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This editorial provides a concise overview of the use and importance of wearables in
the emerging field of digital medicine. We discuss best practices for evaluation of these
technologies and briefly highlight several exciting areas where wearables are enabling
novel insights and have the potential to transform medical care. Finally, for the reader’s
guidance, we give a succinct overview of the papers included in this Special Issue and
place them in the context of the best practice evaluation framework.

The emerging field of digital medicine aims to leverage advances in wearable and mo-
bile technology to have a direct impact on diagnosing, preventing, monitoring, and treating
disease [1]. The digital medicine revolution is at the cusp of transforming biomedical re-
search and clinical practice by providing unprecedented access to ecologically valid health
data and the ability to deliver personalized, data-informed, health-improving interventions
directly to the patient wherever and whenever needed.

In the context of digital medicine, we often think of three primary areas of technical
development: digital biomarkers, digital phenotypes, and digital therapeutics. Digital
biomarkers use data from cutting-edge wearable sensors and mobile phones [2,3] to cap-
ture objective information about a patient’s physiological and/or behavioral status and
potentially over long periods of time outside of research or clinical contexts. These digi-
tal biomarkers can be combined, sometimes using advanced computational approaches
(e.g., via artificial intelligence or machine learning), to discover digital phenotypes of dis-
ease that can improve clinical assessment. Finally, digital therapeutics leverage wearable
and mobile devices to deliver interventions to patients, with cutting-edge examples in-
forming or personalizing those interventions based on a patient’s digital phenotype. In
developing digital biomarkers, phenotypes, and therapeutics, digital medicine research
discovers fundamental physiological processes underlying disease while advancing in-
novative technologies that will transform clinical practice and improve human health.
Importantly, these advances enable the delivery of healthcare at scale, and potentially
in ways that address healthcare disparities arising from accessibility challenges due to
geographic location or socioeconomic status (e.g., [4]).

However, before this vision can be realized, it is critical that digital medicine technolo-
gies undergo rigorous evaluation [1]. Despite this need, validation efforts are fractured,
with recent calls for a structured process for validation that encompasses technical, clinical,
and healthcare-system-level considerations [5,6].

1. Evaluation Framework for Digital Medicine Technologies

A compelling evaluation framework is emerging, through the efforts of the Digital
Medicine Society [7] and others, that aims to identify digital medicine technologies that are
fit for purpose (e.g., see [5,6]). The comprehensive framework incorporates Measurement
Verification, Analytical Validation, Clinical Validation, and Clinical Utility testing to help
foster the development of digital medicine technologies that function as designed and
markedly improve human health. The framework is structured to provide evaluation
at every stage of the development process, starting with verification that sample-level
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sensor outputs meet pre-defined design criteria (Measurement Verification). From there,
Analytical Validation establishes the performance of the algorithms acting to translate the
raw sensor data into measures of human physiology or behavior. The next step is Clinical
Validation, which demonstrates that a digital medicine technology captures the phenotype
of interest in the intended clinical population. Finally, Clinical Utility testing evaluates if
the technology addresses the needs of end users including safety of the technology and
if it leads to improved health outcomes (efficacy) or provides useful information about
the diagnosis, treatment, or prevention of a disease. Importantly, for a digital medicine
tool to be clinically useful, it must also deliver value for a variety of stakeholders across
the healthcare ecosystem so that engagement is maintained and health improvements
can be realized. In the case of wearables, clinical utility includes the convenience and
wearability of devices, as well as the helpfulness and usability of associated apps. Both
devices and apps should be well-designed to deliver value to patients, providers, and other
stakeholders throughout the healthcare system.

2. Overview of Special Issue on Applications of Wearables in Digital Medicine

The articles in this Special Issue have made significant contributions to the field of
digital medicine with findings predominantly in the evaluation areas of Measurement Veri-
fication, Analytical Validation, and Clinical Validation. The papers present new wearable
technologies and algorithms, evaluate new uses of existing consumer technologies, and
begin to examine potential confounding factors when considering wearables data collected
in the wild.

Articles that make contributions in the area of Measurement Verification and Analyti-
cal Validation introduce new wearable sensor technologies and evaluate their suitability
for use in digital medicine. For example, one paper introduces SensorHub [8], which
provides a framework for combining data from consumer-grade wearables to enable mul-
timodal observational studies. Other papers present detailed evaluations of connected
insoles for quantifying mobility impairment outside of the clinic [9] and a wrist wearable
for robust activity recognition and energy expenditure estimation in older adults with
high and low physical function [10]. Three others present the evaluation of technologies
that enable ambulatory electrocardiogram (ECG) monitoring [11–13] for capturing atrial
fibrillation and general arrhythmias, and even with three-lead ECG [13], providing the data
necessary to inform treatment for these conditions. New machine-learning-based methods
are introduced for hydration monitoring [14] from multiple wearable sensing modalities
and estimating continuous blood pressure from photoplethysmography data [15]. Two
additional papers also address challenges inherent to deploying wearables in the wild. One
leverages temperature measurements to provide accurate differentiation between non-wear
time, sleep time, and sedentary wake time [16]. The other demonstrates the importance of
context in interpreting gait variability measures in persons with multiple sclerosis [17].

