
polymers

Article

Effect of Glass Fibers Thermal Treatment on the
Mechanical and Thermal Behavior of Polysulfone
Based Composites

Galal Sherif 1,2,* , Dilyus I. Chukov 1 , Victor V. Tcherdyntsev 1 , Valerii G. Torokhov 1

and Dmitry D. Zherebtsov 1

1 Center of composite materials, National University of Science and Technology “MISIS”, Leninskiy prosp. 4,
Moscow 119049, Russia; dil_chukov@mail.ru (D.I.C.); vvch@misis.ru (V.V.T.); vgtorohov@gmail.com (V.G.T.);
dmitry_zherebtsov@bk.ru (D.D.Z.)

2 Production and Design Dept., Faculty of Engineering, Minia University, Minia 61111, Egypt
* Correspondence: eng_galal_emad@mu.edu.eg; Tel.: +7-9267878736

Received: 10 March 2020; Accepted: 10 April 2020; Published: 13 April 2020
����������
�������

Abstract: The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical
properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and
shear tests were used to study the composites’ mechanical properties. A dynamic mechanical analysis
(DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical
properties of composites. The chemical structure of the composites was studied using IR-spectroscopy,
and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture
surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30
(wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties
improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated
composites enhanced as a result of removing the sizing coating during the thermal treatment of GF,
which improved the properties of the preheated composites compared with the composites reinforced
with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF
surface in the preheated GF composites.
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1. Introduction

Polysulfone (PSU) is a high-performance amorphous thermoplastic with excellent mechanical
properties, high service temperature due to its high glass transition temperature (Tg) 185 ◦C, flexibility,
and excellent thermal stability. These superior properties make PSU the most appropriate choice for
wide applications such as medicine, food, processing equipment, and relatively high-temperature
components [1–4]. PSU is broadly used because of increasing demands for high-temperature polymers
in many industries, such as automotive, aerospace, and microelectronics.

Many materials and types of fillers are used to reinforce polymer matrix composites [5–8].
Nowadays, most of the high-performance polymer-based composite materials are produced using
fibrous fillers [4–9]. GF are one of these materials that offer high specific strength and stiffness, low cost,
and suitable heat resistance [6,10,11]. The mechanical properties of composites mainly depend on
reinforcing fiber/matrix properties, fibers’ surface morphology, and the interfacial bonding between the
fiber and the matrix [8,10]. It is also recognized that the bonding strength at the fiber–matrix interface
has a significant effect on composite materials’ mechanical properties. Therefore, so far, many efforts
have been made to propose an appropriate engineered fiber/matrix interface to significantly increase

Polymers 2020, 12, 902; doi:10.3390/polym12040902 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-5009-7459
https://orcid.org/0000-0002-4528-150X
https://orcid.org/0000-0003-4357-4509
https://orcid.org/0000-0001-5134-475X
http://dx.doi.org/10.3390/polym12040902
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/4/902?type=check_update&version=2


Polymers 2020, 12, 902 2 of 12

the composite’s strength, toughness, and environmental stability [11,12]. As it is known, the bonding
strength mainly depends on physical absorption, chemical reaction, and bonding between the fiber
surface layer and the matrix polymer. The bonding strength is strongly affected by a fiber surface
modification such as surface treatment or chemical sizing [10].

Several studies dealing with thermoplastic composites reveal that temperature has a noticeable
influence on mechanical properties [12–18]. It has been found that tensile strength and Young’s
modulus of thermoplastic composites decrease with increasing temperature and drop sharply close
to the Tg [19,20]. On the other hand, above the Tg, the strain increases because of the intensive
motion of polymers’ molecular chains. This effect in unfilled polymers is greater than that of in
reinforced polymers [21,22]. The effect of temperature and different environmental conditions on
the thermoplastic reinforced with GF was studied, and it was observed that a bi-linear reduction in
strength and stiffness occurred in the Tg range [23,24].

