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SUMMARY
Recent advances and accomplishments of artificial intelligence (AI) and deep generative models have estab-
lished their usefulness in medicinal applications, especially in drug discovery and development. To correctly
apply AI, the developer and user face questions such as which protocols to consider, which factors to scru-
tinize, and how the deep generative models can integrate the relevant disciplines. This review summarizes
classical and newly developed AI approaches, providing an updated and accessible guide to the broad
computational drug discovery and development community. We introduce deep generative models from
different standpoints and describe the theoretical frameworks for representing chemical and biological
structures and their applications. We discuss the data and technical challenges and highlight future direc-
tions of multimodal deep generative models for accelerating drug discovery.
INTRODUCTION: DEEP GENERATIVE MODELS IN DRUG
DISCOVERY

A recent study estimates that pharmaceutical companies spent

$2.6 billion in 2015 for the development of new, US Food and

Drug Administration-approved drugs, up from $802 million in

2003.1 Although more direct costs are incurred during clinical

trials, since the preclinical investment comes earlier the capital-

ized costs of the two stages are roughly equal. Recent ad-

vances in computational sciences and technologies capture

the requisites and urgencies and provide a set of potentially

promising approaches. Among these, the developers can

select the right artificial intelligence (AI) to target the problem

at hand, in particular deep generative models, appropriate pro-

tocol, and factors. Collectively, they map paths that integrate

biology, chemistry, computational science, pharmacology,

and disease treatments.
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The rapid growth in computing power, amount of data,

and advanced algorithms has led to breakthroughs in AI

for drug discovery,2 especially in the application of deep

generative models.3–5 The models have emerged as high po-

tential tools to transform the design, optimization, and syn-

thesis of small molecules, and macromolecules (Figure 1).

Applications of deep generative models have already deliv-

ered new partially optimized candidate leads, in some cases

in less time typically required by conventional sequential ap-

proaches.6–10 If applied on a large scale, deep generative

modeling has the potential of boosting the development

(R&D) process.

Deep generative models correspond to a theoretical frame-

work for generating novel chemical and biological structures

with desired properties using data structures, such as graphs

and fingerprints, and operations, such as the flow of functional

or experimental information. Creative deep generative models
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Figure 1. AI and deep generative model applications in the drug discovery pipeline

Several successful applications of AI and deep generative models in various stage of the drug development pipeline: (A) AI-assistant target selection and

validation, (B) molecular design, lead optimization, and chemical synthesis, (C) biological evaluation (in vitro and in vivo), clinical development, and post marketing

surveillance, and (D) several successful preclinical and clinical molecules identified by AI and deep generativemodels. DDR1, discoidin domain receptor 1; DDR2,

discoidin domain receptor tyrosine kinase 2; GSK3B, glycogen synthase kinase 3 beta; JNK3, c-Jun N-terminal kinase 3.
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can significantly promote algorithm development and applica-

tion in drug discovery. In this ‘‘big data’’ era, deep generative

models would offer a cutting-edge technology that could

revolutionize an informatics view of biology, disease, and

therapeutics. In this review, we describe classical and state-

of-the-art deep generative models and their applications

(Figure 1) in computational drug discovery and discuss limita-

tions and challenges. Our aim is to provide an overview of cur-

rent tools and techniques (the toolbox) of deep generative

models in multiple applications on small-molecule and macro-

molecular systems.
THE TOOLBOXES FOR DEEP GENERATIVE MODELS

Designing a novel drug is a complex undertaking that needs to

satisfy pre-defined criteria for on-target potency, specificity rela-

tive to off-targets, physical properties, and other chemistry and

biology measures. Traditional methods, which require chemists

to select and validate candidate molecules experimentally from
2 Cell Reports Medicine 3, 100794, December 20, 2022
a vast chemical space, are ineffective. Deep generative models

have become popular because they can automatically generate

new bioactive and synthesizable molecules in a time- and cost-

effective way.
Big biomedical datasets for drug discovery
We begin with a brief overview of several commonly used chem-

ical and bioinformatics databases, which provide both labeled

and unlabeled data to train, validate, and test deep generative

models for the drug discovery community. Pharmaceutical com-

panies have their in-house proprietary collections on the order of

2–3M compounds with associated data from past drug discov-

ery quests. In the public domain, the ZINC database collected

nearly 2 billion purchasable, commercially available, ‘‘drug-

like’’ compounds for in silico screening.11 Its massive sizemakes

it also useful for learning molecular patterns for pre-training

generative models. Bioactive molecules, such as those in the

manually curated ChEMBL database, which approaches 1.5M

of real bioactive molecules with every molecule having at least
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one experimental bioactivity measurement,12 are of particular in-

terest. They can be used for training models to generate mole-

cules with certain properties. The GDB-17 database13 enumer-

ates most organic molecules (166.4 billion) of up to 17 heavy

atoms of C, N, O, S, and halogens. This includes many of the

lower-molecular-weight small-molecule drugs as well as

the smaller typical lead compounds. Ultra-large chemical

databases,14 such as Enamine (https://enamine.net) and

REALdb,15 contain billions of synthesizable compounds identi-

fied by chemoinformatics approaches and expert-system type

rules. These ultra-large databases offer an opportunity to train

models with broadened applicability. In addition to small-mole-

cule resources, several macromolecular databases offer en-

riched data for generative model training in macromolecule

design, such as the PDB.16

Representation of compounds/molecules
The representation of molecules is important for generative

models. There are three types of representations: (1)

sequence based, (2) graph based, and (3) images (Figure 2).

