despite
adequate thromboembolic prophylaxis (77,78). It is
speculated that certain investigational or repurposed
drugs such as hydroxychloroquine (HCQ), antiretro-
viral therapies, and immunomodulatory biologics
alter thrombotic risk and may produce adverse drug–
drug interactions (74). Bevacizumab is an investiga-
tional monoclonal antibody that binds to vascular
endothelial growth factor and is being used to treat
COVID-19. The use of bevacizumab is associated with
increased risk of thrombotic events, including MI,
DVT, and stroke (79). Conversely, even though HCQ
may increase arrhythmic risk, its use may have some
beneficial antithrombotic properties, particularly
against antiphospholipid antibodies (80). Due to
limited resources, dispersed staffing, and social
distancing policies, patients may receive varying
levels of care and treatment while in the hospital.
Routine prophylaxis for thromboembolism preven-
tion may not be uniform, for example, in attempts to
avoid risk of exposure.

INCIDENCE AND ASSOCIATION WITH OUTCOMES.

The true incidence of thromboembolic disease is un-
known. Collections of case reports and small case
series support that thrombotic complications of
COVID-19 are common (81–85). Among 184 intensive
care unit patients with COVID-19 in the Netherlands,
the cumulative incidence of acute pulmonary embo-
lism, DVT, ischemic stroke, MI, or systemic arterial
embolism was 31% (95% CI: 20% to 41%), and pul-
monary embolism was the most frequent thrombotic
complication (n ¼ 25) (83). Among patients with
COVID-19 in Wuhan, China, there was a similar 25%
incidence of VTE among 81 intensive care unit
patients, 8 of whom died (84). Finally, in a
propensity-matched comparison between 150 pa-
tients with COVID-19 ARDS and 145 non–COVID-19
ARDS patients, those with COVID-19 had more
thromboembolic events, in particular more pulmo-
nary thromboembolism (11.7% vs. 2.1%; p < 0.008)
(85). All these reports showed an association between
elevated inflammatory markers, especially D-dimer



TABLE 2 Key Recommendations for Antithrombotic Therapies in Hospitalized Patients With COVID-19 From the National Institutes of Health (89)

Laboratory testing

In hospitalized patients with COVID-19, hematologic and coagulation parameters are commonly measured, although there are currently insufficient data to recommend for or
against using these data to guide management decisions

Chronic anticoagulant and antiplatelet therapies

Patients who are receiving anticoagulant or antiplatelet therapies for underlying conditions should continue these medications if they receive a diagnosis of COVID-19

VTE prophylaxis and screening

Hospitalized adults with COVID-19 should receive VTE prophylaxis per the standard of care for other hospitalized adults

Anticoagulant or antiplatelet therapy should not be used to prevent arterial thrombosis outside of the usual standard of care for patients without COVID-19

There are currently insufficient data to recommend for or against the use of thrombolytic agents or increasing anticoagulant doses for VTE prophylaxis in hospitalized
COVID-19 patients outside the setting of a clinical trial

Hospitalized patients with COVID-19 should not routinely be discharged on VTE prophylaxis. Extended VTE prophylaxis can be considered in patients who are at low risk for
bleeding and high risk for VTE

There are currently insufficient data to recommend for or against routine deep vein thrombosis screening in COVID-19 patients without signs or symptoms of VTE, regardless
of the status of their coagulation markers

Treatment

Patients with COVID-19 who experience an incident thromboembolic event or who are highly suspected to have thromboembolic disease at a time when imaging is not
possible should be managed with therapeutic doses of anticoagulant therapy as per the standard of care for patients without COVID-19

Patients with COVID-19 who require extracorporeal membrane oxygenation or continuous renal replacement therapy or who have thrombosis of catheters or extracorporeal
filters should be treated with antithrombotic therapy per the standard institutional protocols for those without COVID-19

COVID-19 ¼ coronavirus disease 2019; VTE ¼ venous thromboembolism.
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and fibrinogen, with thromboembolic disease and
higher mortality.

Reports describing arterial thromboembolic events
in patients with COVID-19 are limited to small case
series at the present time. In a retrospective single-
center study from Wuhan, China, the incidence of
acute cerebrovascular events among hospitalized
patients with COVID-19 and severe infection was
w5% (86). Interestingly, Oxley et al. (87) recently
reported a case series from New York City of 5 young
patients presenting with large-vessel occlusion
ischemic stroke and positive for COVID-19 infection
over a 2-week period. In comparison, the same insti-
tution treated every 2 weeks over the previous
12 months, on average, 0.73 patients <50 years of age
with large-vessel stroke. Similar trends have been
observed also in terms of acute limb ischemia. In a
single-center case series, 20 patients hospitalized for
COVID-19 developed acute limb ischemia over a 3-
month period (88). This represented a significant in-
crease in limb ischemia over the previous year (16%
vs. 2% in early 2019).

