
ORIGINAL RESEARCH
published: 21 July 2020

doi: 10.3389/fonc.2020.01196

Frontiers in Oncology | www.frontiersin.org 1 July 2020 | Volume 10 | Article 1196

Edited by:

Bo Gao,

Affiliated Hospital of Guizhou Medical

University, China

Reviewed by:

William Ian Duncombe Rae,

University of Sydney, Australia

Qijun Shen,

Hangzhou First People’s

Hospital, China

*Correspondence:

Shenghong Ju

jsh0836@hotmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 02 April 2020

Accepted: 12 June 2020

Published: 21 July 2020

Citation:

Meng X-P, Wang Y-C, Ju S, Lu C-Q,

Zhong B-Y, Ni C-F, Zhang Q, Yu Q,

Xu J, Ji J, Zhang X-M, Tang T-Y,

Yang G and Zhao Z (2020) Radiomics

Analysis on Multiphase

Contrast-Enhanced CT: A Survival

Prediction Tool in Patients With

Hepatocellular Carcinoma Undergoing

Transarterial Chemoembolization.

Front. Oncol. 10:1196.

doi: 10.3389/fonc.2020.01196

Radiomics Analysis on Multiphase
Contrast-Enhanced CT: A Survival
Prediction Tool in Patients With
Hepatocellular Carcinoma
Undergoing Transarterial
Chemoembolization
Xiang-Pan Meng 1†, Yuan-Cheng Wang 1†, Shenghong Ju 1*, Chun-Qiang Lu 1,

Bin-Yan Zhong 2, Cai-Fang Ni 2, Qi Zhang 1, Qian Yu 1, Jian Xu 3, JianSong Ji 4,

Xiu-Ming Zhang 5, Tian-Yu Tang 1, Guanyu Yang 6 and Ziteng Zhao 6

1 Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School

of Southeast University, Nanjing, China, 2Department of Interventional Radiology, The First Affiliated Hospital of Soochow

University, Suzhou, China, 3Department of Interventional Radiology, Jinling Hospital, Medical School of Nanjing University,

Nanjing, China, 4Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang

Lishui, Lishui, China, 5Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of

Jiangsu Province, Nanjing, China, 6 LIST, Key Laboratory of Computer Network and Information Integration, Southeast

University, Ministry of Education, Nanjing, China

Patients with HCC receiving TACE have various clinical outcomes. Several prognostic

models have been proposed to predict clinical outcomes for patients with hepatocellular

carcinomas (HCC) undergoing transarterial chemoembolization (TACE), but establishing

an accurate prognostic model remains necessary. We aimed to develop a radiomics

signature from pretreatment CT to establish a combined radiomics-clinic (CRC) model

to predict survival for these patients. We compared this CRC model to the existing

prognostic models in predicting patient survival. This retrospective study included

multicenter data from 162 treatment-naïve patients with unresectable HCC undergoing

TACE as an initial treatment from January 2007 and March 2017. We randomly allocated

patients to a training cohort (n = 108) and a testing cohort (n = 54). Radiomics

features were extracted from intra- and peritumoral regions on both the arterial phase

and portal venous phase CT images. A radiomics signature (Rad-signature) for survival

was constructed using the least absolute shrinkage and selection operator method

in the training cohort. We used univariate and multivariate Cox regressions to identify

associations between the Rad- signature and clinical factors of survival. From these, a

CRC model was developed, validated, and further compared with previously published

prognostic models including four-and-seven criteria, six-and-twelve score, hepatoma

arterial-embolization prognostic scores, and albumin-bilirubin grade. The CRC model

incorporated two variables: The Rad-signature (composed of features extracted from

intra- and peritumoral regions on the arterial phase and portal venous phase) and

tumor number. The CRC model performed better than the other seven well-recognized

prognostic models, with concordance indices of 0.73 [95% confidence interval (CI)
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0.68–0.79] and 0.70 [95% CI 0.62–0.82] in the training and testing cohorts, respectively.

Among the seven models tested, the six-and-12 score and four-and-seven criteria

performed better than the other models, with C-indices of 0.64 [95% CI 0.58–0.70] and

0.65 [95% CI 0.55–0.75] in the testing cohort, respectively. The CT radiomics signature

represents an independent biomarker of survival in patients with HCC undergoing TACE,

and the CRC model displayed improved predictive performance.