In addition to traditional methods of polymer composites mechanical properties investigations,
such as tensile, compression, flexural tests, etc., thermal and dynamical tests methods are widely
used nowadays. One of these methods is dynamic mechanical analysis (DMA), which is widely and
successfully used to study the dynamic mechanical response of composites. The data used as a function
of temperature, time, frequency, and stress can also be an indicator of the interface, morphology,
and presence of an internal defect in the composite structure. It is an excellent technique to study the
effect of temperature on the mechanical properties of composite materials. Since polymeric composites
in many applications exposed to different types of dynamic stressing during service, studying the
viscoelastic behavior of these materials have become critical [25–27]. The heat deflection temperature
(HDT) test is another effective tool to evaluate the physical performance of a polymer under load
and elevated temperature. The HDT data represent the maximum service temperature without a
large deflection [28–31].

Recently [32], we investigated the effect of the formation route on the GF reinforced
polyethersulfone based composites. It was observed that composite formation via compression
molding of a polymer powder together with GF does not allow samples to be obtained with high
mechanical properties, whereas the formation of composites by GF impregnation with polyethersulfone
solution results in the formation of composites with high flexural strength. Therefore, in the present
study, we applied the polymer solution route to obtain PSU based composites. The current study
aims to illustrate the thermal treatment effect of the removal of GF sizing coating on the mechanical
and thermal properties of PSU composites. According to our results, the mechanical and thermal
properties increase with an addition of a preheated GF, which leads to an expansion of high-temperature
applications of these composites. Additionally, the current study seeks to increase the knowledge
base of thermoplastic composites especially in terms of understanding the effect of temperature on the
performance of PSU/GF composites. Additionally, the comparison of the present study results with the
data obtained in [32] allows the effect of the polymer nature on the interaction between the matrix and
GF in the composites to be revealed.

2. Materials and Methods

2.1. Material and Sample Preparation

Woven glass fabrics (NPO “Stekloplastic”, Moscow, Russia) (T-23/1 “260 ± 10 g/m2) and PSU
Ultrason S2010 (Basf, Ludwigshafen, Germany) powder were used as raw materials. A polysulfone
solution was obtained by dissolving the PSU powder in N-methyl-2-pyrrolidone (Eastchem, Jiangsu,
China). Bulk composite samples were formed in accordance with the method described in [32].
The solution was prepared in a 20/80 polymer to solvent weight ratio for 24 h using a magnetic stirrer.
The samples were dried at a temperature of 150 ◦C for 5 h, and then they were compression molded
at 340 ◦C and 10 MPa. Figure 1 shows a scheme of the preparation process of the PSU solution and
composites. Three fiber to polymer weight ratios were prepared (50/50, 60/40, and 70/30 (wt.%)).
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There are many sizing compositions used in commercial GF, which can be completely wiped out by
using a thermal treatment in a range of 200 to 400–500 ◦C [33–38]. The method of removing the sizing
coating from the GF surface was elaborated previously [32]. Notably, the investigation was carried
out using the same type of GF; it was shown that the optimal preheating conditions for the type of
GF used is annealing in an air-atmosphere furnace at 350 ◦C for 1 h, according to Fourier-transform
infrared (FTIR) spectra; preheated GF used in this study was prepared using the above-mentioned
conditions. The composites were reinforced using initial and preheated GF.
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Figure 1. Scheme of the preparation of the polysulfone (PSU) solution and composites.

2.2. Characterization of the Samples’ Structures

An FTIR spectrometer Nicolet 380 (Thermo Scientific, Waltham, MA, USA) (spectral range of
4000–450 cm−1, resolution of 1 cm−1) was used to study the chemical structures of the samples.
The microstructure, fracture, interfacial bonding, and fiber pulling out were studied using a scanning
electron microscope (VEGA 3 TESCAN) (TESCAN ORSAY HOLDING, a.s., Brno–Kohoutovice,
Czech Republic) in backscattered electron image mode. Before the SEM examination, the samples were
coated with a thin layer (10–15 nm) of carbon in a sputter coater.

