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Carbonyl reductase identification 
and development of whole-cell 
biotransformation for highly efficient synthesis 
of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol
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Abstract 

Background: (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol [(R)-3,5-BTPE] is a valuable chiral intermediate for Aprepi-
tant (Emend) and Fosaprepitant (Ivemend). Biocatalyzed asymmetric reduction is a preferred approach to synthesize 
highly optically active (R)-3,5-BTPE. However, the product concentration and productivity of reported (R)-3,5-BTPE 
synthetic processes remain unsatisfied.

Results: A NADPH-dependent carbonyl reductase from Lactobacillus kefir (LkCR) was discovered by genome mining 
for reduction of 3,5-bis(trifluoromethyl) acetophenone (3,5-BTAP) into (R)-3,5-BTPE with excellent enantioselectivity. 
In order to synthesize (R)-3,5-BTPE efficiently, LkCR was coexpressed with glucose dehydrogenase from Bacillus subtilis 
(BsGDH) for NADPH regeneration in Escherichia coli BL21 (DE3) cells, and the optimal recombinant strain produced 
250.3 g/L (R)-3,5-BTPE with 99.9% ee but an unsatisfied productivity of 5.21 g/(L h). Then, four different linker peptides 
were used for the fusion expression of LkCR and BsGDH in E. coli to regulate catalytic efficiency of the enzymes and 
improved NADPH-recycling efficiency. Using the best strain (E. coli/pET-BsGDH-ER/K(10 nm)-LkCR), up to 297.3 g/L 
(R)-3,5-BTPE with enantiopurity >99.9% ee was produced via reduction of as much as 1.2 M of substrate with a 96.7% 
yield and productivity of 29.7 g/(L h).

Conclusions: Recombinant E. coli/pET-BsGDH-ER/K(10 nm)-LkCR was developed for the bioreduction of 3,5-BTAP to 
(R)-3,5-BTPE, offered the best results in terms of high product concentration and productivity, demonstrating its great 
potential in industrial manufacturing of (R)-3,5-BTPE.
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Background
Optically active alcohols are highly valuable chiral syn-
thon pharmaceuticals and fine chemicals [1, 2]. (R)-
[3,5-bis(trifluoromethyl) phenyl] ethanol [(R)-3,5-BTPE] 
is a key intermediate for the synthesis of neurokinin-1 
receptor antagonists, such as Aprepitant (Emend) and 
Fosaprepitant (Ivemend), which are widely used in the 

treatment of chemotherapy-induced nausea and vomit-
ing [3–5].

Asymmetric reduction of the prochiral ketone 
3,5-bis(trifluoromethyl) acetophenone (3,5-BTAP) is an 
efficient and powerful way to produce highly optically 
active (R)-3,5-BTPE. Compared with conventional chem-
ical synthesis via ruthenium-catalyzed transfer hydro-
genation or oxazaborolidine-catalyzed borane reduction 
[6, 7], a biocatalyst-mediated reduction of 3,5-BTAP 
using microbial cells and various oxidoreductases has 
attracted more attention due to its excellent enantiose-
lectivity, mild reaction conditions, few by-products and 
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avoidance of residual metals. In recent years, the applica-
tion of ketone reductases for synthesis of chiral alcohols 
was demonstrated on an industrial scale [8, 9]. Neverthe-
less, the large-scale biocatalytic production of (R)-3,5-
BTPE remains difficult because asymmetric reduction 
of 3,5-BTAP to (R)-3,5-BTPE requires a biocatalyst with 
excellent anti-Prelog stereoselectivity, which is relatively 
rare in nature. To date, only five microbial strains, includ-
ing Lactobacillus kefir [10], Penicillium expansum [11], 
Leifsonia xyli [12], Microbacterium oxydans [13], and 
Trichoderma asperellum ZJPH0801 [14], were reported 
for their abilities to reduce 3,5-BTAP to (R)-3,5-BTPE 
enantioselectively with  >99% ee. However, these micro-
bial cell-mediated bioreduction methods were success-
fully performed with conversion rates of 31–95% at 
relatively low substrate concentrations (less than 200 mM 
3,5-BTAP), which restricted their industrial applications. 
Compared with the natural “producers” of (R)-3,5-BTPE, 
few ketone/carbonyl reductases have been discovered for 
synthesis of optically pure (R)-3,5-BTPE from 3,5-BTAP. 
Nevertheless, these enzyme-catalyzed reductions provide 
higher production. The crude recombinant ChKRED20 
from Chryseobacterium sp. CA49 catalyzes the reduction 
of 150 g/L 3,5-BTAP to (R)-3,5-BTPE, with >99% conver-
sion and  >99.9% ee in 24  h [15], and the commercially 
available ketoreductase P1B2 from Codexis reduced 
150 g/L 3,5-BTAP to (R)-3,5-BTPE with 98–99% conver-
sion and  >99% ee [16]. For these two enzyme-catalyzed 
reactions, the requirement of 30–40% (v/v) isopropanol 
as a co-substrate, as well as the addition of an expensive 
cofactor in the oxidized form of nicotinamide adenine 
dinucleotide phosphate [NAD(P)+], was necessary to 
regenerate the reduced cofactor. In terms of biocatalytic 
efficiency, the requirement for NAD(P)+  addition is 
disadvantageous. To overcome the problem of cofactor 
regeneration and to improve the reaction process, co-
expression of two or more enzymes in a single cell was 
demonstrated as a promising and effective approach in 
many known processes [17, 18]. Specifically, the use of 
recombinant cells coupled with cofactor regeneration 
as catalysts can facilitate bio-redox reactions [19, 20]. 
Wang et  al. reported that the whole cells of Escherichia 
coli expressing a mutant form of carbonyl reductase from 
L. xyli HS0904 (LXCAR-S154Y) reduced 1  M (256  g/L) 
3,5-BTAP in the presence of 20% (v/v) isopropanol as 
co-substrate [21]. This reaction produced the desired 
(R)-3,5-BTPE with  >99% ee but with an unsatisfactory 
82.5% product yield. Recently, the addition of ionic liq-
uid tetramethyl ammonium cysteine [N1,1,1,1][Cys] as 
a co-solvent in this reaction system enabled the reduc-
tion to proceed smoothly and increased the production 
yield up to 98.7% [22]. Although a high-product titer and 

productivity were obtained, the high price of ionic liquid 
and its problematic reusability, as well as the uncertain 
toxicity and potential environmental impact, restrict this 
bioreduction process for practical application. There-
fore, there is great interest in searching for new carbonyl 
reductases with high enantioselectivity at high sub-
strate concentrations and improving their application 
performance.

With the increased availability of public genome 
information, many putative carbonyl reductases can be 
obtained from GenBank (http://www.ncbi.nlm.nih.gov/
genbank/). In this study, a NADPH-dependent carbonyl 
reductase from L. kefir (LkCR) was discovered as a prac-
tical catalyst for (R)-3,5-BTPE synthesis by genome data 
mining. Generally, carbonyl reductases require nicoti-
namide adenine dinucleotide (NADH) or nicotinamide 
adenine dinucleotide phosphate (NADPH) as a cofactor 
for the reduction reactions. Because of the high cost of 
these cofactors, we used glucose dehydrogenase from 
Bacillus subtilis (BsGDH) for in situ recycling of NAD(P)
H for the asymmetric reduction of 3,5-BTAP by LkCR. A 
whole-cell catalyst from E. coli co-expressing LkCR and 
BsGDH in tandem was constructed, and various param-
eters (reaction pH, reaction temperature, cell dosage, 
and substrate loading) from the whole-cell biotransfor-
mations were investigated. Furthermore, four different 
linker peptides were used for the fusion expression of 
LkCR and BsGDH. The best recombinant strain of E. coli 
(pET-BsGDH-ER/K(10 nm)-LkCR) was characterized for 
highly efficient production of (R)-3,5-BTPE at a high sub-
strate load.