Keywords: hepatocellular carcinomas, image processing (computer-assisted), radiomics, transarterial

chemoembolization, biomarkers

INTRODUCTION

Several treatment guidelines recognize that transarterial
chemoembolization (TACE) brings significant survival benefit
over supportive care in patients first diagnosed with Barcelona
Clinic Liver Cancer (BCLC) stage B hepatocellular carcinomas
(HCC) (1–3). Despite receiving similar treatment, these patients
experienced substantial survival heterogeneity after TACE (2),
rendering the building of risk stratification algorithms essential.
Several existing prognostic models, including the four-and-
seven criteria, six-and-12 score, hepatoma arterial-embolization
prognostic (HAP) scores, and albumin-bilirubin grade, have been
proposed to predict clinical outcome after TACE (4–7). Some
of cohort studies also indicated there is space for prognostic
accuracy improvement (8, 9). Developing biomarkers from
routinely collected data into an improved prognostic model will
help identify optimal candidates for TACE.

Computed tomography (CT) imaging has a fundamental
role in the diagnosis, staging, treatment guidance, and response
monitoring in HCC (10). Indeed, CT images of HCC also
provide quantifiable and non-invasive imaging biomarkers for
prognostics, including comprehensive information on the shape,
intensity, and enhancement of the entire tumor (11, 12).
According to the modified Response Evaluation Criteria in Solid
Tumors (mRECIST) criteria or the European Association for
the Study of the Liver (EASL) criteria (3, 13), axial tumor
size was routinely used to categorize tumor response. However,
this measurement is subject to interobserver variability and
inherently inexact compared to assessing 3D tumor volume (14,
15). While a few reports have proposed qualitative imaging traits
(“tumor capsule” or “internal arteries”) as potential predictors,
these remain highly dependent on radiologists’ experience (16,
17). Thus, a novel and precise method of comprehensively
quantifying the pretreatment CT information is urgently needed
to identify non-invasive biomarkers.

Radiomics, an emerging approach that converts medical
images into high-dimensional quantifiable data, has exhibited
increasing prognostic power by capturing distinct phenotypic
differences of tumors (18). A few studies reported that texture
analysis on arterial phase CT imaging predicted therapeutic

Abbreviations: CI, confidence interval; C-index, Concordance index; CRC,

combined radiomics-clinic; CT, computed tomography; HAP, hepatoma arterial-

embolization prognostic; HCC, hepatocellular carcinoma; LASSO, the least

absolute shrinkage and selection; OS, overall survival; Rad-signature, radiomics

signature; TACE, transarterial chemoembolization; VOI, volume of interest.

response and survival in patients with HCC after TACE (19, 20).
However, applying radiomics on multiphasic contrast-enhanced
CT imaging to predict survival after TACE is rarely investigated.
Some studies demonstrated that analyzing the texture of both
the intratumoral plus peritumoral regions provided superior
prognosis prediction for patients with HCC compared to the
intratumoral region alone (21, 22). Therefore, we hypothesized
that a radiomics pattern from peritumoral regions might be
valuable for prognosis prediction.

Therefore, this study aimed to improve the current survival
prediction models for patients with HCC through the following:
(1) building a radiomics signature integrating both intratumoral
and peritumoral CT radiomics patterns; (2) developing and
validating a combined radiomics-clinic (CRC) model; (3) and
comparing the ability of the CRC model and existing prognostic
models to predict survival.

MATERIALS AND METHODS

Patients and Study Design
This study was approved by the Institutional Review Board and
the need to obtain informed consent was waived because of the
retrospective nature of the study.

We retrospectively identified 911 consecutive patients with
HCC who underwent TACE between January 2007 and March
2017 as the first-line therapy at five centers in China. HCC was
diagnosed histologically or by CT image evaluation, according
to the European Association for the Study of the Liver or
American Association for the Study of Liver Diseases criteria.
The inclusion criteria included: (1) patients with HCC receiving
TACE as initial treatment who had (2) complete clinical data.
Patients were excluded based on the following criteria: (1)
Missing or inadequate baseline contrast-enhanced CT imaging
within 6 weeks before treatment initiation (n = 617); (2)
Infiltrative disease (n = 7); (3) Eastern Cooperative Oncology
Group (ECOG) performance status score > 0 (n = 17); (4)
Child-Pugh classification C or D (n = 8); (5) Presence of
macrovascular invasion or extrahepatic metastasis (n = 166).
Notably, criteria 3–5 excluded BCLC stage C patients, for which
TACE is much less effective (2). Finally, we included the patients
at BCLC stage B (n = 154) and BCLC stage A (n = 8) carefully
defined as unresectable due to tumor location or patient status.
For independent validation, we allocated patients who first
underwent TACE beforeMay 2014 to a training cohort (n= 108),
and subsequent patients were allocated to a testing cohort (n =
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54). Similar to previous study (5), we did not split data by center
(external validation) (23).