2.3. Mechanical Tests

Flexural and shear properties were measured using a Zwick/Roell Z020 universal test machine
(Zwick Roell Group, Ulm, Germany) provided with 1 and 20 kN sensors and a MultiXtens contact
strain measurement system. Conforming with ISO 14125:1998 standards, the samples for the flexural
tests were prepared in a dimension of 110 mm × 10 mm × 2 mm and 80 mm span. For shear tests
(according to ASTM D 3846), 110 mm × 10 mm × 4 mm samples were used with a gauge length of
80 mm. According to this method, the shear strength was measured by applying a compressive load
to a notched specimen of uniform width. The specimen was loaded edgewise in a supporting jig of
the same description in ASTM D 695 for testing thin specimens. A failure of the specimen occurred
in shear between two centrally located notches machined halfway through its thickness and spaced
a fixed distance apart on opposing faces. The distance between the notches was 6.5–8 mm. The test
speeds were 10 and 1.3 mm/min for the flexural and shear tests, respectively. At least five samples
were examined at room temperature in each condition.
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2.4. Thermo-Mechanical Tests

A DMA Q800 (TA Instruments, New Castle, DE, USA) dynamic mechanical analyzer was used to
study the dynamic mechanical properties. The specimens sized 2 mm × 2 mm × 45 mm were used for
the DMA tests. The measurements were realized using a double cantilever clamp at a frequency of
1 Hz and a deformation of 0.1%, in a temperature range from 30 to 220 ◦C; the heating rate was of
2 ◦C/min. The HDT tests were carried out using an Instron CEAST 6910 HDT/Vicat tester. The samples
sized 80 mm × 10 mm × 4 mm were used in the HDT test at a load of 1.8 MPa and a span length of
64 mm (ISO 75). The deflection in the HDT test was set up to 1 mm as a maximum deflection. The DMA
and HDT were performed for both PSU composites reinforced with initial and preheated GF. In each
condition, three fiber to polymer weight ratios (50/50, 60/40, and 70/30 (wt.%)) were used.

3. Results and Discussion

3.1. FTIR

Figure 2 shows the FTIR spectra for the initial PSU and PSU reinforced with both initial and
preheated GF 50/50 composites. For the initial PSU spectra, the C–H band for the aryl group was
noticed in a range of 3000–3100 cm−1. The peaks at 2800 and 3000 cm−1 related to symmetric and
asymmetric bands of CH3 and CH2. The C–C in-ring bands were revealed by 1401, 1501, and 1586 cm−1

peaks. The stretching vibration of the asymmetric O=S=O band occurred at 1292 and 1325 cm−1,
while the peak at 1232 cm−1 referred to the stretching vibration of the C–O band. The stretching of
the symmetric O=S=O bands appeared at 1140 and 1168 cm−1, and the aryl group was indicated by
1019 cm−1 peak [1,23,39,40].
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Figure 2. FTIR spectra for the initial PSU and 50/50 PSU composites reinforced with initial and
preheated GF.

Few differences could be distinguished in the spectral attribution of PSU composites. In the spectra
of the composites, the C=O band appeared clearly due to the presence of some residual solvent [32].
The amplitude of this peak was stronger in the spectra related to the PSU reinforced with preheated GF
due to the oxidation during the preheating process. In the case of the composites containing preheated
GF, the peaks between 2800 and 3000 cm−1 reduced because of the removal of GF sizing [32]. Based on
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the data observed from FTIR, it could be noted that the spectrum characteristic for the composite was
very similar with that of PSU except some new peaks because of the presence of some residual solvent
and the effect of the removal of GF coating.

3.2. Mechanical Tests

The flexural and shear tests were implemented to study the mechanical properties of the composites.
The comparison of flexural strength and Young’s modulus values for the initial GF reinforced composites
are shown in Figure 3a. The curve showed a trend of increasing flexural strength and Young’s modulus
with increasing the GF ratio. The composites with a GF to PSU ratio of 70/30 recorded the maximum
value of flexural strength (460 MPa) and Young’s modulus (26 GPa) compared with the 340 MPa and
18 GPa for the 50/50 composites. The comparison of these data with those observed previously for
polyethersulfone based composites [32] shows that in case of PSU matrix composites, no decrease in
Young’s modulus at the increase of the GF content from 60/40 to 70/30 was observed.
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reinforced composites.