Results and discussion
Screening of oxidoreductases
A genome mining approach was used to search for 
carbonyl reductases that might be able to asymmetri-
cally reduce 3,5-BTAP to the corresponding alcohol. In 
total, 60 known or putative carbonyl reductases were 
selected from the NCBI database and overexpressed 
in E. coli BL21 (DE3) cells. After testing their activi-
ties toward 3,5-BTAP using whole cells of E. coli, two 
carbonyl reductases were observed capable of reducing 
3,5-BTAP to (R)-3,5-BTPE with excellent enantiose-
lectivity, while two enzymes generated (S)-3,5-BTPE 
(Table  1). By comparing the conversion rate between 
the two (R)-3,5-BTPE-producing reductases at low-
substrate concentration (50  mM), we achieved 97.6% 
conversion with CR-2 in 24 h, while 43.1% conversion 
was observed for CR-1 using the same concentration of 
biocatalyst (Table 1). Therefore, the carbonyl reductase 
CR-2 was chosen for further studies and was referred 
to as LkCR.

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
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Amino acid sequence alignment of the four carbonyl 
reductases (Additional file  1: Figure S1) revealed that 
both CR-1 (GenBank accession number: CP012832.1) 
and CR-2 (LkCR, GenBank accession number: 
AY267012.1) exhibited excellent anti-Prelog stere-
oselectivity toward 3,5-BTAP, while sharing 33.9% 
sequence identity. CR-3 (GenBank accession number: 
EU877965.1) showed very low amino acid sequence 
identity (22.2%) with CR-2, thus, CR-2 and CR-3 were 
identified as different carbonyl reductases from L. kefir. 
CR-2 was firstly screened from L. kefiri DSM 20587 and 
characterized by Hummel et  al. [23, 24]. This enzyme 
was identified as a NADPH dependent R-specific alco-
hol dehydrogenase and belonged to the short-chain 
dehydrogenase/reductase (SDR) family. It catalyzed the 
reduction of acetophenone and its derivatives (4-chloro-
acetophene and 4-bromo-acetophene) to the corre-
sponding (R)-alcohols. Several other aromatic and 
long-chain aliphatic secondary ketones aliphatic and 
aromatic ketones as well as β-keto esters were substrates 
for this enzyme. CR-3 was also isolated from L. kefiri 
DSM 20587, and was identified as a (S)-specific NADH-
dependent alcohol dehydrogenase which belonged to 
the family of NAD(P)+-dependent medium-chain zinc-
dependent alcohol dehydrogenases, group II. Zhu et  al. 
reported that CR-3 also showed the reductive activity 
toward acetophenone, but producing (S)-alcohols. Com-
pared to ketones, CR-3 preferred aldehydes as substrates 
[25]. Together with our study, L. kefir has at least two 
carbonyl reductases (CR-2 and CR-3) with reductive 
activity toward ketones but opposite enantioselectiv-
ity. Although the whole cells of L. kefiri DSM 20587 was 
used to reduce 3,5-BTAP to (R)-3,5-BTPE with >99% ee 
[10], (S)-3,5-BTPE producing enzyme was also existed in 
this strain, which was demonstrated in our study. Com-
mercially available alcohol dehydrogenase (ADH) from 
L. kefir was used to transform 3,5-BTAP to (R)-3,5-BTPE 
with >99% ee in a very moderate yield [10], but very lim-
ited information about this enzyme was provided in this 

literature. It is hard to explain the relationship between 
this commercial ADH and CR-2.

LkCR characterization
LkCR containing an N-terminal His-tag was purified to 
homogeneity by nickel-affinity chromatography, and 
SDS-PAGE analysis of the crude extract demonstrated 
that most of the recombinant LkCR existed in the solu-
ble form at ~34 kDa (Fig. 1, lane 1). The specific activity 
of the purified enzyme was 6.1 U/mg toward 3,5-BTAP. 
Purified LkCR only used NADPH instead of NADH as a 
coenzyme, indicating a NADPH-dependence. The opti-
mal pH and temperature required for activity of puri-
fied LkCR were 6.0 and 40  °C, respectively (Fig.  2a, b). 
Figure 2c showed that the half-life of purified LkCR was 
only 39.4 and 87.2 min at 40 and 35 °C, respectively, but 
582.8 min at 30 °C, indicating that purified LkCR was rel-
atively stable at 30 °C. 

Asymmetric synthesis of (R)‑3,5‑BTPE from 3,5‑BTAP 
by whole cells of E. coli co‑expressing LkCR and BsGDH
Given that glucose as the substrate of glucose dehy-
drogenase (GDH) is inexpensive and that GDH can 
regenerate both NADH and NADPH, GDH is the 
most commonly used dehydrogenase for coenzyme 
regeneration. Here, BsGDH was used for NADPH 
regeneration to promote LkCR reduction of 3,5-BTAP. 
Previously, BsGDH was successfully applied in multi-
ple NADH-dependent and NADPH-dependent bio-
transformations [26, 27]. Compared with isolated 
enzymes, preparation of whole-cell catalysts is easier, 
more cost effective, and results in enzymes exhibit-
ing higher degrees of stability. Therefore, LkCR and 
BsGDH were co-expressed in E. coli BL21 (DE3) cells 

Table 1 Screening of  carbonyl reductases for  3,5-BTAP 
reduction

Substrate (50 mM), resting cells (50 g/L), and isopropanol [5% (v/v)] as 
co-substrate were mixed in PBS (100 mM, pH 7.0). The reaction was performed 
with shaking at 220 rpm and 30 °C for 24 h

Enzyme Sources of strains Conversions (%) ee (%)

CR-1 Synechocystis sp. PCC 6803 43.1 >99(R)

CR-2 Lactobacillu kefir DSM 20587 97.6 >99(R)

CR-3 Lactobacillu kefir DSM 20587 15.3 >99(S)

CR-4 Gordonia polyisoprenivorans  
CCTT 137

13.6 >99(S)

Fig. 1 SDS-PAGE analysis of recombinant proteins. Lane M, protein 
markers; lane 1, crude extract of E. coli/pET-LkCR; lane 2, crude extract 
of E. coli/pET-BsGDH; lane 3, crude extract of E. coli/pET-LkCR-BsGDH; 
lane 4, crude extract of E. coli/pET-BsGDH-LkCR
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in tandem, and the whole cells of E. coli containing 
the recombinant proteins expressed by the pET-LkCR-
BsGDH plasmid were employed as biocatalysts for the 
reduction of 3,5-BTAP.

