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Abstract: Glutamine metabolism is critical both for the proliferation of cancer cells and the activation
of CD8T cells to kill cancer cells. We aim to explore the relationship between the glutamine metabolism
of CD8T cells and cancer cells and tumor immunity in the tumor microenvironment. In a TCGA
cohort, we found that patients with high scores of glutamine-metabolism-related genes showed poor
prognoses, and that a high score of glutamine-metabolism-related genes was an independent risk
factor for HCC patients. In single-cell RNA-seq data, we found that, in some patients, the glutamine
metabolism gene scores of tumor cells were significantly higher than those of CD8T cells, while
decreased ratios of CD8-Tef-GZMA and suppressed tumor-killing activity of CD8-Tef-APOC2 were
observed. A further genetic dynamics pseudotime analysis suggested that immune remodeling of
these two subpopulations was accompanied by metabolic reprogramming. CD8-Tef-APOC2 in the
dominant group tended to metabolize exogenous lipids, while the metabolic program of CD8-Tef-
GZMA in the nondominant group was characterized by amino acid and endogenous lipid synthesis.
In addition, we found that the glutamine metabolism inhibitor JHU083 promoted the proliferation
of CD8T cells and improved the efficacy of PD-1 blockers. We proposed a new tool to quantify the
glutamine partitioning between tumor cells and CD8T cells, through which the unique immune
microenvironment could be identified at the transcriptome level. Furthermore, the simultaneous
destruction of the glutamine metabolism in tumor cells and CD8T cells facilitated the enrichment of
tumor-infiltrating CD8T cells and enhanced the efficacy of immunotherapy.

Keywords: primary hepatocellular carcinoma; glutamine metabolism; CD8T cell subpopulation;
immunotherapy; JHU083

1. Introduction

The CD8T subpopulation are critical lymphocytes with antitumor effects on the im-
mune microenvironment of hepatocellular carcinoma (HCC). They produce perforin and
other cytotoxins, killing cancer cells without damaging normal cells. Existing studies have
shown that the immune lethality of the CD8T subpopulation is closely related to immune
phenotype and abundance. As early as 2009, Prof. Thommen systematically summarized
the characteristics of sugar depletion and the lipid metabolism reprogramming of T cells in
a low-glucose, hypoxic and high-lactate tumor microenvironment [1]. Previous classical
research has considered the high glucose metabolism of tumor cells as the core factor
that reshapes the metabolic microenvironment and prevents CD8T cells from exerting
their antitumor ability [2]. Unfortunately, a large number of drugs targeting the glucose
metabolism in tumor cells have failed to achieve clinical translation [3]. In 2021, Rathmell
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et al. analyzed the metabolic characteristics of various cells in the microenvironment of
colon cancer with nucleotide-tracing techniques and found for the first time that CD8T
cells did not lack glucose; cancer cells, in contrast, presented a glutamine uptake four-fold
higher than that of CD8T cells. Therefore, perhaps it is the unique nutrient partitioning of
glutamine in the immune microenvironment that affects the antitumor immunity of CD8T
cell subsets [4].

Activated immune cells require unique metabolic patterns to meet their enhanced
energy and biosynthetic needs (amino acids, nucleotides, lipids, etc.) Glutamine is respon-
sible for mitochondrial anaplerosis, nucleotide synthesis, amino acid production, and redox
homeostasis during immunophenotypic remodeling, and is known as “immune fuel” [5].
For example, insufficient intake of glutamine inhibited the proliferation and cytokine pro-
duction in T lymphocytes [6]; similarly, the knockdown of glutaminase (GLS) blocked the
conversion of glutamine to glutamate and reduced the response to immunotherapy [7]. On
the other hand, glutamine utilization in malignant cells is recognized as a characteristic of
cancer. For instance, loss of the proliferative activity of breast cancer cells was observed in
glutamine-depleted cultures [7]. Suppressing the expression of the high mobility group box
1 (HMGB1) gene could reduce glutamine metabolic activity in hepatocellular carcinoma
cells and significantly enhance the response of HCC cells to PD-L1 antagonists [8]. This
evidence suggests that both tumor cells and immune cells in the immune microenvironment
are glutamine-dependent, which implies that we have grossly underestimated the role of
glutamine metabolism in shaping the different immunophenotypes of tumor-infiltrating
CD8T cells.