There is one article in this Special Issue that contributes a Clinical Validation. This
article introduces a new algorithm for characterizing sit–stand transfer performance in
the wild that needs only data from a single inertial sensor secured to the lower back [18].
Importantly, this method is extensively validated in younger and older healthy adults as
well as in people with Parkinson’s disease. The authors also show that measurements taken
in the wild differ from those captured in the lab, three days of data are required to provide
reliable estimates of the performance metrics, and that estimates from the wild show larger
group differences than those taken in lab. This study addresses critical issues impacting
the deployment of wearables for digital medicine and the analysis of the resulting data for
characterizing balance and mobility impairment.

3. Areas of Opportunity for Digital Medicine

Measurement Verification, Analytical Validation, Clinical Validation, and Clinical
Utility testing help drive progress in Digital Medicine, enabling better access to objective
assessment, via the passive measurement of patient behavior and physiology, and person-
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alized care than can be delivered asynchronously and potentially automatically when it
is most needed. We have identified several clinical areas where this approach may have
the most benefit and thus could serve as compelling initial use cases for these approaches,
including: for conditions where symptoms cannot be reported reliably, for episodic condi-
tions, and for conditions with rapidly changing and/or context-dependent symptoms.

Digital medicine technologies and wearables can make a significant impact on condi-
tions wherein symptoms cannot be reported reliably. For example, children under 8 years
old are not able to accurately describe abstract emotions and thus are unable to report
their own mental health problems [19–23], and adults with dementia [24] or psychosis
have an impaired capacity to reliably report on their symptoms [25,26] as a product of
the disease. In these cases, digital medicine technologies can capture objective metrics of
their symptoms and convey that information directly to clinical decision makers. Digital
phenotypes can give voice to those whose symptoms may be unintentionally overlooked
by caregivers and providers, especially when symptoms are unobservable (i.e., feelings
of worthlessness, confusion, and/or voice-hearing). As objective diagnostic markers are
just now emerging in the fields of mental health and neurocognition, digital medicine is
becoming more accessible for informing diagnostic and treatment decisions.

Another critical area where digital medicine can make a significant impact is for
episodic health problems by enabling the objective tracking of episodes and predicting
risk. While individuals with episodic conditions may be able to report their symptoms
and even seek help during the episode, an accurate characterization of these symptoms
is often difficult, and treatment is often necessary immediately or better prescribed as a
preventative measure. For instance, conditions such as experiencing panic attacks [27,28],
mania [29,30], suicidality [31,32], epileptic seizures [33], or atrial fibrillation [11,34] would
all benefit from objective characterization of frequency, severity, and duration to inform
appropriate care. Moreover, while these conditions may feel unpredictable, emerging data
suggests digital markers may indicate elevated risk for an episode. Having even a few
minutes or hours of warning would allow patients and clinical decision makers precious
time to plan for, prevent, and/or intervene on coming episodes.

A third critical area where digital medicine can make a significant impact is for health
conditions with rapidly changing and/or context-dependent symptoms, where symptoms
cannot be captured well in a single clinic visit. In these cases, treatment would benefit from
remotely and continuously characterizing these changes [35–39]. For example, markers of
balance and mobility impairment often differ between clinic and free living environments
and can change rapidly [18,40–42]. Similarly, eating disorders [43] and substance use disor-
ders [44] are often associated with context-dependent triggers that continuously change in
severity and immediate treatment needs. For these populations, digital therapeutics [45]
that help assess and intervene when risk is high may be especially beneficial.

In summary, digital medicine technologies can offer objective assessment based on
digital biomarkers and phenotypes to better identify vulnerable populations and digital
therapeutics that detect when risk is high and offer the appropriate treatment. Deploying
wearables “in the wild” enables these benefits of digital medicine, empowering patients by
providing tools to those who need them, when they need them the most. This Special Issue
provides several excellent examples of new wearable sensor technologies and associated
algorithms well on their way to being fit for use in digital medicine. Future opportunities
exist for further evaluation of these technologies and in clinical areas that would benefit
from objective assessment of symptoms that cannot otherwise be reported reliably, objective
tracking of episodes and predicting risk, and remote patient monitoring for the delivery of
personalized therapeutics when and where they are most needed.
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