The functional expression of both enzymes was deter-
mined by measuring their activities in cell-free extracts. 
LkCR activity toward 3,5-BTAP was 73.0 U/g wet cells, 
which was significantly higher than the activity of 
BsGDH using glucose as a substrate (12.9 U/g wet cells). 
SDS-PAGE analysis of protein extracts from E. coli/
pET-LkCR-BsGDH cells showed that the expression of 
LkCR placed upstream was relatively higher than that of 
BsGDH positioned downstream (Fig.  1, lane 3). In con-
trast, we observed lower LkCR expression levels (Fig. 1, 
lane 4) accompanied by lower levels of activity (25.8 U/g 
wet cells) in E. coli/pET-BsGDH-LkCR, with LkCR posi-
tioned downstream and BsGDH positioned upstream, 
resulting in decreased conversion of 3,5-BTAP. Conse-
quently, E. coli/pET-LkCR-BsGDH was chosen for fur-
ther research.

To achieve a higher production titer, we optimized the 
biocatalytic conditions necessary for producing (R)-3,5-
BTPE from 3,5-BTAP using whole cells of E. coli/pET-
LkCR-BsGDH. The influence of the reaction temperature 
was determined in reaction mixtures containing 250  g 
(wet)/L whole cells, 300 mM 3,5-BTAP, 450 mM glucose, 
and 100 mM PBS (pH 7.0). As shown in Table 2, over a 
range of 20–35 °C, we observed the highest yield (97.7%) 
at 28  °C. Only minor yield changes were observed at 
temperatures between 25 and 30  °C, but at higher tem-
peratures, product yield decreased dramatically. The ee of 
(R)-3,5-BTPE was not sensitive to temperature changes, 
and ee values remained at >99% under all conditions. In 
order to determine the optimum pH necessary for the 
bioconversion of 3,5-BTAP, the reaction was carried out 
at different pH values ranging from 4.0 to 7.0 at 28  °C.
While pH significantly affected 3,5-BTAP bioconversion, 
it had no effect on the (R)-3,5-BTPE ee value (Table  2). 
The highest (R)-3,5-BTPE production was detected at 
pH 5.5; however, at pH values <5.5, 3,5-BTAP conversion 
decreased sharply. Moreover, high ee values (>99%) were 
obtained under different pH conditions.

To determine the biocatalyst dosage necessary for opti-
mal bioconversion, we examined the effect of cell concen-
tration on 3,5-BTAP reduction. A ratio of 1.5:1 glucose to 
3,5-BTAP was added to the reactions based on its pro-
ducing the highest (R)-3,5-BTPE yield (Additional file 2: 
Figure S2), and the reactions were performed at 28  °C 
and pH 5.5. As shown in Fig.  3a, when 3,5-BTAP con-
centration in the reaction was  <900  mM, 350  g (wet)/L 
cells were sufficient to achieve a 100% conversion of 3,5-
BTAP to (R)-3,5-BTPE within 36  h, with an excellent 

Fig. 2 The effects of pH and temperature on the activity and thermo-
stability of purified LkCR. a Activity-pH profile; b activity-temperature 
profile; c thermostability at different temperatures
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(R)-3,5-BTPE yield of >99%. The substrate was increased 
stepwise to 1 M, resulting in a 96.1% yield over a reaction 
time of 38 h (Fig. 3b). When the cell concentration was 
increased to 375  g (wet)/L, conversion rate was slightly 
increased to 98.3% within 38  h, and the ee of (R)-3,5-
BTPE was 99.9% (Fig. 3c). A further increase in substrate 
to 1.1  M resulted in 96.9% conversion to (R)-3,5-BTPE 
[1066.23 mM (275.24 g/L)] within 48 h, with an ee value 
of 99.9% and a productivity rate of 5.73 g/(L h) (Fig. 3d). 
During the reaction, we observed that the increased vis-
cosity of the reaction system due to high cell concentra-
tions (375 g/L) and increased glucose loading (1.65 mM) 
led to mass-transfer limitations, which affected catalytic 
efficiency.

Expression of LkCR and BsGDH fusion proteins enhanced 
(R)‑3,5‑BTPE production
Expression of LkCR and BsGDH fusion proteins in E. coli BL21 
cells
The co-expression of multiple fusion proteins can 
increase protein solubility and also result in a multi-
functional enzyme [28]. Previous studies indicated that 
enhancing the spatial proximity of enzymes through 
the creation of fusion constructs could regulate cata-
lytic efficiency and enhance product synthesis in multi-
enzyme reactions [25, 29, 30, 31]. The common and 
easiest approach to construct a fusion enzyme is to fuse 
the sequentially acting enzymes end to end by a linker 
peptide. In addition to the necessity for an appropriate 

amino acid composition of the individual enzymes, the 
selection of the linker peptide is particularly important in 
the construction of fusion enzymes. The folding of linker 
peptides could have significant effect on the folding of 
macromolecules [32]. The linker sequence and length 
would limit the stability, flexibility, oligomeric state and 
solubility of the fusion protein and consequently affect 
its function or lead to expression failure [33]. Unfortu-
nately, there are no reliable selection criteria or programs 
available for use in linker design, due to the lack of lim-
ited understanding of sequence-structure correlation for 
many linker peptides of various protein families. Most 
current linker selection is still largely dependent on intui-
tion and test. In this study, fusion constructs containing 
both LkCR and BsGDH with different linker peptides 
were created, and the whole cells of E. coli expressing 
these variants were used to catalyze the conversion of 
higher concentrations of 3,5-BTAP.

To date, a large number of peptides have been used as 
linkers for construction of fusion enzymes. Of these, the 
flexible linkers (GGGGS)n (usually n ≤  6) are often used 
and can provide enzyme flexibility for catalysis domain 
separation [34, 35]. The typical rigid α-helical-forming 
linker (EAAAK)n (n ≤  6) is utilized to link two domains 
of fusion enzymes by controlling a distance between 
them [36–38]. The long chain rigid linker peptide ER/K 
(5, 10  nm) had good effect for the expression of fusion 
protein [39, 40]. In the present study, four linker peptides 
(GGGGSGGGGSGGGGS, EAAAKEAAAKEAAAK, 5 
and 10-nm rigid α-helical ER/K motifs) were used to fuse 
LkCR and BsGDH following linker attachment to the 
N-terminal region of LkCR. This site was chosen for linker 
attachment based on its flexibility according to crystal-
structure analysis of LkCR (PDB ID: 4RF2) and its pre-
dicted limited effect on enzyme spatial structure. The four 
recombinant plasmids [pET-BsGDH-(GGGGS)3-LkCR, 
pET-BsGDH-(EAAAK)3-LkCR, pET-BsGDH-ER/K(5 nm)-
LkCR, and pET-BsGDH-ER/K(10  nm)-LkCR) were trans-
formed into E. coli BL21 (DE3) cells, and the recombinant 
proteins were expressed and purified. Each of the four 
LkCR-BsGDH fusion proteins migrated as a band indicat-
ing approximate sizes of 62, 62, 64 and 70  kDa by SDS-
PAGE (Fig. 4A), which were in agreement with molecular 
weights predicted from the gene sequences. Incorporation 
of the (GGGGS)3 or (EAAAK)3 linker peptides resulted 
in the fusion proteins being insoluble (Fig. 4A, lanes 1–4), 
while the ER/K(5  nm) and ER/K(10  nm) linker peptides 
resulted in the expression of soluble forms of the fusion 
proteins (Fig. 4A, lanes 5–8), with most of the ER/K(10 nm) 
fusion protein being expressed in the soluble form.