Therefore, we speculate that the tumor-killing ability of the CD8T subpopulation can
be inhibited when the glutamine metabolic capacity of tumor cells is much higher than that
of CD8T cells. In addition, disrupting this abnormal tumor metabolic microenvironment
may improve CD8T cell function and contribute to the efficacy of immunotherapy.

2. Results
2.1. Patients with High Glutamine Metabolism-Related Gene Expression Score Suffer Worse
Prognoses in TCGA Cohort

We calculated the cancer cell glutamine-metabolism-related gene expression scores
of 363 patients in a TCGA cohort, and divided them into a high score group and a low
score group according to the median value (Figure 1A). Hierarchical clustering was also
performed for all the glutamine-metabolism-related genes, and we found that the 363
HCC patients could be separated by unsupervised statistical techniques. Although some
samples overlapped with other groups, there was good separation between the high
and low score groups (Figure 1B). A Kaplan–Meier plot showed shorter overall survival
times in HCC patients with high scores. In the high score group, the survival rates were
78% at 1 year, 60% at 3 years, and 38% at 5 years, while the 1-year, 3-year, and 5-year
survival rates of the low score group were 88%, 66%, and 57%, respectively (Figure 1C).
We evaluated associations between 12 clinical pathological parameters and prognosis
in both univariate and multivariable models. In the univariate analysis, residual tumor
(HR = 2.12; p = 0.005), history of hepatitis (HR = 1.9; p = 0.001), T-stage (HR = 2.52; p < 0.001)
and glutamine-metabolism-related gene expression scores (HR = 1.56; p = 0.013) were
significantly associated with increased death risk. After the multivariable analysis, only
glutamine-metabolism-related gene expression scores (HR = 1.44; p = 0.052), history of
hepatitis (HR = 1.56; p = 0.029) and T-stage (HR = 2.09; p < 0.001) were significantly
associated with increased death risk and were defined as independent risk factors for OS
(Figure 1D and Table S3).
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Figure 1. Glutamine metabolic activity of tumor tissue is associated with patient prognosis. (A) 363 
patients of a TCGA cohort could be divided into 2 groups according to the median value of gluta-
mine-metabolism-related gene expression scores. (B) Expression levels of individual genes 
(ALDH18A1, GCLC, GCLM, GLS, GLUD1, GOT2, MTHFS, SLC38A1 and SLC38A2) are displayed 
as a heatmap, with low expressions in blue and high expressions in red. The left side of the heatmap 
shows patients with high scores and the right side shows patients with low scores. (C) Kaplan–
Meier analysis shows that patients with high scores suffered a worse overall survival rate. Numbers 
of patients and risk classifications are indicated in the figure. Significance was calculated using the 
log-rank test. (D) CPHR analysis results of glutamine-metabolism-related gene expression scores 
and clinical factors. The forest on the right shows the results of the univariate and multivariate anal-
yses, with reference value of the hazard ratio = 1. Line intersection with reference line suggests no 
statistical difference. Red represents univariate analysis, and blue represents multivariate analysis. 

2.2. Patient Grouping and Subpopulation Annotation of Single-Cell Sequencing Data 
To obtain a complete single-cell expression atlas in the TME of primary liver cancer, 

cell classification and marker gene identification were performed with Seurat based on 10 
qualified primary hepatocarcinoma patients. Five main cell clusters and an undefined 

Figure 1. Glutamine metabolic activity of tumor tissue is associated with patient prognosis. (A) 363 pa-
tients of a TCGA cohort could be divided into 2 groups according to the median value of glutamine-
metabolism-related gene expression scores. (B) Expression levels of individual genes (ALDH18A1,
GCLC, GCLM, GLS, GLUD1, GOT2, MTHFS, SLC38A1 and SLC38A2) are displayed as a heatmap,
with low expressions in blue and high expressions in red. The left side of the heatmap shows patients
with high scores and the right side shows patients with low scores. (C) Kaplan–Meier analysis
shows that patients with high scores suffered a worse overall survival rate. Numbers of patients
and risk classifications are indicated in the figure. Significance was calculated using the log-rank
test. (D) CPHR analysis results of glutamine-metabolism-related gene expression scores and clinical
factors. The forest on the right shows the results of the univariate and multivariate analyses, with
reference value of the hazard ratio = 1. Line intersection with reference line suggests no statistical
difference. Red represents univariate analysis, and blue represents multivariate analysis.