TACE Procedure
TACE was administered using mixtures of lipiodol and
chemotherapeutic drugs (pirarubicin, cisplatin, or epirubicin
were selected according to the practice of each center), followed
by embolization using a gelatin sponge. Either selective or
super-selective embolization of the tumor-feeding vessels was
performed whenever technically reasonable (24). The dose of
lipiodol and chemotherapeutic drugs was based on tumor
burden and patients’ characteristics. Investigators with at least
8 years of experience performed all procedures. When no
vital tumor tissue was observed on contrast-enhanced CT or
magnetic resonance imaging (MRI) 4–6 weeks after initial
TACE treatment, TACE was discontinued. “On-demand” TACE
procedures were repeated at an interval of 6–12 weeks in patients
with viable tumors or intrahepatic recurrences observed by
contrast-enhanced CT/MRI but without extrahepatic spread or
deterioration in clinical status (25).

Image Acquisition Parameters
All patients underwent multiphasic contrast-enhanced
abdominal CT scan using one of the following systems: Discovery
CT750 HD (GE Medical System), LightSpeed VCT (GE Medical
System), iCT 128 (Philips), iCT 256 (Philips), Mx8000 (Philips),
Sensation 64 CT (Siemens), Somatom Definition (Siemens),
or Toshiba (Aquilion). Scanning parameters are as follows:
120–140 kVp; 150–190 mAs; field of view, 350 × 350mm;
matrix, 512 × 512. Table S1 details the parameters of slice
thickness and pixel spacing. A 1.5–2.0 mL/kg body weight bolus
of contrast material iodixanol (Ultravist 370, Bayer, Germany)
was injected intravenously at a flow rate of 3–4.0 mL/sec.
Arterial phase, portal venous phase, and equilibrium phase
were performed with bolus triggering, typically ∼30, 60–70, and
180 s, respectively, after injection of contrast. We retrieved the
arterial phase and portal venous phase images from the picture
archiving and communication system of the five centers and
downloaded images in a Digital Imaging and Communications
in Medicine format.

Volume of Interest Segmentation and
Radiomics Feature Extraction
The volume of interest (VOI) included both tumor and
peritumoral regions. Firstly, a radiologist (reader 1, XM,
a radiologist with 6-years abdominal imaging experience)
manually annotated 3D tumor VOIs around the largest
lesion on both arterial and portal venous phase images using
ITK-SNAP version 3.6 (http://www.itksnap.org). To evaluate
the reproducibility of the extracted features, reader 2 (QY,
a radiologist with 5-years abdominal imaging experience)
independently segmented randomly selected 50 lesions
from both arterial and portal venous phase CT scans. The
intraclass correlation coefficient (ICC) was used to validate the
reproducibility of extracted features from the two radiologists.
Only features with an inter-reader ICC > 0.75 were included
in subsequent analyses. After the tumor VOI was segmented,

we considered the pixel size of each CT scan to perform a
morphologic dilation operation, capturing the peritumoral
region of the entire tumor VOI, with a radial distance of
10mm. A peritumoral VOI of the liver parenchyma immediately
surrounding the tumor was obtained after subtracting the tumor
VOI from this dilated VOI.Appendix E1 provides further details
on generating tumor segmentation and peritumoral VOI.

Radiomics features were extracted from each VOI by using
Pyradiomics 2.0.0 (https://pyradiomics.readthedocs.io/en/latest/
features.html) (26). Images were isotopically resampled to 1×
1× 1 mm3 voxels with a fixed bin width of 25 for image
discretization. Detailed descriptions are provided under the
“Imaging preprocessing” in Appendix E2. For each VOI, we
extracted a radiomics set of 1,288 features comprised of four
categories (Appendix E2): shape features (n = 14), the first-
order features (n = 18), the second-order features (n =

23), and high-order filters features (generated by Laplacian of
Gaussian filter and wavelet filter, n = 1,183 features). For each
lesion, we extracted 5,152 radiomics features from tumor and
peritumoral VOI in both the arterial phase and portal venous
phase images. All feature extraction methods conformed to the
image Biomarkers Standardization Initiative (IBSI) guidelines
(27). Feature Z-score normalization was performed first in the
training cohort. The testing cohort was Z-score normalized using
the training cohort as a “reference;” the mean and standard
deviation values used to z-score normalize the feature values in
the testing cohort were identical in the training cohort.