Further comparison of (R)-3,5-BTPE production was per-
formed among the resulting strains. At the substrate con-
centration of 200 mM, few (R)-3,5-BTPE could be produced 

Table 2 The effect of  temperature and  pH on  asymmet-
ric (R)-3,5-BTPE synthesis  by recombinant E.coli   cells co-
expressing LkCR and BsGDH

Reaction conditions: 300 mM substrate, 450 mM glucose, 250 g/L wet cells, and 
incubation for 30 h with shaking at 220 rpm
a Reaction was performed in 100 mM PBS buffer (pH 7.0)
b Temperature was 28 °C; pH 4.0–6.0 (0.2 M, NaAc–HAc), pH 6.0–7.0 (0.1 M 
Na2HPO4–NaH2PO4)

Reaction 
condition

Yield (%) ee (%)‑(R)‑
configuration

Temperature(°C)a 20 86.7 ± 1.6 >99

25 94.5 ± 2.4 >99

28 97.7 ± 0.5 >99

30 95.7 ± 0.6 >99

35 82.8 ± 0.9 >99

pHb 4.0 52.3 ± 0.4 >99

4.5 75.1 ± 0.6 >99

5.0 80.0 ± 0.2 >99

5.5 97.3 ± 1.6 >99

6.0 87.4 ± 1.8 >99

6.5 84.2 ± 1.2 >99

7.0 82.4 ± 0.6 >99
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by the E. coli strains with pET-BsGDH-(GGGGS)3-LkCR 
and pET-BsGDH-(EAAAK)3-LkCR due to the low soluble 
expression and very low activity of BsGDH; whereas, 87.3 
and 92.8% yields were observed for E.coli/pET-BsGDH-
ER/K(5 nm)-LkCR and E. coli/pET-BsGDH-ER/K(10 nm)-
LkCR (Fig. 4B). For E. coli/pET-BsGDH-(GGGGS)3-LkCR 
and E. coli/pET-BsGDH-(EAAAK)3-LkCR, the activity 
of LkCR were 36.8 and 34.3 U/g wet cells, respectively, 
but BsGDH activities almost could not be detected. As a 
result, the cofactor could not be regenerated. For E. coli/
pET-BsGDH-ER/K(10  nm)-LkCR, the activity of LkCR 
and BsGDH were 80.4 U and 7.2 U per gram wet cells, 
respectively. In contrast, lower activity (75.8 U/g (wet cells)) 
of LkCR and lower activity (6.8 U/g (wet cells)) of BsGDH 
were observed in E. coli/pET-BsGDH-ER/K(5  nm)-LkCR. 
Consequently, the whole cells of E. coli/pET-BsGDH-ER/K 
(10  nm)-LkCR showed higher yield of (R)-3,5-BTPE than 
that by E. coli/pET-BsGDH-ER/K(5 nm)-LkCR. Therefore, 
E. coli/pET-BsGDH-ER/K(10  nm)-LkCR was chosen for 
asymmetric synthesis of (R)-3,5-BTPE.

Asymmetric synthesis of (R)‑3,5‑BTPE from 3,5‑BTAP by whole 
cells of the recombinant E. coli/pET‑BsGDH‑ER/K(10 nm)‑ LkCR
After optimizing the reaction conditions (Addi-
tional file  3: Figure S3), a ratio of 1:1 glucose to 
3,5-BTAP produced 1095.9  mM (282.9  g/L) of (R)-
BTPE with  >99% ee via reduction of 1.12  M 3.5-
BTAP within 12  h by 300  g (wet)/L cells of E. coli/ 
pET-BsGDH-ER/K(10 nm)-LkCR, resulting in a 98.2% 
yield and a productivity rate of 23.6  g/(L  h) (Fig.  5). 
Compared to E. coli/pET-LkCR-BsGDH, E. coli/pET-
BsGDH-ER/K(10  nm)-LkCR exhibited a higher cata-
lytic efficiency and enhanced (R)-BTPE production at 
decreased cell concentrations and glucose loading, as 
well as shorter reaction time. The close spatial prox-
imity of LkCR and BsGDH by virtue of the construc-
tion of the fusion-enzyme variant effectively regulated 
catalytic efficiency and improved NADPH-recycling 
efficiency.

To effectively synthesize (R)-3,5-BTPE at the gram 
scale, asymmetric reduction of 1.19  M 3,5-BTAP by E. 

Fig. 3 The (R)-3,5-BTPE concentration formed in the presence of different biocatalysts. a 3, 5-BTAP (900 mM) with 350 g/L wet cells; b 1 M 3, 5-BTAP 
with 350 g/L wet cells; c 1 M 3, 5-BTAP with 375 g/L wet cells; d 1.1 M 3,5-BTAP with 375 g/L wet cells. Concentration of 3,5-BTAP (open square) and 
(R)-3,5-BTPE (filled square) are shown
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coli/pET-BsGDH-ER/K(10  nm)-LkCR was performed 
in a 10-mL volume. Up to 297.3  g/L (R)-3,5-BTPE 
with  >99.9% ee was produced by 300  g (wet)/L cells 
within 10 h, resulting in a 96.7% yield and a productivity 
rate of 29.7 g/(L h). Several microbial strains or alcohol 
dehydrogenases were reported to asymmetrically cata-
lyze the reduction 3,5-BTAP to (R)-3,5-BTPE. Of these, 
four bioprocesses indicating potential for industrial-scale 
application were reported with a relative high production 
of (R)-3,5-BTPE (Table 3). Compared with the processes 

catalyzed by the immobilized ketoreductase P1B2 or the 
lyophilized powder of the crude recombinant enzyme 
(ChKRED20), the whole cells of recombinant E. coli 
strain expressing carbonyl reductase LXCAR-S154Y gave 
the higher product titer and productivity. To the best of 
our knowledge, the highest production of (R)-3,5-BTPE 
was described by Wang et  al. [22]. With ionic liquid as 
a co-solvent in reaction system, 252.7 g/L (R)-3,5-BTPE 
with >99.9% ee was produced from 1 M 3,5-BTAP within 
12 h, giving a yield of 98.7% and a productivity of 21.1 g/
(L  h). By contrast, E. coli/pET-BsGDH-ER/K(10  nm)-
LkCR mediated 3,5-BTAP reduction in present study 
exhibited the highest production titer (297.3  g/L) and 
productivity rates [29.7 g/(L h)].

Conclusions
The NADPH-dependent carbonyl reductase from L. 
kefir, LkCR, was discovered to have excellent enanti-
oselectivity for 3,5-BTAP. E. coli strains overexpress-
ing LkCR and BsGDH were developed via co-expressing 
and fusion expressing, and each was employed for 3,5-
BTAP reduction in the presence of high substrate loading 
(0.9–1.2 M). Among these variants, E. coli/pET-BsGDH-
ER/K(10  nm)-LkCR exhibited the highest productivity, 
with (R)-3,5-BTPE concentrations of 297.3 g/L at a 96.7% 
yield, an excellent ee value (>99.9%), and a high produc-
tivity rate [29.7 g/(L h)]. These results demonstrated that 
the developed biocatalytic process is scalable and has 
strong potential for the industrial-scale preparation of 
(R)-3,5-BTPE.