The unprecedented success of natural language processing

(NLP) inspired the idea to describe molecules in symbols in

a way analogous to human language. Semantics and gram-

mars in biological structures bear a resemblance to human

language; hence, molecules can be represented as se-

quences of characters. De novo small-molecule designs

generally use simplified molecular input line entry systems

(SMILES).17 The sequence-based structure is generated by

following the SMILES grammar rules encoded into vectors

(Figure 2A). A more direct method to represent molecules is

graph based.18 In the graph representation, the atoms of a

small molecule form a set of nodes and the bonds are re-

garded as edges (Figure 2B). For macromolecules, a contact

map19 is a graph that denotes the distance between any two

amino acid residue pairs. Training graph-based models on a

large number of nodes is expensive because the space

complexity increases with the square of their number.20

Compared with sequence-based approaches, graph-based

representations are easy to implement as graph convolutional

layers, and bond weights can be optimized in message-pass-

ing networks. Sequence-based representations are in general

compact, memory-efficient, and easily searchable. However,

both sequence-based and graph-based approaches cannot

capture the 3D information of ligands or proteins in biologi-

cally meaningful ligand-protein interactions. The 3D confor-

mation of a molecule captures the relative orientation of

atoms21–24 (Figure 2C). Several latest 3D representations

were presented as well.25–27 DEVELOP incorporate an

existing graph-based deep generative model, De-Linker,

along with a convolutional neural network to utilize 3D repre-

sentations of molecules and target pharmacophores.28

DeepLigBuilder is a graph-based generative model that uti-

lizes 3D structural representation of ligand-receptor interac-

tions for the end-to-end design of chemically and conforma-

tionally valid 3D molecules with drug-likeness properties.29

Traditional image or 3D representation of proteins requires

accurate 3D structural data from cryoelectron microscopy

and crystallography, which is challenging to obtain. Recent
AI approaches, such as AlphaFold2, can provide massive

protein 3D data to address these challenges.30

Recurrent neural networks
Recurrent neural networks (RNNs) are fundamental components

of generative neural networks in processing human language.

They are useful for modeling systems that have a sequential or

time component and have been powerful in NLP automated

computer code generation31 and musical composition.32 The

language of molecules, such as SMILES, is similar to human lan-

guage. Thus, it is natural to use RNNs for generating molecules

based on sequential representation. As depicted in Figure 3A,

SMILES (i.e., ‘‘c1cc . c1’’) can be generated by RNNs in the

following way. RNNs receive the first character ‘‘c’’ and assign

different probabilities to possible next characters: character

‘‘1’’ would receive a high probability and may be sampled as

the next one. ‘‘1’’ is feedback input to RNNs. This process is

repeated until the end token ‘‘\n’’ is generated. Long short-

term memory (LSTM)33 and gated recurrent unit (GRU)34 intro-

duce a gate mechanism to remember valuable input information

for a long series of steps, lacking in traditional RNNs. Whether

LSTM or GRU is preferable may depend on the specific

application. LSTM cell can hold much longer history than GRU.

However, additional parameters in LSTM may increase the risk

of overfitting. RNNs with LSTM or GRU are among the most

promising for the generation of de novo small molecules under

the representation of SMILES.35

Variational autoencoder
An autoencoder (AE) is constructed of two networks: (1) one (the

encoder) is trained tomap the input into a low-dimensional latent

vector, and (2) the other (the decoder) to map the latent vector

into the inputted data. The original AE creates a latent space

by reproducing the input. To avoid overfitting and discontinuities

in the original AE, variational AE (VAE) regularizes the latent

space by replacing latent space points with distributions. In a

pioneering work, VAE was employed for molecule generation,

ushering in a new strategy in de novo drug design.10 As shown

in Figure 3C, the encoder is trained to map the molecules (e.g.,

SMILES) into a low-dimensional latent vector that is assumed

to be sampled from a Gaussian distribution, and the decoder

to map the latent vector into the inputted molecules (e.g.,

SMILES). The latent vectors are constrained to follow a probabil-

ity distribution (usually Gaussian distribution) so that a molecule

is represented as an explicit probability distribution over latent

space. When the encoder and decoder are trained jointly, the

output must reconstruct the training samples’ probability distri-

bution. Recently, learning disentangled representations for

VAE has attracted increasing attention, where the main goal is

to make each latent variable of the latent vector encode an inde-

pendent property or factor of data.36 If disentangled VAE is suc-

cessfully introduced for molecular generation, a molecular prop-

erty can be edited without changing other properties, by editing

the latent variables associated with that property.