Radiomics Feature Selection and
Signature Building
Firstly, pair-wise correlations analysis was performed to remove
redundant radiomics features, by using the “findCorrelation”
function in R package “caret” with the absolute correlation cutoff
set at 0.9. Then, we employed the least absolute shrinkage and
selection (LASSO) Cox regression (28), a qualified approach
for regression of high-dimensional predictors by a penalty to
shrink some regression coefficients to exactly zero. This approach
selected the most predictive radiomics features from the training
cohort. The penalty parameter (lambda) was determined by using
5-fold cross-validation based onminimum error criteria. Selected
features were weighted by their respective coefficients obtained
from LASSO, and we computed a radiomics signature (Rad-
signature) with a linear combination of these features. Identical
coefficient values were applied to the testing cohort. An overview
of radiomics analysis is shown in Figure 1.

Statistical Analysis
Continuous variables are reported as median (interquartile range
[IQR]) and were compared using the Mann-Whitney U-test,
whereas all categorical variables were summarized as number
(percent) and compared using the Fisher’s exact test. Survival
curves were depicted using the Kaplan-Meier method and
compared by the log-rank test. Overall Survival (OS) was defined
as the time interval between initial TACE and all-cause death.
Data concerning patients who were lost to follow-up or survived
at the last follow-up (November 16, 2018) were censored.
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FIGURE 1 | Overview of radiomics analysis in this study. (A) tumor volume of interest (VOI) and peritumoral VOI segmentation. (B) Image pre-processing and feature

extraction from original and filtered images. (C) Feature reduction and development and validation of the Rad-signature.

Univariate Cox regression analyses were used to ascertain
prognostic clinical factors. A potential correlation was regarded
as present if P ≤ 0.1. With multivariate Cox regression analyses,
a combined radiomics-clinic (CRC) model was developed
using the Rad-signature and clinical factors with a potential
association with OS. Final model selections were performed
by stepwise backward selection with the Akaike information
criterion. Consistent with previously well-recognized studies,
we treated alpha-fetoprotein (AFP) (>400 vs. ≤400 ng/mL) as
a binary variable in regressions. A radiologist (YW, with 15-
years abdominal imaging experience) who was blinded to the
clinical data of patients evaluated the diameter of the largest
nodule (tumor size) and tumor number. Because of sparse data
when tumor number was >6, higher values were truncated at
six. A continuous variable as a potential risk factor was tested
further for linearity before inclusion in the CRCmodel to identify
whether transformations were needed. The linearity was checked
by a four-knot restricted cubic spline model at Harrell’s default
percentiles (i.e., 5, 35, 65, and 95th) combined with a Wald-type
test (29, 30).

Model performance, discrimination, and calibration were
measured by Harrell’s concordance-index (C-index), the time-
dependent area under receiver operating characteristic curve
(AUROC), and a calibration curve, respectively, in both the
training and testing cohorts (31). The CRC model was compared
with the seven well-recognized models [four-and seven criteria
(4), six-and-12 score (5), HAP score (6), mHAP score (8), mHAP-
II score (9), mHAP-III score (32), and ALBI grade (7)]. All
models were subjected to 1,000- bootstrap resampling validation
to calculate a relatively corrected C-index.

All statistical analyses were performed by using R version
3.5.1 (R Foundation for Statistical Computing, Vienna, Austria)

with packages survival, glmnet, rms, timeROC, caret, Hmisc, and
compareC. Statistical significance was set at P < 0.05 unless
otherwise specified. P-values were two-sided.

RESULTS

Patient Outcomes
Clinical characteristics were comparable between the training
and testing cohorts (Table 1). MedianOSwas 19 (95% confidence
interval (CI), 17.1–24.0) months in the training cohort and 21.8
(95% CI, 18.9–30.9) months in the validation cohort (log-rank
test, P = 0.122). OS was censored in nine and 15 patients,
respectively. The median survival was 19.9 (95% CI, 18.2–24.0)
months in all patients, with 1-, 2-, and 3-years overall survival
rate of 70.8, 40.1, and 26.0%, respectively. The median follow-up
period was 66.2 ± 29.6 months (range 9.8–112.1 months). There
was no significant survival difference among the five centers
(log-rank test, P = 0.12).