Methods
Chemicals
3,5-BTAP, (R)-3,5-BTPE, NADPH, and NADP+ were 
purchased from TCI (Tokyo, Japan), J&K (Shanghai, 
China), Roche (Basel, Switzerland) and Roche, respec-
tively. Other chemicals involved were analytical grade.

Cloning, expression, and purification of oxidoreductases
Carbonyl reductase genes used for screening were 
selected from the NCBI database (http://www.ncbi.nlm.
nih.gov). Genomic DNA was extracted and purified using 
a TaKaRa MiniBEST Bacterial Genomic DNA Extraction 
Kit Ver.2.0 (TaKaRa, Beijing, China). The DNA fragment 
of the carbonyl reductase gene was amplified and dou-
ble digested using BamHI and XhoI, and then inserted 
into the expression vector pET-28a (Novagen, Shanghai, 
China). The resulting plasmid was transformed into E. 
coli BL21 (DE3) cells cultured at 20 °C in lysogeny broth 
medium (1% NaCl, 1% peptone, and 0.5% yeast extract) 
containing 0.5  mM kanamycin. When the optical den-
sity at 600 nm of the culture reached 0.6–0.8, isopropyl 
β-D-1-thiogalactopyranoside (IPTG) was added to a final 

Fig. 4 A SDS-PAGE analysis of the fusion expression of LkCR and 
BsGDH. Lane M, protein marker; lane 1, soluble pET-BsGDH-(GGGGS)3-
LkCR protein; lane 2, insoluble pET-BsGDH-(GGGGS)3-LkCR protein; 
lane 3, soluble pET-BsGDH-(EAAAK)3-LkCR protein; lane 4, insoluble 
pET-BsGDH-(EAAAK)3-LkCR protein; lane 5, soluble pET-BsGDH-
ER/K(5 nm)-LkCR protein; lane 6, insoluble pET-BsGDH-ER/K(5 nm)-
LkCR protein; lane 7, soluble pET-BsGDH-ER/K(10 nm)-LkCR protein; 
lane 8, insoluble pET-BsGDH-ER/K(10 nm)-LkCR protein. B Production 
of (R)-3,5-BTPE in E. coli following the expression of fusion enzymes 
with four linkers. a pET-BsGDH-(GGGGS)3-LkCR, b pET-BsGDH-
(EAAAK)3-LkCR, c pET-BsGDH-ER/K(5 nm)-LkCR, and d pET-BsGDH-
ER/K(10 nm)-LkCR. Reactions were performed in the presence of 
200 mM substrate, 300 mM glucose, and 50 g/L wet cells for 30 h at 
pH 5.5 with shaking at 220 rpm

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


Page 8 of 11Chen et al. Microb Cell Fact  (2016) 15:191 

concentration of 0.1 mM, and cultivation was continued 
at 20 °C for another 14 h.

Purification and characterization of LkCR
Cells were harvested by centrifugation (8000g for 10 min) 
at 4  °C, washed twice with 20  mM sodium phosphate 
buffer (PBS, pH 7.4), and subsequently disrupted with an 
ultrasonic oscillator (JY92-II; Scientz Biotech. Co., Ltd., 
Ningbo, China). The cell lysate was removed by centrifuga-
tion (20 min at 10,000g rpm) at 4 °C, and the supernatant 
was loaded onto a 5 mL Ni–NTA FF column (GE Health-
care, Beijing, China), which was equilibrated with 20 mM 
imidazole buffer (pH 7.4) with saline. Proteins were eluted 
with an increasing gradient of 20 mM to 500 mM imida-
zole buffer (pH 7.4) with saline at a flow rate of 1 mL/min. 
The fractions containing the target protein were collected 
and dialyzed against 20 mM PBS (pH 7.4) for desalting. The 
sample was concentrated and stored at 4  °C, and sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) was used to verify LkCR expression and purification.

The activity of NADPH-dependent LkCR was assayed 
by measuring the change in absorbance at 340  nm 
according to NADPH oxidation or NADP+ reduction 
using an ultraviolet (UV)/visible spectrophotometer 
(Ultrospec 2100 pro, Amersham Biosciences, Piscataway, 
NJ, USA). A molar extinction coefficient of 6.22 mM/cm 
for NADPH was used for the calculation [42]. The reac-
tion mixture (0.2  mL) for the enzyme assay consisted 
of 5 μL purified enzyme, 0.2 mM NADPH, and 2.5 mM 
3,5-BTAP in 100 mM PBS (pH 6.0). One unit of NADPH-
dependent carbonyl reductase activity was defined as the 
amount of enzyme that consumed l  mol/min NADPH. 
The protein concentration was determined by the Lowry 
procedure using bovine serum albumin as the standard 
[43].

The optimum pH of LkCR was determined in sodium 
acetate-acetic acid (pH 4.0–6.0) and PBS (pH 6.0–9.0) 
buffers at final ionic concentrations of 100 mM. The opti-
mum temperature was determined by testing at 25  °C 
to 45° under standard conditions. Thermal stability was 
determined by incubating the purified enzyme at 30, 35, 
or 40 °C followed by measuring residual enzyme activity.

Co‑expression of LkCR and BsGDH in E. coli
A pET-28a plasmid containing the LkCR and BsGDH 
genes under the control of an individual ribosome-bind-
ing site (RBS) region and a common T7 promotor was 
constructed. The RBS-BsGDH gene was obtained from 
the pET28a- BsGDH vector following amplification using 
primers P1 (5′-CCCAAGCTTGAAGGAGATATACCA 
TGG-3′) containing a HindIII-restriction site and P2 
(5′-CCGCTCGAGTTAACCGCGGCCTGCCTG-3′) 
containing a XhoI-restriction site. Following restriction 
digest of the products, the DNA segment was cloned 
into the HindIII/XhoI site of the pET28a- LkCR vector to 
construct the recombinant pET-LkCR-BsGDH plasmid. 
Similarly, the RBS-LkCR gene was acquired from the 
pET28a- LkCR vector using primers P3 (5′-CCCAAGC 

Fig. 5 Bioconversion of 3, 5-BTAP to (R)-3,5-BTPE by whole cells of E. 
coli/pET-BsGDH-ER/K(10 nm)-LkCR. Concentrations of 3,5-BTAP (open 
square) and (R)-3,5-BTPE (filled square) are shown

Table 3 Comparison of the bioprocesses associated with (R)-3,5-BTPE production via 3,5-BTAP reduction

Enzyme/strain Substrate concentra‑
tion (mM)

Production concentra‑
tion (g/L)

Yield (%) Time (h) ee (%) Reference

Ketoreductase P1B2 from Codexis 586 145.50 97 24 >99.9 (R) [16]

ChKRED20 from Chryseobacterium 
sp.CA49

586 139.168 92 24 >99.9 (R) [29]

Mutant LXCAR-S154Y from Leifsonia xyli 
HS0904

1000 212.965 82.5 12 >99.9 (R) [41]

Mutant LXCAR-S154Y in ionic liquid 1000 252.7 98.7 12 >99.9 (R) [22]

LkCR from Lactobacillus kefir fused with 
GDH

1191 297.27 96.7 10 >99.9 (R) This study
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TTGAAGGAGATATACCATGG-3′) containing a Hin-
dIII-restriction site and P4 (5′-CCGCTCGAGTTATTG 
AGCAGTGTATCC-3′) containing a XhoI-restriction 
site, and the digested product was ligated into the 
pET28a-BsGDH vector to construct the recombinant 
pET-BsGDH-LkCR plasmid. The resulting recombinant 
plasmids were transformed into E. coli BL21 (DE3) cells.