The sizing coating prevents good adhesion between the fiber and the polymer, which mainly
affects the composite’s strength. A thermal treatment was carried out to remove the sizing coating of the
fiber to enhance the interface bonding between the polymer and the fibers [32,41]. Figure 3b illustrates
the values of flexural strength and Young’s modulus for the preheated GF reinforced composites. It can
be noted that the mechanical properties increased with increasing the GF content; the flexural strength
increased from 408 MPa for 50/50 composites and 483 MPa for the 60/40 composites to 550 MPa in the
case of the 70/30 composites, whereas Young’s modulus increased from 20 GPa for the 50/50 composites
to 26 and 30 GPa for the 60/40 and 70/30 composites, respectively. A remarkable enhancement occurred
in the preheated GF composite properties compared with the initial GF composites at the same ratio.
It was considered that heating the GF removed the GF sizing, which contributed to the improvement
of interface bonding between the fiber and the matrix.

Shear strength, which is affected mainly by the interface bonding, is illustrated in Figure 4.
The effect of the removal of the GF sizing on the interface between GF and the matrix was clearly
demonstrated by an increase of shear strength values of the preheated GF composites compared with
those of the initial GF composites at the same ratios shown in the figure. Shear strength increased
from 43 MPa for the initial GF to 45 MPa for the preheated GF 50/50 composites and from 45/46 MPa
for the initial GF 60/40 and the 70/30 composites to 47/49.5 MPa for the preheated GF 60/40 and
70/30 composites, respectively. The comparison of these data with those observed previously for
polyethersulfone based composites [32] shows that in case of the PSU matrix composites, shear strength
tended to increase with an increase in the GF content from 60/40 to 70/30 both for the composites
containing initial and preheated GF, whereas for polyethersulfone based composites such an increase
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in the GF content resulted in a decrease in shear strength even for the composites reinforced with
the preheated GF. It is additional evidence of the important role of the chemical nature of the matrix
polymer on the interaction between the matrix and the reinforcers.
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3.3. Thermo-Mechanical Tests

Figure 5a shows the temperature dependences of the storage modulus for the initial GF reinforced
composites. The values of the storage modulus remained at a plateau in a temperature range below
the Tg, while it started to fall around the Tg, which is the region of the transformation from glassy
to rubbery state. It can be noted that the storage modulus increased with an increase in the GF
content as a result of an increase in the stiffness and the thermo-resistance of the composites with
increases in the GF ratio. The results recorded that the storage modulus of 22 GPa was found for
the 70/30 composites, while the storage modulus values for the 50/50 and 60/40 composites were
15.5 and 20.5 GPa, respectively. It is considered that the thermo-mechanical characteristic of the
composite was improved with increasing the GF/PSU ratio due to the enhancement of thermal stability
of the composite as a result of an increase of the composite’s stiffness and the interfacial interaction,
which increased the thermodynamic compatibility between GF and the polymer [21,25].

Polymers 2020, 12, x FOR PEER REVIEW 6 of 12 

 

 

Figure 4. Shear strength for the initial GF and the preheated GF reinforced composites. 

3.3. Thermo-Mechanical Tests 

Figure 5a shows the temperature dependences of the storage modulus for the initial GF 
reinforced composites. The values of the storage modulus remained at a plateau in a temperature 
range below the Tg, while it started to fall around the Tg, which is the region of the transformation 
from glassy to rubbery state. It can be noted that the storage modulus increased with an increase in 
the GF content as a result of an increase in the stiffness and the thermo-resistance of the composites 
with increases in the GF ratio. The results recorded that the storage modulus of 22 GPa was found 
for the 70/30 composites, while the storage modulus values for the 50/50 and 60/40 composites were 
15.5 and 20.5 GPa, respectively. It is considered that the thermo-mechanical characteristic of the 
composite was improved with increasing the GF/PSU ratio due to the enhancement of thermal 
stability of the composite as a result of an increase of the composite’s stiffness and the interfacial 
interaction, which increased the thermodynamic compatibility between GF and the polymer [21,25].  