Construction of Radiomics Signature
Altogether, 4,288 out of 5,152 features were reproducible
following inter-observer ICC analysis (Figure S1). Further
reduction of pair-wise correlations led to 1,393 independent
features. Finally, six radiomics features with non-zero coefficients
were selected after LASSO Cox regression from the training
cohort (Figure S2). Of the six features, two were based on arterial
phase imaging from tumor VOI and peritumoral VOI, separately,
and the remaining four features were from tumor VOI on portal
venous phase imaging. These radiomics features are detailed in
Table 2. Figure 2 visualized each component’s contribution to the
Rad-signature; the stacked bars representing the six radiomics
features were plotted for each patient.
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TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristics Median (IQR)/Number (%) P-value

Entire cohort Training cohort Validation cohort

(N = 162) (N = 108) (N = 54)

Age(year) 58 (47–66.8) 59 (47.2–72.5) 58 (47–66) 0.474

Sex

Male 136 (83.9) 91 (84.3) 45 (83.3) 1

Female 26 (16.1) 17 (15.7) 9 (16.7)

Etiology 0.076

HBV 109 (67.3) 78 (72.2) 31 (57.4)

Others 53 (32.7) 30 (27.8) 23 (42.6)

Tumor size (cm) 7.5 (4.4–10.2) 7.5 (4.2–11.1) 7.4 (4.5–10) 0.736

Tumor Number

1 95 (58.7) 58 (53.6) 37 (68.5) 0.259

2 18 (11.1) 14 (13.0) 4 (7.4)

3 13 (8.0) 11 (10.2) 2 (3.7)

>3 36 (22.2) 25 (23.2) 11 (20.4)

BCLC stage 0.775

A 8 (4.9) 5 (4.6) 3 (5.6)

B 154 (95.1) 103 (95.4) 51 (94.4)

ALBI grade 0.894

A 65 (40.1) 42 (38.9) 23 (42.6)

B 93 (57.4) 63 (58.3) 30 (55.6)

C 4 (2.5) 3 (2.8) 1 (1.8)

Child-Pugh class 1

A 140 (86.4) 93 (86.1) 47 (87.0)

B 22 (13.6) 15 (13.9) 7 (13.0)

AFP (ng/ml) 0.127

<400 64 (39.5) 38 (35.2) 26 (48.2)

≥400 98 (60.5) 70 (64.8) 28 (51.8)

AST (U/L) 47.8 (31–70.5) 44.5 (34.1–68.6) 49.5 (30.8–75.2) 0.568

ALT (U/L) 39 (26.2–59) 34.5 (24.2–56.4) 41 (27–59) 0.552

Prothrombin time (s) 12.5 (11.7–13.9) 12.2 (11.8–13.3) 12.6 (11.7–14) 0.337

Albumin (g/L) 39 (35.8–43) 39.1 (35–41.9) 39 (36–43.4) 0.534

Total bilirubin (µmol/L) 19.6 (12.4–22.9) 15.9 (10.3–21.6) 19.9 (13.2–25.2) 0.094

IQR, interquartile range; HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; ABLI, albumin-bilirubin; AFP, alpha-fetoprotein; AST, aspartate transaminase; ALT,

alanine transaminase.

Median (IQR) are shown for continuous variables, whereas numbers (%) are shown for categorical variables.

P-values were calculated by the Mann-Whitney U-test for the continuous variables and the Fisher exact test for the categorical variables.

The Combined Radiomics-Clinic Model
Development and Validation
In the analyses, tumor size, AFP, and tumor number significantly
predicted OS (P < 0.1). With multivariate analyses, continuous
variables of tumor number and the Rad-signature were
identified as independent prognostic factors (Table S2) and
were analyzed further with restrictive cubic spline function
to test linearity (Figure S3). The results showed that the
effect of the Rad-signature was linear (non-linear P-values
were 0.664 and 0.669 in the training and testing cohorts,
respectively), but the tumor number was not (non-linear P-
values were 0.059 and 0.016 in the training and testing
cohorts, respectively). Therefore, only the Rad-signature could

be treated as a continuous linear variable. For the convenience

of clinical practice, tumor number was a categorized variable
rather than a continuous variable with restrictive cubic spline

transformation. To determine the optimal cutoff dichotomizing

tumor number, we attempted all possible values by multivariate
Cox regression analyses in both the training and testing

cohorts. Results showed the models performed best in both
the training and testing cohorts with a tumor number cut-
off at four (Figure S3). The CRC model was finally established
with tumor number (<4 vs. ≥4) and the Rad-signature
(continuous). A nomogram for individualized prediction of
1- and 2-years survival probability was built based on the
CRC model (Figure 3). The calibration curves of the CRC
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TABLE 2 | Features selected for predicting OS from CT images (N = 108).