Fusion expression of LkCR and BsGDH in E. coli
The LkCR and BsGDH genes were spliced together 
using the splicing by overlap extension  polymerase 
chain reaction method (SOE-PCR), which incorporated  
four different linker peptides (GGGGSGGGGSGGGGS, 
EAAAKEAAAKEAAAK, KAKLKEEEERKQREEEERIKR 
LEELAKRKEEERK, and EEEEKKKQQEEEAERLRRIQE 
E M E K E R K R R E E D E E R R R K E E E E R R M K L E M E 
AKRKQEEEERKKREDDEKRKKK) [39, 40] at the LkCR 
N-terminus. Each fusion-PCR fragment was digested 
with BamHI/XhoI and ligated into similarly digested 
sites of pET-28a vectors, resulting in four plasmids: 
pET-BsGDH-GGGGS-LkCR, pET-BsGDH-EAAAK-
LkCR, pET-BsGDH-ER/K(5  nm)-LkCR, pET-BsGDH-
ER/K(10  nm)-LkCR (Additional file  4: Table S1). The 
resulting plasmids were transformed into E. coli BL21 
(DE3) cells. The primers involved in the SOE-PCR are 
listed in Additional file 5: Table S2.

Reduction of 3,5‑BTAP to (R)‑3,5‑BTPE using whole cells
Preparation of whole‑cell catalysts
Cultivation of E. coli BL21 (DE3) cells carrying the 
recombinant plasmid was performed in manner simi-
lar to described earlier; however, in this study, IPTG to 
a final concentration of 0.2  mM was added. After culti-
vation, induced cells were harvested by centrifugation 
(8000  rpm for 10  min) at 4  °C. Wet cells were washed 
twice in 20 mM PBS (pH 7.4) before further use.

Reaction conditions using E. coli co‑expressing recombinant 
LkCR and BsGDH
For the reaction at low substrate concentrations 
(<500 mM), a 1-mL reaction system, including 300 mM 
3,5-BTAP, 450 mM glucose as co-substrate, and 250 g/L 
wet cells, was used. The mixtures were incubated at 28 °C 
with shaking at 220 rpm for 30 h.

For the reaction at high substrate concentration 
(>500 mM), many parallel experiments at 1 mL were con-
ducted, with each containing 0.4 M sodium acetate-acetic 
acid buffer (pH 5.5), 500 mM to 1.1 M 3,5-BTAP, glucose 
(at a 1.5:1 ratio of glucose to substrate concentration), 
and 0.3–0.375 g wet cells. The pH was adjusted from 5.0 

to 5.5 using NaOH during the reaction. The mixtures 
were incubated at 28  °C with shaking at 220  rpm, and 
samples were collected at regular intervals.

Reaction conditions using E. coli fusion‑expressing 
recombinant LkCR and BsGDH
Multiple parallel experiments at 1  mL were conducted, 
with each containing 0.4  M sodium acetate-acetic acid 
buffer (pH 5.5), 1.1–1.2  M 3,5-BTAP, glucose (at a 1:1 
ratio of glucose to substrate concentration), and 0.3 g wet 
cells. The pH was adjusted from 5.0 to 5.5 using NaOH 
during the reaction. The mixtures were incubated at 
28  °C with shaking at 220  rpm, and samples were col-
lected at regular intervals.

Other reaction conditions, including reaction tempera-
tures, initial pH, and glucose concentrations, were out-
lined in the text or tables.

Preparative synthesis of (R)‑3,5‑BTPE
The preparative-scale bioreduction was carried out in 
a round-bottomed  flask (working volume: 20  mL). The 
reaction mixture contained 0.4 M sodium acetate-acetic 
acid buffer (pH 5.5), 300 g/L E. coli BsGDH-ER/K- LkCR 
wet cells, 1.2 M 3,5-BTAP, and 1.2 M glucose. The pH was 
adjusted from 5.0 to 5.5 using NaOH during the reac-
tion using a pH automatic regulator (Chroma, Ningbo, 
China). The mixtures were incubated at 28 °C with shak-
ing at 220  rpm, and samples were collected at regular 
intervals.

Analytical methods
Glucose concentration was measured using a biosen-
sor analyzer (SBA-40D; Institute of Biology, Shan-
dong Province Academy of Sciences, China). 3,5-BTAP 
and (R)-3,5-BTPE concentrations were measured by 
high-performance liquid chromatography (HPLC; 
Agilent 1260; Agilent Technologies, Santa Clara, CA, 
USA) equipped with a Zorbax extend-C18 column 
(250 ×  4.6  mm; Agilent Technologies). HPLC was per-
formed with a 75:25 ratio of mobile phases A (water) and 
B (methanol) at 25  °C at a flow rate of 1.0 mL/min. The 
UV detection wavelength was 210  nm, and 3,5-BTAP 
and (R)-3,5-BTPE retention times were 7.5 and 6.75 min 
(Additional file  6: Figure S4), respectively. Enantiomeric 
excess of (R)-3,5-BTPE was measured by HPLC equipped 
with a Chiralcel OD-H column (25  ×  0.46  cm; Daicel 
Co., Osaka, Japan), eluted with hexane/isopropanol [98:2 
(v/v)] at a flow rate of 1.0 mL/min at 40 °C, and detected 
at 210  nm. Retention times of R- and S-3,5-BTPE were 
8.0 and 9.2 min, respectively (Additional file 7: Figure S5).



Page 10 of 11Chen et al. Microb Cell Fact  (2016) 15:191 

Abbreviations
(R)-3,5-BTPE: (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol; 3,5-BTAP: 
3,5-bis(trifluoromethyl) acetophenone; NADH: nicotinamide adenine 
dinucleotide; NADPH: nicotinamide adenine dinucleotide phosphate; LkCR: 
carbonyl reductase from Lactobacillus kefir; BsGDH: glucose dehydrogenase 
from Bacillus subtilis.

Authors’ contributions
KC designed and carried out this work, drafted and edited the manuscript. KL 
designed and participated in experimental aspects of this work, and edited 
the manuscript. JD helped to designed and participated in experimental 
aspects of this work, and edited the manuscript. BZ helped to edit the manu-
script. JL designed and supervised the research, and edited the manuscript. 
DW supervised the research and edited the manuscript. All authors read and 
approved the final manuscript.

Acknowledgements
Jinping Lin designed and supervised the work is gratefully acknowledged. 
Jian Deng and Dongzhi Wei gave some technical guidance, are also gratefully 
acknowledged. At last, Jinping Lin and Dongzhi Wei are acknowledged for 
their support for this work.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The nucleotide sequences of the carbonyl reductase genes supporting the 
conclusions of this article are included within the article and its additional 
file are available in the GenBank (http://www.ncbi.nlm.nih.gov). BLAST http://
www.ncbi.nlm.nih.gov/BLAST. Primer 5.0 http://www.bioguider.com/Soft/
biology. OriginPro 8.0 http://www.oringinlab.com/index.aspx?s=8&lm=11. 
DNAMan http://xiazai.zol.com.cn/detail/38/374365.shtml. Protein Molecular 
Weight http://www.bioinformatics.org/sms/prot_mw.html.