MANAGEMENT. Prevention and management of
thromboembolic disease in patients with COVID-19
consists of prophylaxis and systemic anticoagulation,
respectively. A summary of the recommendations
endorsed by the National Institutes of Health is re-
ported in Table 2 (89). Heparin and low-molecular-
weight heparin have theoretical benefits over
vitamin K antagonists and direct oral anticoagulants
(90–93). Heparin possesses specific anti-inflammatory
properties being able to down-regulate IL-6. Their use
may be particularly helpful in the context of COVID-19
because they bind the S protein of SARS-CoV-2, but in
the absence of direct comparisons between low-
molecular-weight heparin and oral anticoagulants,
their superiority cannot be confirmed (92,93). Animal
models of ARDS have identified fibrin deposition in the
pulmonary vasculature, leading some to explore
treating patients with thrombolytic therapy (94,95).
Small cases series of tissue plasminogen activator use
in severe COVID-19 describe initial but nonsustained
improvement in partial arterial pressure of oxygen/
fraction of inspired oxygen ratios (96). Use of tissue
plasminogen activator at our institution resulted in
improved oxygenation, ventilation, and shock in 4
patients 55 to 65 years of age with refractory respira-
tory failure requiring mechanical ventilation and
shock, who exhibited evidence of elevated dead-space
ventilation (97). This suggests that pulmonary micro-
vascular and macrovascular thrombi may drive the
pathophysiology of certain ARDS phenotypes of
COVID-19 (97,98).

ARRHYTHMIC MANIFESTATIONS

OF COVID-19

Arrhythmias are a common manifestation of CVD in
patients with COVID-19. In a clinical case series of
hospitalized patients in China, palpitations were an
initial presenting symptom in 7.3%, and cardiac ar-
rhythmias were reported in 16.7%, including 44.4%
of intensive care unit patients (9). A study of 323
hospitalized patients reported arrhythmias to be
present in 30.3% of the full cohort, and they were
largely ubiquitous (96.2%) in the critically ill
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subgroup (99). Although most of these studies have
been limited by a lack of specificity as to what con-
stitutes “arrhythmias,” one single-center study of 187
patients identified malignant arrhythmias in 5.9% of
hospitalized COVID-19 patients, with “malignant ar-
rhythmias” being defined as rapid ventricular tachy-
cardia lasting >30 s, inducing hemodynamic
instability, or ventricular fibrillation (3).

MECHANISMS UNDERLYING ARRHYTHMIAS. There
are several mechanisms by which arrhythmias may
occur in COVID-19. First, as discussed earlier, be-
tween 19.7% and 27.8% of patients sustain myocardial
injury (3,4). Once myocardial injury occurs, the inci-
dence of arrhythmias increases substantially. Malig-
nant arrhythmias occurred in 1.5% and 17.3% of
patients without or with myocardial injury, respec-
tively. Parenthetically, a related mechanism for car-
diac arrhythmias is secondary to coronary syndromes
leading to MI (64).

A second mechanism for arrhythmias in COVID-19
is electrical instability attendant with QT prolonga-
tion. This is of particular concern because infected
individuals: 1) may develop hypokalemia or hypo-
magnesemia from either the disease itself (e.g., diar-
rhea), particularly in the critically ill, or with certain
treatments, such as diuretic agents; and 2) several
pharmacotherapies being repurposed to treat
COVID-19 carry an inherent risk for QT prolongation
and torsades de pointes. For the latter, agents that
inhibit the human ether-a-go-go related gene (hERG)-
Kþ channel include both the antimalarial drugs chlo-
roquine and HCQ, which have been shown in vitro to
block infection by increasing the endosomal pH
required for SARS-CoV-2 virus fusion to cells, and the
protease inhibitors lopinavir and ritonavir, which
interfere with viral RNA replication. Despite few data
supporting HCQ (100), considerable interest has been
garnered, often with concomitant use of the macro-
lide antibiotic azithromycin, which can also prolong
the QT interval but via an hERG-independent mech-
anism. However, the efficacy of HCQ in the treatment
of hospitalized patients with COVID-19 has recently
been questioned by the preliminary results of the
RECOVERY (Randomised Evaluation of COVID-19
Therapy; NCT04381936) trial, in which 1,542 pa-
tients were randomized to receive HCQ and compared
with 3,132 patients randomized to usual care alone.
There was no significant difference in the primary
endpoint of 28-day mortality (25.7% HCQ vs. 23.5%
usual care; hazard ratio: 1.11; 95% CI: 0.98 to 1.26;
p ¼ 0.10). Also, there was no evidence of beneficial
effects with HCQ on hospital stay duration or other
outcomes. Therefore, the use of HCQ in patients with
COVID-19 is at the present not supported by any
randomized controlled trial evidence.