Feature No. Imaging modality VOI of feature extraction Filter type Feature class Statistic Coefficients*

F1 Portal venous phase Tumor Wavelet_LLL GLCM IMC1 −0.1487

F2 Portal venous phase Tumor Wavelet_LLL GLCM IMC2 −0.0177

F3 Portal venous phase Tumor Wavelet_HLL GLRLM SRLGLE −0.0282

F4 Arterial phase Tumor Wavelet_LHL GLRLM SRLGLE −0.0600

F5 Arterial phase Peritumoral region Log.sigma.1.0.mm GLDM DNN −0.1651

F6 Arterial phase Peritumoral region Wavelet_LHL GLSZM GLNN −0.0571

OS, Overall survival; VOI, Volume of interest; GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLCM, Gray Level Co-occurrence Matrix; GLDM,

Gray Level Dependence Matrix; GLSZM, Gray Level Size Zone Matrix. IMC, Informational Measure of Correlation; SRLGLE, Short_Run_Low_Gray_Level_Emphasis; DNN, Dependence

Non-Uniformity Normalized; GLNN, Gray Level Non-Uniformity Normalized.

*Coefficients were derived from the LASSO Cox regression. Formula of the radiomics signature was as follows: radiomics signature = IMC1 × −0.1487 + IMC2 ×-0.0177 + SRLGLE

× −0.0282 + SRLGLE × −0.0600 +DNN × −0.1651 + GLNN × −0.0571.

FIGURE 2 | Stacked bars of the five selected features. (A) Training cohort (n = 108). (B) validation cohort (n = 54). Stacked bars of the selected features patient by

patient. The height of each bar equal to the value of each feature multiply by the absolute value of its coefficient in the LASSO regression. From the stacked bars, it is

convenient to visualize each component of the Rad-signature. LASSO, least absolute shrinkage and selection operator. F1, F2, F3, F4, F5, and F6 are corresponding

to IDMN, Correlation, IMC1, SRLGLE, and LRLGLE in Table 2.
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FIGURE 3 | Nomogram and calibration curves of the combined radiomics-clinic (CRC) model. (A) Nomogram for 1- and 2-years survival probability based on the

CRC model. Usage: Locate the patient’s Rad-signature on the Rad-signature axis. Draw a line straight upward to the Points axis to determine how many points the

patient arrived. Repeat the process for each variable. The points achieved for each of the variables were summed. Locate the sum on the Total Points axis. Draw a line

straight down and find the patient’s 1- or 2-years survival probability. Calibration curve of the CRC model for predicting 1- and 2-years survival in the training cohort

(B) and testing cohort (C). Model-predicted probability of overall survival is plotted on the x-axis; observed overall survival is plotted on the y-axis. The 45◦ line

represents perfect prediction.

model in the training and testing cohorts were presented in
Figure 3.

Performance Comparison
Table 3 summarized C-indices of the prognostic models. The
CRC model showed a favorable performance, with C-indices
of 0.73 [95% CI 0.68–0.79] and 0.70 [95% CI 0.62–0.82]
in the training and testing cohort, respectively. Among the
seven models, the six-and-12 score and four-and-seven criteria
performed better than the other models, with C-indices of 0.64
[95% CI 0.58–0.70] and 0.65 [95% CI 0.55–0.75], respectively,
in the testing cohort. Generally, time-dependent AUROC values
of the CRC model were higher than both the six-and-12

score and four-and-seven criteria in the training and testing
cohorts (Figure 4).

Survival Stratification
For the convenience of clinical practice, an individualized risk
score was generated by a linear combination of the Rad-
score and tumor number (<4 vs. ≥4) weighted by their
respective coefficients from the multivariate Cox regression
model. According to the median risk score (−0.0214) from the
training cohort, patients were divided into two strata: stratum 1,
a risk score <-0.0214., and stratum 2, the risk score >-0.0214.

In the training cohort, stratum 1 patients (median survival:
31.3 months [95%CI 24.5–4.1]) survived significantly longer than
the stratum 2 patients (median survival: 12.5 months [95%CI
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TABLE 3 | Performance of models for overall survival.