2.2. Patient Grouping and Subpopulation Annotation of Single-Cell Sequencing Data

To obtain a complete single-cell expression atlas in the TME of primary liver cancer,
cell classification and marker gene identification were performed with Seurat based on
10 qualified primary hepatocarcinoma patients. Five main cell clusters and an undefined
cluster were defined for 8927 eligible cells by the T-distributed stochastic neighbor embed-
ding (t-SNE) method (Figures 2A,B and S2). The main cell clusters included T cells (CD3E
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and CD3D), B cells (CD19), natural killer cells (NCAM1, FCGR3A and KLRD1), myeloid
cells (CD86 and CD163) and tumor cells (EPCAM, KRT8 and KRT18). t-SNE plots of each
marker gene are shown in Supplementary Figure S3. The undefined group without known
biological markers was not studied in our research.
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Figure 2. Cell annotation and HCC patient grouping in single-cell RNA-seq. The single-cell RNA
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in the TME derived from HCC patients. Each cluster is color-coded according to cell type. Cluster
annotations are indicated in the figure. (B) Dot plot showing the expressions of marker genes in
each cell subpopulation. The colors of the dots indicate the average expression level: red shows high
expressions and blue shows low expressions. Sizes of the dots represent cell proportions. (C) t-SNE
plot showing the cell subtypes derived from T cells. (D) Dot plot showing the expressions of marker
genes in each subpopulation of T cells. (E) Box plot showing the differences in glutamine-metabolism-
related gene expression scores between tumor cells and CD8T cells. (F) Scatter plot of cancer cell
glutamine-metabolism-related gene expression scores in 10 HCC patients. Red points represent HCC
patients with high scores; blue points represent patients with low scores. (G,H) Box plots illustrating
the differences in glutamine-metabolism-related gene expression scores and cytotoxicity scores in
CD8T cells among different patients. (I) Scatter plot showing the differences in glutamine-metabolism-
related gene expression scores between cancer cells and CD8T cells in each patient. Information about
patients is listed in Supplementary Table S4. (J) Volcano dot plot showing metabolic classifications of
10 patients. The color of each dot indicates the p-value. Gray indicates no difference between cancer
cells and immune cells in a patient. Dominance score is represented by dot size. Patient ID is marked
in the figure. (K–L) Box plots illustrating the differences in glutamine-metabolism-related gene
expression scores and cytotoxicity scores of CD8T cells between dominant and nondominant groups.

The total amount of 4773 T cells was further divided into six known subpopulations,
as well as another undefined subpopulation, based on known molecular markers after
the removal batch effects, dimensionality reduction, and re-clustering (Figures 2C,D and
S2). The CD4+ T subpopulation included central memory CD4 IL7Rhigh T cells (CD4-
Tcm-IL7R: IL7R, CCR7, TCF7 and S1PR1) and classical regulatory CD4 FXOP3high T cells
(CD4-Trg-FXOP3: FXOP3, IL2R, CTLA4, HAVCR2 and TIGIT). The CD8+ cluster included
proliferating CD8 MKI67high T cells (CD8-Mait-MKI67: CENPM, TOP2A, TK1 and MKI67)
and three subpopulations of CD8 effector T cells, including GZMAhigh T cells (CD8-Tef-
GZMA: GZMA, GZMB, GZMH, PRF1, NKG7 and IFNG), CXCL13high T cells (CD8-Tef-
CXCL13: GZMA, GZMB, GZMH, PRF1, NKG7, IFNG, CXCL13 and TOX), and APOC2high

T cells (CD8-Tef-APOC2: GZMB, GZMH, NKG7, GNLY, APOA2, APOC2 andFABP1).
t-SNE plots of each marker gene are shown in Supplementary Figure S4. Some of the T
cells could not be identified by known molecular markers after clustering and were not
biologically annotated here.