Generative adversarial networks
The invention of generative adversarial networks (GANs)37

started a flurry of generative models. Unlike VAE, GANs do not
Cell Reports Medicine 3, 100794, December 20, 2022 3
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Figure 2. A diagram illustrating three molecular representation approaches

Three molecular representation approaches include: (A) one-dimensional (1D) sequence-based representation; (B) graph-based representation; and (C) 3D

representation for both small molecules and macromolecules (i.e., proteins). The value of contact map matrix is 1 if the distance is greater than a predetermined

threshold, otherwise it is 0.
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work with an explicit probability density function (Figure 3D), but

provide an adversarial training framework composed of a gener-

ator and a discriminator. The discriminator trains a classification

model aiming at maximizing the error rate of synthetic molecules

from the generator, which resemble the real data. The generator

and the discriminator are trained together in an adversarial, zero-

sum game, until the discriminator model is fooled, meaning the

generator network is generating plausible (i.e., realistic fake)

molecules.

Flow-based models
VAE and GAN do not explicitly model the real probability density

function. VAE implicitly optimizes the log likelihood of the data by

maximizing a lower bound on a likelihood function, whereasGAN

avoids modeling the distribution but learns in an adversarial way

to measure the difference between ‘‘valid molecules’’ and ‘‘syn-

thetic molecules.’’ Deep flow-basedmodels resolve the intracta-

bility issue of explicit density estimation by leveraging normal-

izing flow.38 A normalizing flow is an invertible deterministic

transformation between the raw data space and latent space

(Figure 3B). For example, a recent method called MoFlow learns

a chain of transformation to map valid molecules to their latent

representations, and the reverse chain of transformation to

map the latent representations to valid molecules.39 One major

limitation for the flow-based models is that they are time

consuming due to the complex hyperparameter tuning pro-

cesses. To take full advantage of the flow-based models, the

molecular graphs must be transformed into continuous data by

incorporating real-value noise into the molecular generation

flow.
4 Cell Reports Medicine 3, 100794, December 20, 2022
Reinforcement learning
Deep RL has emerged as one of the most prominent toolboxes

for optimizing an objective, especially with recent break-

throughs, such as AlphaGo.40 The immensity of the chemical

space is similar to Go’s enormous possible solution space;

hence, RL is a potential method for exploring the chemical

space by a dynamic decision process.41 As depicted in Fig-

ure 3E, RL—consisting of an agent, a reward function, and envi-

ronment—aims to optimize toward a user-directed target. The

agent chooses the next action, and the reward function evalu-

ates the quality of the actions according to the environment

(domain-specific rules) and provides feedback to the agent. Af-

ter the generative model is trained on a large and general set of

molecules to learn the SMILES grammar, RL can be applied as a

technique for fine-tuning of target properties, such as synthetic

accessibility42 and quantitative estimate of druglikeness,43

which assesses physical properties. For example, policy

gradient for forward synthesis (PGFS) (more below) was pro-

posed to generate synthetically accessible molecules using

RL.44 For this, (1) the agent is a neural network; (2) the policy ac-

tions are chemical transformations executed by modifying a

molecule by adding or removing atoms and bonds; and (3) the

reward is synthetic accessibility.44

APPLICATIONS IN SMALL-MOLECULE DRUG DESIGN

Conventional exploration, such as virtual screening,45,46 needs

to navigate a vast chemical space, posing time and cost chal-

lenges. De novo design, a technique of automatically generating

molecules with desired properties from scratch, has benefitted
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Figure 3. A diagram illustrating the theory framework of five deep generative models (A–E) in the drug discovery applications

RNN, recurrent neural networks; VAE, variational autoencoder; GAN, generative adversarial networks; RL, reinforcement learning.
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from advances in deep generative models.47 Here, we describe

their applications toward various design purposes.