Model name Predictors involved C-index (95% CI)

Training Cohort

Rad-signature Six radiomics features 0.68 (0.62–0.74)

CRC model Tumor number (< 4/≥4), Rad-signature 0.73 (0.68–0.79)

Six-and-twelve Sum of tumor size and number 0.64 (0.58–0.70)

Four-and-seven Within four tumors and 7 cm (yes/no), Child-pugh class A/B 0.63 (0.58–0.68)

HAP Albumin (≥36 g/dl/<36 g/dl), AFP (≤ 400 ng/ml/> 400 ng/ml), bilirubin (≤ 17 µmol/l/ >17 µmol/l), tumor size (≤7 cm/>7 cm) 0.55 (0.50–0.61)

mHAP All predictors involved in HAP score but bilirubin 0.59 (0.53–0.65)

mHAP-II All predictors involved in HAP score plus tumor number (1 /≥2) 0.57 (0.52–0.63)

mHAP-III Albumin, AFP, bilirubin, tumor size, and tumor number 0.54 (0.46–0.60)

ALBI grade Albumin, bilirubin 0.52 (0.45–0.56)

Testing Cohort

Rad-signature Five radiomics features 0.67 (0.56–0.79)

CRC model Tumor number (< 4/≥4), Rad-signature 0.70 (0.62–0.82)

Six-and-twelve Sum of tumor size and number 0.64 (0.52–0.74)

Four-and-seven Within four tumors and 7 cm (yes/no), Child-pugh class A/B 0.65 (0.55–0.75)

HAP Albumin (≥36 g/dl/<36 g/dl), AFP (≤400 ng/ml/>400 ng/ml), bilirubin (≤17 µmol/l/ >17 µmol/l), tumor size (≤7 cm/>7 cm) 0.55 (0.46–0.64)

mHAP All predictors involved in HAP score but bilirubin 0.59 (0.47–0.71)

m-HAP-II All predictors of the HAP score plus tumor number (1 /≥2) 0.61 (0.50–0.73)

mHAP-III score Albumin, AFP, bilirubin, tumor size, and tumor number 0.58 (0.47–0.71)

ALBI grade Albumin, bilirubin 0.56 (0.46–0.67)

C-index, Concordance index; CI, confidence interval; Rad-signature, radiomics signature; AFP, alpha-fetoprotein; CRC, combined radiomics-clinic; HAP, hepatoma arterial-embolization

prognostic; ABLI, albumin-bilirubin.

FIGURE 4 | The time-dependent areas under receiver operating characteristic curves of the combined radiomics-clinic models, the six-and-twelve score, and the

four-and-seven criteria for overall survival prediction. (A) training cohort. (B) testing cohort.

9.6–16.1]), with a hazard ratio 3.63 (95% CI 2.36–5.60, log-rank
test P < 0.0001). Applying the same cutoff to the testing cohort,
themedian survivals of stratum 1 and 2were 30.9months (95%CI
30.5–NA) and 17.0 months (95%CI 11.3–26.8), respectively, with
a hazard ratio 2.43 (95%CI 1.91–4.98, P = 0.0014). The survival
curves of the two strata are plotted in Figure 5.

Subgroup Analysis Based on Different
Institutions
Data obtained from different institutions may be considered
a potential confounder. The effects of different institutions on

prognostic performance was investigated in the entire cohort.
Following a bootstrap resampling procedure (1,000 bootstrap
resamples), the C-indices of the radiomics signature in different
subgroups ranged from 0.60 to 0.78 (Table S3). Consistently,
Cox regression analyses applied in each center showed that the
radiomics signature significantly analyzed survival (Table S3).

DISCUSSION

Patients with HCC receiving TACE have various clinical
outcomes. In this study, we developed and independently
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FIGURE 5 | Kaplan-Meier survival curves of the 2 strata patients. (A) training cohort. (B) testing cohort.

validated a radiomics signature comprised of six radiomics
features. The radiomics signature and tumor number (<4 vs.≥4)
were incorporated into a CRC model predicting OS in patients
with HCC undergoing TACE. In comparison, seven previous
well-recognized models were validated in our population, and
the CRC model performed well-against the other models. Our
study developed an accurate prognostic model, which would
help identify the best candidates for TACE. This multicenter
study included imaging data from different machines and CT
scanning protocols in order to ensure the generalizability of the
proposed model.

Our study identified that the radiomics signature comprising
quantitative features was an independent prognostic factor
for survival in patients with HCC undergoing TACE.
Prognostic parameters from previous studies primarily measured
tumor burden and liver function, seldom quantifying spatial
heterogeneity within tumors, essential and neglected information
correlated with HCC prognosis. Our study combined a novel
radiomics approach with routinely used CT imaging to predict
prognosis for patients with HCC receiving TACE. CT is regularly
used in clinical practice to evaluate tumor burden and contains
high-dimension minable data reflecting tumor heterogeneity
(11). Both the arterial phase and portal venous phase images
were investigated in this study and the results showed that
radiomics features from portal venous phase images are also a
critical component of the radiomics signature.