We extracted glutamine-metabolism-related genes in cancer cells and CD8T cells from
each patient and separately calculated the expression scores of these genes. We found that
the glutamine-metabolism-related gene expression scores of cancer cells were significantly
higher than those of the CD8T cells (Figure 2E). Further, we attempted to explore whether
cancer cells with high expression scores of glutamine-metabolism-related genes affected the
glutamine metabolism and tumoricidal abilities of CD8T cells. We divided the 10 patients
into a high score group (P09, P10, P16, P17 and P19) and a low score group (P8, P12, P13,
P15 and P18) according to the glutamine-metabolism-related gene expression scores of
cancer cells (Figure 2F). Unfortunately, we did not observe significant changes in glutamine-
metabolism-related gene expression scores or cytotoxic scores of CD8T cells between the
two groups (Figure 2G,H). However, we observed a significant difference in expression
scores for glutamine-metabolism-related genes between cancer cells and CD8T cells among
some patients (Figure 2I), so we divided the patients into different groups with distinct
cytotoxic scores for CD8T cells. According to the expression score difference between these
two cell subpopulations, patients were divided into the cancer cell groups of glutamine-
metabolism-related gene dominant expression scores (dominant group) and nondominant
expression scores (nondominant group). The difference in glutamine-metabolism-related
gene expression scores between those two subpopulations was defined as a dominant
score. Five patients (P09, P10, P13, P16 and P19) could be classified in the dominant group
(dominance score > 0 & p < 0.05) and the other five patients (P08, P12, P15, P17 and P18) were
in the nondominant group (dominance score < 0 or p > 0.05) (Figure 2J). In the dominant
group, we observed that the glutamine-metabolism-related gene expression scores of
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CD8T cells were significantly downregulated (Wilcoxon test, p = 2.8 × 10−5) (Figure 2K),
accompanied by a decrease in cytotoxic score (Wilcoxon test, p = 7.7 × 10−7) (Figure 2L).
This may indicate that it was the glutamine metabolism dominance score difference between
cancer cells and CD8T cells, rather than cancer cell glutamine-metabolism-related gene
expression scores, that affected the tumoricidal ability of CD8T cells.

2.3. Tumoricidal Activity of CD8T Cells Is Suppressed in the Dominant Group

We further compared the cytotoxic gene expression levels (EOMES, GZMA, GZMB,
IFNG, NKG7 and PRF1) of CD8T cells between the two groups, and it was observed that
the expressions of these classical cytotoxic genes were significantly downregulated in the
dominant group (Figure 3A), especially for GZMA (Wilcoxon test, p = 9.8 × 10−10), GZMB
(Wilcoxon test, p = 9.8 × 10−15), NKG7 (Wilcoxon test, p = 3.6 × 10−13) and PRF1 (Wilcoxon
test, p = 2.2 × 10−16). Next, we compared the composition ratios of cancer cells in the two
populations. In the dominant group, a higher proportion of cancer cells was observed
(Figure 3B), which increased with the enhancement of cancer cell glutamine-metabolism-
related gene expression scores (correlation coefficient R = 0.91; p = 0.033) (Figure 3C).
To evaluate the tumoricidal capacity in the CD8T subpopulations, we calculated the cell
ratios and cytotoxicity scores in four CD8Tef subpopulations. Interestingly, we observed
decreased CD8-Tef-GZMA (t-test, p = 0.016) in the dominant group, while the proportions
of CD8-Tef-APOC2, CD8-Tef-CXCL13 and CD8-Mait-MKI67 cells were increased without
significant change (Figure 3D). At the same time, the cytotoxicity scores of CD8-Tef-APOC2
(Wilcoxon test, p = 1.8 × 10−7) in the dominant group were weaker, while the cytotoxicity
scores of CD8-Mait-MKI67 and CD8-Tef-GZMA were only mildly decreased (decrease was
not significant) (Figure 3E). This may indicate that the decreased ratio of CD8-Tef-GZMA
and the weaker tumoricidal capacity of CD8-Tef-APOC2 could influence the tumoricidal
capacity of the CD8T subpopulations.

Cells 2022, 11, x FOR PEER REVIEW 7 of 20 
 

 

glutamine metabolism dominance score difference between cancer cells and CD8T cells, 
rather than cancer cell glutamine-metabolism-related gene expression scores, that affected 
the tumoricidal ability of CD8T cells. 