Generating valid small molecules
As deep generative models for de novo small-molecule design

were emerging, research initially focused on how to generate

molecules with high validity, with a particular emphasis on the

grammar and semantics of small molecules. In 2016, Gómez-

Bombarelli et al. pioneered a data-driven method that generates

molecules by mapping discrete high-dimensional chemical

space to and from continuous latent space.10 Themodel showed
that training VAE jointly with a molecular property prediction task

and optimizing via a Gaussian process were promising. This

paradigm promoted the development of de novo small-molecule

design, even if the output included invalid molecules. Subse-

quently, inspired by the compiler theory where the syntax and

semantics check is done via syntax-directed translation (SDT),

Dai et al. incorporated SDT into VAE for constraining the

decoder.48 The proposed model (SD-VAE) can generate both

syntactically and semantically valid molecules.48

Previous works achieved high validity by incorporating extra

constraints. Inspired by fragment-based drug discovery, Jin
Cell Reports Medicine 3, 100794, December 20, 2022 5
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et al. proposed junction tree variational encoder (JT-VAE).49 JT-

VAE considers chemically valid substructures, such as aromatic

rings as nodes in the graph structure. A molecular graph assem-

bled by these nodes can maintain chemical validity without im-

plementing additional chemical rules. JT-VAE reached 100%

validity due to obeying the ground truth in chemistry by gener-

ating bioactive molecules from fragments. A new AE, the Was-

serstein autoencoder character (cWAE),50 incorporates adversa-

rial training and has shown improved model accuracy. When

applied to molecular design and trained on 1.6 billion com-

pounds, compared with JT-VAE, cWAE produces an accurate

generativemodel (the compound reconstruction error is reduced

by over 80%).51 MoFlow39 generates amolecular graph in a one-

shot manner that generates bonds and atoms by a flow-based

model and then assembles them into amolecular graph. Instead,

MolGrow52 generates a molecular graph in an iterative manner,

termed a hierarchical normalizing flow model via generating mo-

lecular graphs from a single-node graph by recursively splitting

every node into two. Experimental results show that both Mo-

Flow and MolGrow can generate 100% valid molecules.

Generating molecules with drug-like properties
With the gradualmaturity of generativemodels, molecular gener-

ative models have been aiming to find molecules with specific

properties, not only focusing on their validity. Drug-like proper-

ties, such as biological activity and synthetic accessibility, are

critical for the success of drug candidates. In 2020, a molecular

GAN model53 conditioned on gene expression signatures was

shown to generate molecules with a high probability to induce

a desired transcriptomic profile.

Generative tensorial reinforcement learning (GENTRL)54 was

designed to generate novel molecules that can inhibit DDR1 (dis-

coidin domain receptor 1) by designing a reward function. The

generated molecules were evaluated using in vitro and in vivo

mouse assays to verify the binding affinity on DDR1 and the pre-

clinical and pharmacokinetic properties. With a time frame of

46 days from target selection to partially validated molecule,

GENTRL validated a promising outlook for accelerating drug dis-

covery (Figure 1D). Notably, GENTRL leveraged a set of relevant

information which is frequently available, such as crystal struc-

ture data and information related to active compounds. This

model is not generalizable to cases where target-specific activity

data are unavailable, and a model requiring less information

could be more practical in such cases.

PGFS44 was designed to generate molecules that can be

feasibly synthesized. PGFS treats the molecular generation

problem as a sequential decision process of selecting reactant

molecules and reaction transformation in a linear synthetic

sequence, where the choice of reactants is considered an action

and synthetic accessibility a reward. PGFS has been validated in

an in-silico proof-of-concept associatedwith three HIV targets.44

Generating molecules with multi-objective drug-like
properties
Generative models for de novo molecular generation are able to

design molecules with multiple design constraints such as po-

tency, safety, and desired metabolic profile. Molecules with

such constraints will better meet the requirements of drug dis-
6 Cell Reports Medicine 3, 100794, December 20, 2022
covery. RationaleRL55 trained a graph-based RL model to com-

plete a pre-selected molecular subgraph into an integral mole-

cule with several desired co-existing properties, such as

bioactivities towardmultiple targets (e.g., GSK3b and JNK3; Fig-

ure 1D), quantitative estimate of drug-likeness, and synthetic

accessibility. As part of multi-objective optimization, the predic-

tiveness to drug-likeness has been significantly improved by

combining individual classifiers and calculating their Bayesian

errors. The difficulty lies in how to define and characterize non-

drug-like molecules.56

Generating better bioavailable molecules with
optimization
Molecular optimization aims toward desired properties for a

given starting molecule. This process is analogous to image-

to-image translation (e.g., turn horses into zebras) in computer

vision or style transfer in NLP. Jin et al. presented an optimization

method inspired by style transfer.57 Molecular optimization can

be formulated as graph-to-graph translation via converting one

molecular graph to another with better properties using the

paired training sets.

Inspired by the image-to-image translation approach that

CycleGAN58 learned to translate an image from a source domain

X to a target domain Y in the absence of paired examples, Mol-

CycleGAN59 was proposed and trained on two datasets with and

without a desired property. The training framework consists of

two GANs forming a cycle: (1) the first GAN is used to generate

molecules with the desired property when the input is not equip-

ped with the target property, and (2) the second network has the

opposite input/output order. The objective of the model is to

minimize the distance between the original molecules and the

generated molecules of the second network.