The hyperinflammatory state characteristic of
COVID-19 also promotes arrhythmias by direct elec-
trophysiological effects of the cytokines on the
myocardium (8). Inflammatory cytokines known to be
up-regulated in COVID-19 prolong ventricular action
potential duration by modulating the expression/ac-
tivity of the cardiomyocyte Kþ and Caþþ ion channels.
Indeed, IL-6 inhibits hERG and prolongs ventricular
action potential duration (101). Beyond these direct
cardiac effects, inflammatory cytokines can provoke
cardiac sympathetic system hyperactivation both
centrally (an inflammatory reflex mediated by the
hypothalamus) and peripherally (by activating the left
stellate ganglia), in turn triggering life-threatening
arrhythmias in the setting of long QT. Also, IL-6 in-
hibits cytochrome P450 (CYP) 3A4, thereby increasing
the bioavailability of several QT-prolonging medica-
tions. Combined with the fact that HCQ and ritonavir
directly inhibit CYP2D6 and CYP3A4, respectively,
there is a potential for QT prolongation culminating in
torsades de pointes (102).

Finally, rapidly worsening renal function and
electrolyte abnormalities, which are often observed
in patients with severe COVID-19 infection, may
contribute to the genesis or deterioration of cardiac
arrhythmias (103,104).

SPECIFIC ARRHYTHMIAS. Sinus tachycardia is com-
mon in COVID-19 but seems to simply reflect the
acutely ill nature of these patients, rather than a spe-
cific effect on the sinus node. Similarly, bradyar-
rhythmias specific to COVID-19 have not been
described. Our group has seen instances of atrioven-
tricular block but in the setting of acute MI. With re-
gard to “malignant arrhythmias,” there are few
published details. Certainly, for patients with a history
of myocardial scar who subsequently become infected
with SARS-CoV-2, it would not be surprising for
monomorphic ventricular tachycardia to occur sec-
ondary to the hyperadrenergic state of COVID-19. In
the absence of a pre-existing scar, whether any such
ventricular tachyarrhythmias are primary arrhythmic
events amenable to intervention (e.g., antiarrhythmic
medication or defibrillation) or simply terminal events
in the context of severe metabolic/hemodynamic/
hypoxic derangements is unknown (although our
preliminary observations point to the latter). Finally,
although not studied in any detail, we have observed
atrial fibrillation and flutter in COVID-19, sometimes as
a new-onset arrhythmia. The frequency and implica-
tion of atrial fibrillation in the prothrombotic envi-
ronment of COVID-19 remain to be elucidated.

https://clinicaltrials.gov/ct2/show/NCT04381936?term=NCT04381936&amp;draw=2&amp;rank=1


J A C C V O L . 7 6 , N O . 1 7 , 2 0 2 0 Giustino et al.
O C T O B E R 2 7 , 2 0 2 0 : 2 0 1 1 – 2 3 COVID-19: Cardiovascular Disease, Myocardial Injury, and Arrhythmia

2021
PERSPECTIVE

As COVID-19 cases continue to increase, our under-
standing of the cardiovascular manifestations has
evolved. Elderly patients with pre-existing CVD are
particularly susceptible to experiencing severe
COVID-19, type 2 MI, and death. What is less certain is
why younger patients, including those without pre-
viously known CVD, experience type 2 MI with similar
cardiovascular outcomes. Direct viral transmission
and mutations enhancing infectivity certainly
contribute to increased numbers of infected in-
dividuals, but the differentiator between severe dis-
ease and mild or asymptomatic infection likely lies
with each individual’s immune response. Low levels
of innate immunity, characterized by weak interferon
production, coupled with robust cytokine production
(e.g., IL-6, IL-1) lead to viral persistence and systemic
inflammation (105). This is particularly true for
elderly persons, the immunosuppressed, and a few
younger individuals. We speculate that this impaired
innate immune response becomes the missing link
between infection, inflammation, thrombosis, and
myocardial injury.
CONCLUSIONS

The cardiovascular system is broadly injured by
SARS-CoV-2 infection. A summary of the mechanisms
of myocardial injury discussed in the present paper
are broadly summarized in the Central Illustration.
Myocardial injury results in detectable increases in
serum troponin, varying degrees of ventricular
dysfunction, and relatively frequent cardiac arrhyth-
mias. Whether these effects are simply associated
with poor patient outcomes, including death, or
directly contribute to patient mortality is as yet un-
certain. The lingering impact that endothelial acti-
vation, hypercoagulability, microvascular
thrombosis, and myocardial injury will have on long-
term patient functional status and quality of life are
similarly unknown and warrant further research on
longitudinal follow-up studies.
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