Radiomics analysis on arterial phase image was useful
for prognosis prediction. This may be explained by that
tumor texture patterns in arterial phase imaging could reflect
tumor vascularization patterns, which was helpful for prognosis
prediction (33). There may be two reasons explaining the
importance of radiomics features from the portal venous images.
One is that radiomics analysis of portal venous phase image was

more useful for MVI prediction, which is a significant prognostic
factor of HCC, than arterial phase images (34). The other is that
texture of individual tumors in portal venous phase image can be
heterogeneous and analysis of this heterogeneity has prognostic
value (21). However, previous studies utilized only arterial phase
CT imaging to investigate the capabilities of CT radiomics
features to predict the treatment outcomes of HCC patients
(20). The strength of radiomics analyses based on multiphasic
enhancement images may be that multiphasic enhancement
images can provide more comprehensive information on
prognosis than single-phase images, while it also needs carefully
segment tumor on each phase. Interestingly, the proposed
radiomics signature included two peritumoral radiomics features
from arterial phase imaging rather than the portal venous phase
image. This finding was consistent with previous studies, in
which the presence of peritumoral enhancement in arterial phase
images indicated tumor biological aggressiveness (22, 35). Unlike
previous studies, in which a peritumoral expansion distance of
1, 3, or 5mm was set (21, 22), we selected a radial distance of
10mm in this study. According to the guideline of pathological
sampling of HCC specimens, liver tissue within a 10mm distance
was defined as the adjacent peritumoral region (36). The chances
of microvascular invasion are high in this region, and therefore,
10mmmay represent a better peritumoral region correlated with
prognosis evaluation (37).

When we applied the seven existing models to this population,
the six-and-12 score and four-and-seven criteria performed
better than the other five models. This result may be due to
the exclusion of patients with vascular invasion, a significant
negative factor in HCC prognosis from the target populations
of the six-and-12 score, four-and-seven criteria studies, and our
study (16). Conversely, the ALBI grade presented the worst
performance when validated in this population, probably because
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this population preserved liver function, and various survival
outcomes mainly resulted from tumor heterogeneity. The results
of this study are largely consistent with the study that developed
the six-and-12 score, and highlight the increasing importance of
characterizing intratumor heterogeneity (5).

The study developing the six-and-12 score possessed the
most similar patient population, in terms of ethnicity, HCC
etiology, and BCLC stage distribution, with this current study.
Correspondently, we found similar C-indices of the six-and-
twelve score in our population and in the original study
developing the six-and-12 score (5). The six-and-12 score
presented as the sum of tumor size and tumor number; the
CRC model included the rad-signature and tumor number (<4
vs. ≥4). The CRC model performed better than the six-and-
12 score. This improvement may be mainly because the Rad-
signature was established with high-dimensional whole-tumor
radiomics features that measure the intensity and spatial textural
heterogeneity of tumor image. The six-and-12 score included
the tumor number as a continuous variable, which leads to
counting every tumor. Conversely, tumor number was included
as a dichotomized variable in the CRC model, and the cutoff is
consistent with most staging algorithms such as the BCLC and
Milan criteria (2). AFP was not included in the CRC model, but
the prognostics ability of AFP level requires further analysis and
validation in a large cohort study.

The retrospective nature of our study was the first of several
limitations. Further evaluations in extensive prospective studies
are needed to validate the results. Second, tumor VOI only
included the single largest indexed lesion. Previous studies have
validated the feasibility of assessing the largest lesion in survival
analysis after TACE (38, 39), primarily because the largest lesion
reflects the most aggressive behavior of HCC. Furthermore,
manual delineation of tumor VOI can be time-consuming,
limiting the model as an easy-to-use tool. With ongoing
technological improvements of computer-aided algorithms, the
tumor segmentation procedure, and feature screening could be
designed as an automated workflow streamlined by computers
and compatible with diagnostic radiology in standard clinical
practice. Finally, while overall survival might be confounded
by post-TACE variables, these variables were not involved in
this study because they could not be used prior to the first
TACE procedure. To reduce such biases, we included only
treatment-naïve patients with well-preserved liver function in
this population.

In conclusion, our study demonstrated the Rad-signature as
an independent imaging predictor of survival in HCC patients
undergoing TACE. For patients with BCLC B stage HCC or

unresectable BCLC A stage HCC, the CRC model may prove
valuable for the accurate prediction of OS and selection of best
candidates for TACE.
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