Capturing 3D information of ligand-protein interactions
In an attempt to bring 3D protein structure information directly

into generative molecule creation rather than by post-generation

docking, a high-quality target family sequence alignment was

leveraged to identify binding site residues across the kinase fam-

ily and train 1D string representation of the PaccMann model.60

The quantitative structure-activity relationship (QSAR) model

built with this reduced dataset outperformed the QSAR model

built with the conventional full-sequence approach, and the mol-

ecules created with the generative model were likewise encour-

aging in terms of their similarity to validated kinase inhibitors.61

APPLICATIONS IN MACROMOLECULAR DRUG DESIGN

In addition to designing small molecules, the application of AI

has been extended to the design of medicinal macromolecules,

such as designing antimicrobial peptides (AMPs), therapeutic

proteins, and CRISPR-Cas9 systems design and optimization,

as detailed below.

AMP generation
The emergence of antibiotic-resistant bacteria led to nearly 1

million deaths worldwide each year from bacterial infections

that cannot be treatedwith ordinary antibiotics.62 AMPs increase

the repertoire and deep generative models are a promising way
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of designing them. Das et al. augmented a variant of VAE (Was-

serstein Autoencoder)63 with molecular dynamics information to

generate AMPswith broad-spectrum potency and low toxicity.64

For a controlled sequence generation, linear binary classifiers

conditional latent (attribute) space sampling (CLaSS) for attribute

prediction was trained on the latent space, and then rejected

sampling was utilized for screening the molecules of interest.

CLaSS can be trained for binary classification of antimicrobial

function, broad-spectrum efficacy, presence of secondary

structures, and toxicity at the same time. Within 48 days, two

new antimicrobial peptides with high potency against Gram+

and Gram� bacteria were synthesized and tested in vitro and

in mice. Both resulted in low resistance in Escherichia coli and

low toxicity. Another example of antibiotic discovery emerged

from combining the message-passing approach and experi-

mental assays to predict the growth inhibition of E. coli followed

by screening an existing compound library to identify molecules

with antimicrobial activity and different structures from known

antibiotics.9 In the message-passing approach, the processors

execute a task independently and communicate data between

them by exchanging messages.

Therapeutic protein generation
De novo protein design plays important roles in protein thera-

pies. For instance, a de novo design strategy was proposed to

produce rapidly and accurately decoy proteins by replicating

the protein interface of human angiotensin I-converting enzyme

2 (hACE2) for a potential treatment of coronavirus disease

2019 (COVID-19).65 Deep generative models can also be used

to design protein therapies by modeling the spatial properties

of the amino acid sequence. ProteinGAN,66 which incorporated

a self-attention mechanism into GAN and learned the evolu-

tionary relationships of protein sequences, was a generalizable

framework to generate protein sequences with specific func-

tions. About 24% of the generated sequences were soluble

and showed activity comparable with the wild types, including

some highly mutated sequences. The generated sequences

include 119 novel structural sequence motifs, not present in

the training dataset, showcasing de novo generation of func-

tional proteins for therapeutic development.

CRISPR-Cas9 systems design and optimization
The CRISPR-Cas9 system, consisting of a Cas9 nuclease and a

guide RNA (gRNA), is a technology for genome editing and a tool

to identify targets in drug discovery (Figure 1A). Based on the

principle of complementary base pairing, gRNA guides Cas pro-

tein localization to the genome and CRISPR KO (knockout).

CRISPRi (interference) and CRISPRa (activation) technologies

then determine whether the candidate genes are the key to dis-

ease and thus a therapeutic target. The selection of gRNA se-

quences affects knockout efficacy and is essential for target

identification. Recent studies have demonstrated the power of

deep learning algorithms, such as CNNs and RNNs, to design

and optimize CRISPR-Cas9 systems. Recently, Chuai et al. pro-

posed a design tool called DeepCRISPR for gRNA with high

sensitivity and specificity, which adopts a combination of unsu-

pervised and supervised CNNs to learn the representations of

gRNAs.67 DeepCRISPR can predict on-target knockout efficacy
and off-target profile in the same framework. In addition, it auto-

matically detects important features of optimized gRNAs to pro-

mote effective CRISPR design. SpCas9 genome editing tools68

can address the off-target issue. A DeepHF model, which com-

bined RNNs with the secondary structure, GC content, and ther-

modynamics features was developed, but could not be automat-

ically obtained by RNNs.69 Although deep learning models have

conveniently facilitated CRISPR-Cas9 systems design, these

data-driven approaches are subject to the problems of data het-

erogeneity, sparsity, and imbalance.67 CRISPR-Cas9 systems

design can be further optimized using advanced algorithms

with higher-quality data.