The effect of using the preheated GF on the storage modulus of the composites is investigated 
in Figure 5b. The data showed a noticeable enhancement of the storage modulus values compared 
with the initial GF composites at the same ratio. This increase was attributable to the improvement 
of the stiffness of the preheated GF composites due to an increase of the interface between the fiber 
and the polymer after removing the GF coating, which affected directly on the storage modulus and 
the ability of the material to store energy. The storage moduli of the 50/50, 60/40, and 70/30 preheated 
GF composites were 20, 22, and 26 GPa, respectively.  

 
Figure 5. Temperature dependences of the storage modulus for the initial (a,b) the preheated GF
reinforced composites.



Polymers 2020, 12, 902 7 of 12

The effect of using the preheated GF on the storage modulus of the composites is investigated
in Figure 5b. The data showed a noticeable enhancement of the storage modulus values compared
with the initial GF composites at the same ratio. This increase was attributable to the improvement of
the stiffness of the preheated GF composites due to an increase of the interface between the fiber and
the polymer after removing the GF coating, which affected directly on the storage modulus and the
ability of the material to store energy. The storage moduli of the 50/50, 60/40, and 70/30 preheated GF
composites were 20, 22, and 26 GPa, respectively.

Another way to evaluate thermal stability of the composites’ mechanical properties is tangent
delta (tan δ) measurement. Tan δ refers to the ratio between loss and storage modulus, and the peak
on the Tan δ curve refers to the Tg, which differentiates between the glassy and rubbery region of
the thermo-mechanical behavior of the composite. Tan δ of a different initial GF to polymer ratio is
shown in Figure 6a. It can be seen that the tan δ maximum decreased with an increase in the GF to PSU
ratio, i.e., it decreased from 0.75 for 50/50 composites to 0.65 and 0.53 for 60/40 and 70/30 composites,
respectively. On the other hand, the Tg increased from 163 ◦C for the 50/50 composites to 180 and 192 ◦C
for the 60/40 and 70/30 composites, respectively, due to an increase of thermal stability of the composites.
The reduction behavior of tan δ was due to a decrease of the molecular chain’s mobility as a result
of increasing the fiber/polymer interface bonding [2]. With using the preheated GF, the composites
became stiffer so that the values of tan δ decreased in the preheated composites, as shown in Figure 6b,
compared with the same ratio of the initial GF reinforced composites. The improvement achieved
from using the preheated GF raised thermal stability, which in turn enhanced the Tg of the composites.
The results showed an increase from 170 ◦C for the 50/50 composites to 187 and 198 ◦C for the 60/40
and 70/30 composites, respectively.
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The HDT tests for the initial and preheated GF reinforced composites were carried out to study the
deformation behavior of the composites at the evaluated temperature. The maximum deflection was
set to be 1 mm. The HDT results of the initial GF reinforced composites, shown in Figure 7a, indicated
that the deflection remained approximately zero up to a temperature near the Tg of the polymer matrix
and drastically increased above the Tg. The HDT for the initial GF reinforced composites enhanced
from 168 ◦C for the 50/50 composites to 197 and 209 ◦C for the 60/40 and 70/30 composites, respectively.
It can be proposed that the HDT increases as a result of stiffness and thermal stability enhancement with
increasing the GF/PSU ratio [30,42]. The value of deflection works as an indicator of thermal stability.
As it is shown in Figure 7, the deflection of the composites was near to zero upon the Tg, whereas above
the Tg the deflection increased rapidly. The same behavior was observed in the case of the preheated
GF composites, as seen in Figure 7b. The HDT for the composites containing the preheated GF were
181, 202, and 214 ◦C for the 50/50, 60/40, and 70/30 composites, respectively. The HDT values were
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found to be higher in the preheated GF composites than those in the initial GF composites. This can be
explained by an increase in thermal stability of the composite along the improvement in the interface
bonding between the fiber and the matrix.
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The values of the Tg, tan δ, and HDT for the initial and preheated GF composites are given in
Table 1. It can be noticed that the thermal properties improved with use of the preheated GF instead of
the initial GF in polysulfone composites.