Additional files

Additional file 1: Figure S1. Amino acid sequence alignment of CR-1 
(GenBank accession number: CP012832.1), CR-2 (AY267012.1), CR-3 
(EU877965.1), and CR-4 (CP003119.1). The alignment was performed with 
the program DNAMAN (http://www.lynnon.com/). Gaps in the aligned 
sequences are indicated by dots. Highly similar residues are colored in 
red and framed in blue, while identical residues are in white and on a red 
background.

Additional file 2: Figure S2. The effect of glucose concentration on 
the asymmetric synthesis of (R)-3,5-BTPE using E. coli/pET-BsGDH-LkCR. 
Reaction conditions: 300 mM substrate, 330-540 mM glucose, 250 g/L wet 
cells, and incubated at 28°C for 24 h at pH 5.5 with shaking at 220 rpm.

Additional file 3: Figure S3. The effect of glucose concentration on the 
asymmetric synthesis of (R)-3,5-BTPE using E. coli/pET-BsGDH-ER/K(10 nm)-
LkCR. Reaction conditions: 1200 mM substrate, 1200-1680 mM glucose, 
300 g/L wet cells, and incubated at 28°C for 24 h at pH 5.5 with shaking at 
220 rpm.

Additional file 4: Table S1. Structure of fused plasmids with different 
linkers.

Additional file 5: Table S2.The primers used for SOE-PCR.

Additional file 6: Figure S4. HPLC spectra. (a) Spectra of the (R)-3,5-BTPE 
standard, (b) the 3,5-BTAP substrate, and (c) the sample which the 3,5-
BTAP was reduce by bioreaction.

Additional file 7: Figure S5. Chiral HPLC spectra. (a) Spectra of the 3,5-
BTAP substrate, (b) the (R)-3,5-BTPE standard, (c) the (S)-3,5-BTPE standard, 
and (D) the sample which the 3,5-BTAP was reduce by bioreaction.

Funding
This work was financially supported by the National Key Basic Research Devel-
opment Program of China (“973” Program, No. 2012CB721003), the Natural 
Science Foundation of China (No. 21276084) and Shanghai Natural Science 
Foundation (No. 15ZR1408600).

Received: 12 May 2016   Accepted: 28 October 2016

References
 1. Chen X, Liu ZQ, Huang JF, Lin CP, Zheng YG. Asymmetric synthesis of opti-

cally active methyl-2-benzamido-methyl-3-hydroxy-butyrate by robust 
short-chain alcohol dehydrogenases from Burkholderia gladioli. Chem 
Commun (Camb). 2015;51:12328–31.

 2. Groger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel 
W, Weckbecker A, May O. Enantioselective reduction of ketones with 
“designer cells” at high substrate concentrations: highly efficient access 
to functionalized optically active alcohols. Angew Chem Int Ed Engl. 
2006;45:5677–81.

 3. Jin Y, Wu X, Guan Y, Gu D, Shen Y, Xu Z, Wei X, Chen J. Efficacy and 
safety of aprepitant in the prevention of chemotherapy-induced 
nausea and vomiting: a pooled analysis. Support Care Cancer. 
2012;20:1815–22.

 4. Gao C, Zhang L, Xie Y, Hu C, Zhang Y, Li L, Wang Y, Ma C, Xu P. Production 
of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent 
carbonyl reductase and glucose dehydrogenase. Bioresour Technol. 
2013;137:111–5.

 5. Wu CE, Liaw CC. Using aprepitant as secondary antiemetic prophylaxis 
for cancer patients with cisplatin-induced emesis. Support Care Cancer. 
2012;20:2357–61.

 6. Li W, Sun X, Zhou L, Hou G, Yu S, Zhang X. Highly efficient and 
highly enantioselective asymmetric hydrogenation of ketones with 
TunesPhos/1,2-diamine–ruthenium(II) complexes. J Org Chem. 
2009;74:1397–9.

 7. Yıldız T. An oxazaborolidine-based catalytic method for the asym-
metric synthesis of chiral allylic alcohols. Tetrahedron Asymmetry. 
2015;26:497–504.

 8. Boogers JAF, Sartor D, Felfer U, Kotthaus M, Steinbauer G, Dielemans B, 
Lefort L, Vries AHMD, Vries JGD. Asymmetric hydrogenation of a 2-iso-
propylcinnamic acid derivative en route to the blood pressure-Lowering 
agent Aliskiren. In: Blaser HU, Federsel HJ, editors. Asymmetric catalysis on 
industrial scale: challenges, approaches, and solutions. Weinheim: Wiley-
VCH Verlag GmbH & Co. 2010. p. 127–48.

 9. Huisman GW, Liang J, Krebber A. Practical chiral alcohol manufacture 
using ketoreductases. Curr Opin Chem Biol. 2010;14:122–9.

 10. Gelo-Pujic M, Le Guyader F, Schlama T. Microbial and homogenous 
asymmetric catalysis in the reduction of 1-[3,5-bis(trifluoromethyl)phenyl] 
ethanone. Tetrahedron Asymmetry. 2006;17:2000–5.

 11. Kurbanoglu EB, Zilbeyaz K, Taskin M, Kurbanoglu NI. Total production 
of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduc-
tion of 3,5-bis(trifluoromethyl) acetophenone in the submerged 
culture of Penicillium expansum isolate. Tetrahedron Asymmetry. 
2009;20:2759–63.

 12. Wang P, Cai JB, Ouyang Q, He JY, Su HZ. Asymmetric biocatalytic 
reduction of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-
bis(trifluoromethyl)phenyl] ethanol using whole cells of newly isolated 
Leifsonia xyli HS0904. Appl Microbiol Biotechnol. 2011;90:1897–904.

 13. Gai P, Tang C, Liu J, Liu Y, Zhang C, Wu Z. Asymmetric anti-Prelog reduc-
tion of 3,5-bis(trifluoromethyl)-acetophenone by Microbacterium 
oxydans C3. Chinese J Appl Environ Biol. 2013;19:37–42.

 14. Li J, Wang P, He JY, Huang J, Tang J. Efficient biocatalytic synthesis of 
(R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Tricho-
derma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. 
Appl Microbiol Biotechnol. 2013;97:6685–92.

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
http://www.bioguider.com/Soft/biology
http://www.bioguider.com/Soft/biology
http://www.oringinlab.com/index.aspx?s=8&lm=11
http://xiazai.zol.com.cn/detail/38/374365.shtml
http://www.bioinformatics.org/sms/prot_mw.html
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5
http://dx.doi.org/10.1186/s12934-016-0585-5


Page 11 of 11Chen et al. Microb Cell Fact  (2016) 15:191 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 15. Liu Y, Tang TX, Pei XQ, Zhang C, Wu ZL. Identification of ketone reductase 
ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly 
efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. J 
Mol Catal B Enzym. 2014;102:1–8.

 16. Li H, Moncecchi J, Truppo MD. Development of an immobilized ketore-
ductase for enzymatic (R)-1-(3,5-Bis(trifluoromethyl)phenyl) ethanol 
production. Org Process Res Dev. 2015;19:695–700.