OUTSTANDING QUESTIONS, PERSPECTIVE, AND
FUTURE DIRECTION

Despite the enthusiasm for AI-enabled drug discovery, ques-

tions and challenges abound. For decades, translational science

has been facing the challenge of how to translate research find-

ings into a novel, more effective medicine.70 In fact, the ‘‘ultimate

goal of the translational challenge is to eliminate the Valley of

Death, through scientific understanding and innovation.’’71

Most machine learning models in the drug discovery pipeline

require large volumes of data for training and validation, particu-

larly deep learning models.72 The lack of adequate quality and

robust data-sharing practices remain critical barriers for ma-

chine learning models to positively impact drug discovery.73

Inadequate data quality can lead to models that have poor

generalizability. Data harmonization, which improves the data

quality and utilization via domain knowledge and machine

learning techniques, plays a crucial role in the development

and application of drug discovery.74 Here, we briefly discuss

several challenges and potential future directions as follows.

Interpretable generative models
While generative models and other deep learning-based ap-

proaches offer great potential, they are often essentially ‘‘black

boxes’’ that require objective algorithmic interpretation of the

predictions to provide confidence and actionability. Drug discov-

ery is a highly complex process involving interactions between

compounds and targets and interconnected biological systems.

Current deep generative models are limited to capturing shallow

statistical correlations of the data, which cannot explain mecha-

nisms and results, possibly misleading decisions. Thus, model

users must understand how the algorithms are constructed,

which data they rely on, and to what extent the models are reli-

able. It is also important for AI scientists to involve biologists

and clinicians in experimental design and data interpretation.

Models should be made interpretable.75 One way is to perturb

the input or parameters in themodel and observe how the results

change. For example, controllable molecular generation can be

achieved by disentanglement, which decomposes the latent

space into interpretable and independent factors that corre-

spond to each property,76 such as bioactivity and synthesizabil-

ity. In this way, molecules with desired properties can be gener-

ated. Another solution can be displaying more semantic

information from the algorithm to explain the causality of the re-

sults. The reasoning of relationships between molecular
Cell Reports Medicine 3, 100794, December 20, 2022 7
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structures and drug-like properties may guide the construction

of causal graphs followed by molecule generation. Models can

also be made transparent. Algorithms rationalize their prediction

processes in a way that a human can understand. A hierarchical

generative model may better trace each step back to previous

levels, allowing for human-computer interaction to achieve tar-

geted optimization.77

Few-shot generative models
Current AI techniques rely on learning from large amounts of

data. However, the available data are often quantitatively imbal-

anced due to, e.g., privacy, security, ethics,78 or a small number

of patients suffering from rare diseases, leading to little clinical

data about the toxicity and poor bioactivity. Such situations

could be alleviated by machines that learn from few samples.

Combined with past knowledge, they can achieve good perfor-

mance. Here, we highlight strategies to address insufficient data.

Starting from the source is the intuitive way to solve problems.

Increasing the sample size can be achieved through data

augmentation. Some approaches change the starting atom

and the branching order in SMILES to enrich the data, taking

advantage of the non-uniqueness of SMILES sequences for a

structure.79 Graph-based data can be varied by adding or

removing edges using appropriate strategies,80 such as 3D con-

formations.81 This can be compounded by information at

different granularity (e.g., atomic, pharmacophore, and toxico-

phore levels).

Insufficient training data of specific targets is inevitable in de

novo molecular generation, especially for peptide or protein

design. Transfer learning aims to transfer knowledge learned

from one domain to a target domain related to the source

domain, as solving data scarcity of the target domain.82 Transfer

learning drives molecule generation toward desired properties

commonly in a fine-tuning manner from a pre-trained model.83

The parameters obtained from the pre-trained model serve as

the initialization of the specific task.

If no bioactive molecules are available, zero-shot learning,

where a model can learn to recognize effects, or conditions,

that were not observed, can be employed. Zero-shot learning re-

quires more knowledge and alleviates the dependence on data.

In rare diseases or orphan targets, learning compound-target in-

teractions from big datasets, such as ChEMBL,12 and designing

molecules through disease-related targets instead of fitting mo-

lecular distributions, builds on ‘‘understanding the drug-target

interactions.’’

Considering that AlphaFold has uncovered 98.5% of human

protein structures,84 the target-based molecule generation can

be converted into a classical image captioning problem. For

example, image is the distance map (or 3D image) for a protein

and captioning is the molecular SMILES code to be generated.

In this configuration, target-based molecule generation can

generally be handled with pipelines composed of a target visual

encoder and a language model for SMILES generation.