Table 1. The Tg, tan δ, and HDT values for the composites reinforced with the initial and preheated GF.

Fiber/Polymer 50/50 60/40 70/30

Property Tg (◦C) Tan δ
HDT
(◦C) Tg (◦C) Tan δ HDT (◦C) Tg (◦C) Tan δ HDT (◦C)

Initial GF composites 163 0.75 168 180 0.65 197 192 0.53 209

Preheated GF
composites 170 0.81 181 187 0.7 202 198 0.56 214

Figure 8 shows the microstructure of the flexural fracture surface of the PSU based composites
reinforced with the initial and preheated GF. Pull-out phenomena appeared in the case of the 50/50
initial fiber-reinforced composites (Figure 8a), which means that the adhesion on the PSU/GF interface,
in this case, was not sufficient. Preheating resulted in the improvement in the boundary adhesion
(Figure 8b), which was confirmed by the formation of a large amount of PSU particles adherent to
the fiber surface. Some pores appeared in the 50/50 preheated fiber-reinforced composites (Figure 8b)
because of the presence of some solvent that was not removed during the drying process before
compression molding. The evaporation of the solvent resulted in the formation of pores during
compression molding. The preheated fiber-reinforced composites of 60/40, as seen in Figure 8d,
also showed better interface bonding between the fiber and the polymer than those in the 60/40 initial
GF composite shown in Figure 8c. Good interface bonding between the fiber and the matrix occurred
in the 70/30 initial GF reinforced composites, as shown in Figure 8e. As seen in Figure 8f, the 70/30
preheated GF reinforced composites, the fracture of fiber was in a brittle form, which was due to
sufficient interface bonding between the fiber and the polymer. Moreover, the distribution of the
polymer was improved. Thus, an increase in the interfacial interaction due to GF preheating resulted
in higher mechanical properties of the composites.
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Figure 8. SEM images of the flexural fracture surfaces of the 50/50 (a,b), 60/40 (c,d), and 70/30 (e,f) PSU
based composites reinforced with the initial (a,c,e) and the preheated (b,d,f) GF.

4. Conclusions

Mechanical and thermo-mechanical properties of the PSU composites reinforced with initial and
preheated GF for a different fiber to polymer weight ratio were studied. The flexural test showed that
the composite stiffness and Young’s modulus enhanced with increasing the fiber ratio in the initial GF
reinforced composites. A remarkable improvement was achieved by using a preheated GF to reinforce
PSU. Additionally, shear strength increased in the cases of using a preheated GF. The storage modulus,
tangent delta, and Tg values obtained from the DMA test and HDT obtained from the HDT test were
increased in the preheated reinforced GF composites compared with those in the initial GF reinforced
composites. The fiber to polymer ratio of 70/30 recorded the best properties for the initial and preheated
GF reinforced composites. The 70/30 initial GF composites recorded 460 MPa, 26 GPa, and 22 GPa for
flexural strength, Young’s modulus, and storage modulus, respectively. Due to the improvement of the
interfacial adhesion, these magnitudes were increased in the case of the 70/30 preheated GF composites
to record 550 MPa, 30 GPa, and 26 GPa for flexural strength, Young’s modulus, and storage modulus,
respectively. FTIR of the PSU composites showed the main peaks of PSU and GF for the initial and
preheated composites. Additionally, the FTIR spectra showed that the sizing coating was removed by
heating the GF. It revealed that some of the solvent was not disposed of during the drying process.
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The SEM images showed a good distribution of the polymer on the GF surface, which improved with
using the preheated GF that led to an increase in the interface bonding between the polymer and GF.
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