2.3. Tumoricidal Activity of CD8T Cells Is Suppressed in the Dominant Group 
We further compared the cytotoxic gene expression levels (EOMES, GZMA, GZMB, 

IFNG, NKG7 and PRF1) of CD8T cells between the two groups, and it was observed that 
the expressions of these classical cytotoxic genes were significantly downregulated in the 
dominant group (Figure 3A), especially for GZMA (Wilcoxon test, p = 9.8 × 10−10), GZMB 
(Wilcoxon test, p = 9.8 × 10−15), NKG7 (Wilcoxon test, p = 3.6 × 10−13) and PRF1 (Wilcoxon 
test, p = 2.2 × 10−16). Next, we compared the composition ratios of cancer cells in the two 
populations. In the dominant group, a higher proportion of cancer cells was observed 
(Figure 3B), which increased with the enhancement of cancer cell glutamine-metabolism-
related gene expression scores (correlation coefficient R = 0.91; p = 0.033) (Figure 3C). To 
evaluate the tumoricidal capacity in the CD8T subpopulations, we calculated the cell ra-
tios and cytotoxicity scores in four CD8Tef subpopulations. Interestingly, we observed 
decreased CD8-Tef-GZMA (t-test, p = 0.016) in the dominant group, while the proportions 
of CD8-Tef-APOC2, CD8-Tef-CXCL13 and CD8-Mait-MKI67 cells were increased without 
significant change (Figure 3D). At the same time, the cytotoxicity scores of CD8-Tef-
APOC2 (Wilcoxon test, p = 1.8 × 10−7) in the dominant group were weaker, while the cyto-
toxicity scores of CD8-Mait-MKI67 and CD8-Tef-GZMA were only mildly decreased (de-
crease was not significant) (Figure 3E). This may indicate that the decreased ratio of CD8-
Tef-GZMA and the weaker tumoricidal capacity of CD8-Tef-APOC2 could influence the 
tumoricidal capacity of the CD8T subpopulations. 

 
Figure 3. Differences in composition ratios and antitumor abilities in CD8T subpopulations. (A) Box
plot showing the expressions of cytotoxicity-related genes (GZMA, GZMB, PRF1, IFNG, EOMES and



Cells 2022, 11, 3924 7 of 19

NKG7). (B) Box plot illustrating cancer cell ratios in the TME of different populations. (C) Fitting
curve presenting the correlation between glutamine-metabolism-related gene expression scores and
cell ratios of cancer cells; correlation coefficients and significance tests are annotated in the figure.
Gray indicates nondominant group, and light purple indicates dominant group in (A–C). (D) Stacked
bar plot on the left shows the cell ratios of CD8T cell subtypes in the TME of dominant group vs.
nondominant group. Box plot on the right compares the cells ratios of CD8T cell subtypes between
the 2 populations. (E) Box plot representing the difference in cytotoxicity scores in CD8T cell subtypes
between 2 populations. Metadata of CD8T cells in the TME of 10 primary hepatocellular carcinoma
patients are listed in Supplementary Table S5.

2.4. Pathway Analysis of CD8T Cells in Dominant Group vs. Nondominant Group

A total of 1125 DEGs were extracted, among which 118 genes were upregulated in
the dominant group, while only 51 genes were upregulated in the nondominant group
(Figure 4A,B), and cell-killing-related genes, such as GZMK, GNLY and KLRK1, were
specifically highly expressed, which was consistent with the above results. We used the
gene set enrichment analysis (GSEA) approach for the 1125 DEGs to accurately quantify
the pathway enrichment scores in the CD8 Tef cells (Figure 4C,D). In the nondominant
group, the activation pathways of T cells and NK cells were upregulated, such as alpha–
beta T cell activation, lymphocyte costimulation, chemokine binding, and the positive
regulation of natural-killer-cell-mediated immunity; however, some immunosuppressive
pathways were selectively activated in the dominant group, such as negative regulation
of the immune system process, interleukin-10 signaling, and interleukin-8 production. At
the same time, responses to oxidative stress and cellular responses to toxic substances
were activated in the dominant group, which implies that CD8T cells in the dominant
group faced stronger metabolic and survival pressures. For the metabolism of CD8T cells,
activations of the lipid catabolic process and oxidative phosphorylation were observed in
the dominant group, while no significant change in metabolic-related pathways was found
in the nondominant group. In conclusion, the immune status of CD8T cells in the dominant
group was suppressed, which was consistent with the results of the previous analysis.