Multimodal generative models
The promise of successful drug discovery lies in the diversity of

multiple data modalities that offer complementary perspectives

and enable triangulating the evidence for discovery.85 Deep
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generative models using multimodal data may have significant

advantages over unimodal counterparts since the multimodal

data contain complementary insights.77 Current studies usually

focus on the molecular structural data, and do not fully use other

data modalities, such as drug-target interactions, drug-disease

knowledge, and relevant gene expression in specific cells

following drug treatment (Figure 4A). Therefore, how to make

full use of diverse and heterogeneous biological data is a matter

worth discussing. There are multiple possible solutions to this

challenge. First is ‘‘modality alignment,’’ which means connect-

ing all modalities with an intermediate modality. Because estab-

lishing relationships with molecular structures is easier, the

structure modality is chosen as the intermediary to other modal-

ities, such as drug-induced gene expression. We then connect

the structure modality with other modalities and finally align all

modalities in the middle space. ‘‘Modality fusion,’’ which drops

the median modality converter, is another possibility. All modal-

ities are directly mapped to a common latent space and

indicated by a hybrid representation (Figure 4A). Different modal-

ities describing the same molecules should be closer in the mo-

dality-shared space, while the samemodalities reflecting diverse

molecules should be farther apart.

The above discussion is based on training data with sufficient

and complete modalities, but the reality often does not satisfy

such assumptions. To further exploit these partial data, we

need to consider how to complement the missing modality.

One possible way is to generate synthetic modalities through es-

tablished relationships between modalities covering biological

activities and pharmacokinetics and pharmacodynamics prop-

erties of molecules (Figure 4B). There is an urgent need to seek

ways to integrate multimodal information that can generate mol-

ecules meaningfully to speed up the process of drug discovery.

Generative models from data consumer to data
producer
Unprecedented provision of data is pivotal to boosting data-

driven drug discovery, in addition to the emergence of deep-

learning algorithms and advances in high-performance compu-

tations based on the graphics processing unit. Pharmaceutical

companies possess vast amounts of labeled data associated

with their �2–3M proprietary molecules and generated from

the assays routinely run to support lead optimization. In addition,

unlabeled data can be used for training as can computationally

generated data such as from docking or molecular dynamics

trajectories.86

The quantity of high-quality data87 alone does not guarantee

actionable decisions in drug discovery.88 For example,

leveraging a deep learning algorithm, AlphaFold predicts the

3D structure of proteins from their amino acid sequences and

multi-sequence alignments with superior performance.30 Yet

critical details of the sites of molecular recognition, the active

site for ligand binding or quaternary structure for protein-protein

interaction, both vital for structure-based therapeutics design,

remain unresolved. The affinity of the drug to the protein versus

that of the substrate (or cofactor) determines its effectiveness.

Yet, thermodynamic and dynamic properties are even farther

from being routinely deployed in deep-learning models for drug

design, despite their recognized importance. Free energy
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Figure 4. A proposed multimodal generative model in the drug discovery applications

(A) A hybrid data model can fully capture diverse information during drug design, including chemical, drug-target interactions, drug-disease knowledge, and

disease-relevant expression of target (protein/gene).

(B) A multimodal generative model can consider various drug discovery pipeline components to increase likelihood of success of clinical trials. ADME-Tox,

absorption, distribution, metabolism, and excretion-toxicity; IC50, half-maximal inhibitory concentration.
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calculations are frequently applied in lead optimization with a

manageable size (>�100 s) of molecules, and, recently, pro-

tein-ligand binding kinetics have attracted attention in medicinal

chemistry. However, the protein-ligand binding/unbinding dy-

namics is impractical to observe even in a long trajectory

(�ms) from conventional molecular dynamics due to transition

states separated by high energy barriers, thus locking the sys-
tem in configuration around its initial state, lacking conforma-

tional sampling.89

In this regard, a considerable effort employing deep-learning

methods has been focused on enhanced samplings for extract-

ing the free energy surface and kinetics, computing thermody-

namics variables, constructing coarse-grained models, and

generative modeling for molecular structure sampling.90 For
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example, a VAE-based generative network was employed to

learn low-dimensional, non-linear embeddings by reconstruct-

ing time-lagged conformations, revealing the slow dynamics

from the stochastic protein motions.91 With a modified VAE in

another example, weighted reaction coordinates optimized by

maximizing a predictive information bottleneck framework can

efficiently guide a biased simulation for capturing rare events in

a short trajectory as well as calculating free energy and

kinetics.92

Generative networks combined with molecular simulations

solidly rooted in physics, could provide not only meaningful in-

sights but also an invaluable framework for producing statisti-

cally reliable protein dynamics data for drug discovery,

including COVID-19.93 Still, in its infancy, it poses open ques-

tions, including some related to applications of generative

modeling, e.g., accurate and efficient force field parameteriza-

tion, enhanced sampling for kinetic modeling, and scalable

generative modeling for a biological system. While current

drug discovery is primarily devoted to small-molecule systems

due to the data of proteins is severely limited, once the protein

conformational dynamics data become more feasible, drug

design would be driven toward enhanced safety and

effectivity.
Conclusions and outlook
Drug discovery platforms are becoming increasingly industrial-

ized with the ability to both consume and generate big data using

AI to drive new molecule design.94 Ageing,95,96 Alzheimer’s

disease,97,98 COVID-19,6,65,93 antimicrobial resistance,9 and de-

velopments assisting the diagnosis and therapeutics of the

COVID-19 pandemic6,99–101 provide examples. These suc-

cesses encourage us to embrace the challenges in further opti-

mization and validation of AI approaches inmedical applications.