 17. Ye Q, Cao H, Yan M, Cao F, Zhang Y, Li X, Xu L, Chen Y, Xiong J, Ouyang 
P, Ying H. Construction and co-expression of a polycistronic plasmid 
encoding carbonyl reductase and glucose dehydrogenase for produc-
tion of ethyl (S)-4-chloro-3-hydroxybutanoate. Bioresour Technol. 
2010;101:6761–7.

 18. Liu Y, Li Q, Hu X, Yang J. Construction and co-expression of polycistronic 
plasmid encoding d-hydantoinase and d-carbamoylase for the produc-
tion of d-amino acids. Enzyme Microbial Technology. 2008;42:589–93.

 19. Goldberg K, Schroer K, Lutz S, Liese A. Biocatalytic ketone reduction–a 
powerful tool for the production of chiral alcohols-part II: whole-cell 
reductions. Appl Microbiol Biotechnol. 2007;76:249–55.

 20. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-
Schumacher MB, de Maria PD. Asymmetric reduction of ketones with 
recombinant E. coli whole cells in neat substrates. Chem Commun 
(Camb). 2011;47:12230–2.

 21. Wang NQ, Sun J, Huang J, Wang P. Cloning, expression, and directed evo-
lution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced 
catalytic efficiency. Appl Microbiol Biotechnol. 2014;98:8591–601.

 22. Wang N, Li J, Sun J, Huang J, Wang P. Bioreduction of 
3,5-bis(trifluoromethyl)acetophenone using ionic liquid as a co-
solvent catalyzed by recombinant Escherichia coli cells. Biochem Eng J. 
2015;101:119–25.

 23. Hummel W. Reduction of acetophenone to R-(+)-phenylethanol by 
a new alcohol dehydrogenase from Lactobacillus kefir. Appl Microbiol 
Biotechnol. 1990;34:15–9.

 24. Weckbecker A, Hummel W. Cloning, expression, and characterization of 
an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal 
Biotransfor. 2009;24(5):380–9.

 25. Chen Q, Hu Y, Zhao W, Zhu C, Zhu B. Cloning, expression, and characteri-
zation of a novel (S)-specific alcohol dehydrogenase from Lactobacillus 
kefir. Appl Biochem Biotechnol. 2010;160:19–29.

 26. Liu X, Chen R, Yang Z, Wang J, Lin J, Wei D. Characterization of a putative 
stereoselective oxidoreductase from Gluconobacter oxydans and its 
application in producing ethyl (R)-4-chloro-3-hydroxybutanoate ester. 
Mol Biotechnol. 2014;56:285–95.

 27. Ma H, Yang L, Ni Y, Zhang J, Li CX, Zheng GW, Yang H, Xu JH. Stereospe-
cific reduction of methyl o-chlorobenzoylformate at 300 g·L−1 without 
additional cofactor using a carbonyl reductase mined from Candida 
glabrata. Adv Synth Catal. 2012;354:1765–72.

 28. Lu P, Feng MG, Li WF, Hu CX. Construction and characterization of a 
bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase 
expressed in Escherichia coli. FEMS Microbiol Lett. 2006;261:224–30.

 29. Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J. Stepwise metabolic engineering 
of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-
L-gulonic acid from D-sorbitol. Metab Eng. 2014;24:30–7.

 30. Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, 
Mortensen UH. Diversion of flux toward sesquiterpene production in Sac-
charomyces cerevisiae by fusion of host and heterologous enzymes. Appl 
Environ Microbiol. 2011;77:1033–40.

 31. Yan Y, Li Z, Koffas M. High-yield anthocyanin biosynthesis in engineered 
Escherichia coli. Biotechnol Bioeng. 2008;100:126–40.

 32. Crasto C, Feng JA. LINKER: a program to generate linker sequence for 
fusion proteins. Protein Eng. 2000;13:309–12.

 33. Robinson C, Sauer O. AUER OTS: Optimizing the stability of single-chain 
proteins by linker length and composition mutagenesis. Proc Natl Acad 
Sci. 1998;95:5929–34.

 34. Remy I. Erythropoietin receptor activation by a ligand-induced conforma-
tion change. Science. 1999;283:990–3.

 35. Wang WW, Das D, McQuarrie SA, Suresh MR. Design of a bifunctional 
fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 
core-streptavidin fusion protein. Eur J Pharm Biopharm. 2007;65:398–405.

 36. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T. Conformations 
of variably linked chimeric proteins evaluated by synchrotron X-ray small-
angle scattering. Proteins. 2004;57:829–38.

 37. Chang HC, Kaiser CM, Hartl FU, Barral JM. De novo folding of GFP fusion 
proteins: high efficiency in eukaryotes but not in bacteria. J Mol Biol. 
2005;353:397–409.

 38. Lu P, Feng MG. Bifunctional enhancement of a beta-glucanase–xyla-
nase fusion enzyme by optimization of peptide linkers. Appl Microbiol 
Biotechnol. 2008;79:579–87.

 39. Sivaramakrishnan S, Sung J, Ali M, Doniach S, Flyvbjerg H, Spudich JA. 
Combining single-molecule optical trapping and small-angle X-ray 
scattering measurements to compute the persistence length of a protein 
ER/K alpha-helix. Biophys J. 2009;97:2993–9.

 40. Sivaramakrishnan S, Spink BJ, Sim AY, Doniach S, Spudich JA. Dynamic 
charge interactions create surprising rigidity in the ER/K α-helical protein 
motif. Proc Natl Acad Sci USA. 2008;105:13356–61.

 41. Li J, Chen J, Wang Y, Luo G, Yu H. Hydration of acrylonitrile to produce 
acrylamide using biocatalyst in a membrane dispersion microreactor. 
Bioresour Technol. 2014;169:416–20.

 42. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, 
Ladenstein R, Jornvall H, Oppermann U. Critical residues for structure 
and catalysis in short-chain dehydrogenases reductases. J Biol Chem. 
2002;277:25677–84.

 43. Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry 
procedure to simplify protein determination in membrane and lipopro-
tein samples. Anal Biochem. 1978;87:206–10.


	Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results and discussion
	Screening of oxidoreductases
	LkCR characterization
	Asymmetric synthesis of (R)-3,5-BTPE from 3,5-BTAP by whole cells of E. coli co-expressing LkCR and BsGDH
	Expression of LkCR and BsGDH fusion proteins enhanced (R)-3,5-BTPE production
	Expression of LkCR and BsGDH fusion proteins in E. coli BL21 cells
	Asymmetric synthesis of (R)-3,5-BTPE from 3,5-BTAP by whole cells of the recombinant E. colipET-BsGDH-ERK(10 nm)- LkCR


	Conclusions
	Methods
	Chemicals
	Cloning, expression, and purification of oxidoreductases
	Purification and characterization of LkCR
	Co-expression of LkCR and BsGDH in E. coli
	Fusion expression of LkCR and BsGDH in E. coli
	Reduction of 3,5-BTAP to (R)-3,5-BTPE using whole cells
	Preparation of whole-cell catalysts
	Reaction conditions using E. coli co-expressing recombinant LkCR and BsGDH
	Reaction conditions using E. coli fusion-expressing recombinant LkCR and BsGDH
	Preparative synthesis of (R)-3,5-BTPE

	Analytical methods

	Authors’ contributions
	References