Increased enterprise architecture and infrastructure, including

exascale computing,102 quantum computers,103,104 hardware,

and connectivity, are a priority in drug discovery data strategies

in industries, academia, and governments. Strong data steward-

ship practices enable the realization of interoperability and

adherence to standards. Three rules have been highly

recommended:

1. Data stewardship must ensure that data ownership rights

(which lays the groundwork for data-sharing models) are

operationalized and considered for data acquisition, use,

and distribution practices.

2. Representative data (including diverse chemical and

target coverage) is critical to ensuring the absence of

data biases to allow deep learning models to cover a

wide range of applications.

3. Big data’s volume, variety, velocity, and veracity (4Vs)

require automated and rigorous data harmonization and

validation.

Data harmonization and validation from diverse biological

endpoints and different assays can ensure data quality

(completeness, consistency, integrity, fairness, and transpar-

ency) and data accuracy. In addition, advanced data-sharing

and model-learning strategies, such as swarm learning105,106
10 Cell Reports Medicine 3, 100794, December 20, 2022
and federated learning,74,107,108 will accelerate data sharing

among industries, academics, governments, and health care

systems for drug development. For example, a recent platform

called collaborative Profile-QSAR74 developed collaborative

models from previously reported biological assays to broaden

the domain of applicability without sharing any of the training

data, offering a way to address data scarcity.

In summary, recent advances triggered by the rapidly growing

deep generative molecular design have brought newmomentum

for drug discovery, including the production and optimization of

small molecules andmacromolecules. However, the bottlenecks

of AI technologies, such as lack of or limited interpretability of the

model, inaccessibility, and lack of availability of high-quality

data, currently restrict their application and affect their perfor-

mance. There is a critical need to further develop and evaluate

intelligent generative models in realistic real-world drug discov-

ery contexts in order for deep learning to reach its full potential.

Under such developments, the intelligent generative model par-

adigms will have the potential to transform from theoretical

research to practical generation of therapeutics and provide

easy-to-use toolkits for chemists and chemistry modelers in their

daily work.
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22. Wójcikowski, M., Kukie1ka, M., Stepniewska-Dziubinska, M.M., and

Siedlecki, P. (2019). Development of a protein–ligand extended connec-

tivity (PLEC) fingerprint and its application for binding affinity predictions.

Bioinformatics 35, 1334–1341.
23. Mahmoud, A.H., Masters, M.R., Yang, Y., and Lill, M.A. (2020). Eluci-

dating the multiple roles of hydration for accurate protein-ligand binding

prediction via deep learning. Commun. Chem. 3, 19.

24. Jones, D., Kim, H., Zhang, X., Zemla, A., Stevenson, G., Bennett, W.F.D.,

Kirshner, D., Wong, S.E., Lightstone, F.C., and Allen, J.E. (2021).

Improved protein–ligand binding affinity prediction with structure-based

deep fusion inference. J. Chem. Inf. Model. 61, 1583–1592.

25. Xu, M.,Wang,W., Luo, S., Shi, C., Bengio, Y., Gomez-Bombarelli, R., and

Tang, J. (2021). An end-to-end framework for molecular conformation

generation via bilevel programming. In International Conference on Ma-

chine Learning (PMLR), pp. 11537–11547.

26. Shi, C., Luo, S., Xu, M., and Tang, J. (2021). Learning gradient fields for

molecular conformation generation. In International Conference on Ma-

chine Learning (PMLR), pp. 9558–9568.
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M., Späth, J., Baumbach, J., and Pauling, J.K. (2021). Lessons from the

COVID-19 pandemic for advancing computational drug repurposing

strategies. Nat. Comput. Sci. 1, 33–41.

102. Nussinov, R., Jang, H., Nir, G., Tsai, C.J., and Cheng, F. (2021). A new

precision medicine initiative at the dawn of exascale computing. Signal

Transduct. Target. Ther. 6, 3.

103. Abbott, A. (2021). Quantum computers to explore precision oncology.

Nat. Biotechnol. 39, 1324–1325.

104. Satzinger, K.J., Liu, Y.J., Smith, A., Knapp, C., Newman, M., Jones, C.,

Chen, Z., Quintana, C., Mi, X., Dunsworth, A., et al. (2021). Realizing to-

pologically ordered states on a quantum processor. Science 374,

1237–1241.

105. Warnat-Herresthal, S., Schultze, H., Shastry, K.L., Manamohan, S., Mu-

kherjee, S., Garg, V., Sarveswara, R., Händler, K., Pickkers, P., Aziz, N.A.,
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