2.5. CD8 Effector T Cells Have Different Metabolic Programs and Various Immune Statuses under
the Influence of Glutamine Metabolism in Cancer Cells

With the above results, we found that the heterogeneity of CD8T cells in the two
populations was mainly focused on two subsets: CD8-Tef-GZMA and CD8-Tef-APOC2. To
further understand the gene and pathway dynamic changes in these subsets, we observed
dynamic change in immunological status and the process of metabolism reprogramming by
inferring the state trajectories with the Monocle package. The cells were sequenced using
pseudotime 0 to 20 in a trajectory tree, and the trajectories with the lowest pseudotime
were defined as the initiation phase (phases one to four), while the trajectories with the
highest pseudotime were defined as the end phase (phases five, six and seven) (Figure 5A).
We also visually displayed the distribution of the three CD8 Tef subsets in a cell trajectory
tree (Figure 5B,C).
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Figure 4. GSEA analysis of DEGs between CD8T cells in the dominant group and nondominant
group. (A) Volcano plot of DEGs in CD8T cells of different populations. Green dots indicate genes
upregulated in the dominant group and brown dots indicate genes upregulated in the nondominant
group. The DEGs of CD8T cells in the TME of the dominant group and nondominant group are
listed in Supplementary Table S6. (B) Heatmap of DEGs in CD8T cells of different populations.
Rows indicate DEGs, columns are CD8T cells, and cell types are annotated above the heatmap.
(C) Dot plot of gene set enrichment analysis (GSEA) showing enriched pathways of CD8T cells in
the different groups. The size of each dot represents the enriched gene count in a pathway; the color
of each dot indicates the significance test, with red showing greater significance. The results of the
GO, REACTOME and HALLMARK for the dominant group and nondominant group are listed in
Supplementary Table S7. (D) GSEA plots of 6 pathways are shown: 4 upper plots were activated in
CD8T cells of the dominant group (enrichment score > 0), and 2 lower plots were activated in the
nondominant group (enrichment score < 0).
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Figure 5. Differentiation directions of Tef subsets under different glutamine metabolic stress.
(A) Pseudotime-ordered analysis of Tef cells. Arrows indicate direction of development. (B,C) Trajec-
tory trees showing the distribution of Tef cell subtypes along the developmental trajectories. T cell
subtypes are labeled by color: CD8-Tef-GZMA is colored with brown, CD8-Tef-CXCL13 with yellow,
and CD8-Tef-APOC2 with green. (D) 2D pseudotime plot showing the dynamics of cytotoxic score
of Tef cells in the dominant group and nondominant group. (E) 2D graph of pseudotime-ordered
Tef cells. The trajectory state is labeled by color. (F) Histogram showing the cell distributions of
CD8-Tef-GZMA and CD8-Tef-APOC2 over 7 phases between the dominant group and nondominant
group. Tef subtypes are labeled by colors. (G) Heatmap showing the dynamic changes in gene
expression along pseudotime. Representative genes of clusters 1, 2, and 5 are listed to the left of the
heatmap. The DEGs of this heatmap are listed in Supplementary Table S8. Immune-regulation-related
and metabolism-related pathways are marked to the right of the heatmap. Enriched pathways (GO
and REACTOME) of the three clusters are listed in Supplementary Table S9. (H,I) Two-dimensional
plots showing the dynamic expressions of metabolism-associated genes (I) and immune-associated
genes (H) during Tef cell transitions along pseudotime.
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The analysis showed that CD8 Tef cells in the initiation phase with low cytotoxicity
scores were mainly derived from patients in the dominant group, while CD8 Tef cells in the
end phase with high cytotoxicity scores were mainly derived from the nondominant group
(Figure 5D,E). We calculated the cell composition ratios of the two CD8 Tef subpopulations
over seven phases. In the initiation phase, most of the CD8 Tef cells were mapped to CD8-
Tef-APOC2 in the dominant group, while only a small part belonged to CD8-Tef-GZMA in
the dominant group. During the pseudotime increase (phases 1 to 7), the CD8-Tef-APOC2
ratio in the dominant group decreased, and the ratio of CD8-Tef-GZMA in the nondominant
group was gradually elevated (Figure 5F).

CD8-Tef-APOC2 was characterized by some activated pathways, such as oxidative
phosphorylation and the positive regulation of lipid transport, and immunosuppressive
pathways such as interleukin-10, interleukin-4, and interleukin-13 signaling were also
significantly upregulated (Figure 5G). This implies that CD8-Tef-APOC2 was an immuno-
suppressed subpopulation that aggregated in the dominant group. This subpopulation
showed lipid hypermetabolism, and the lipid transport-related genes of MSR1, FABP3,
CES1, and LIPA were upregulated (Figure 5I). Therefore, we speculated that CD8-Tef-
APOC2 tends to transport exogenous lipids to supplement the “energy gap”. During the
pseudotime increase, the gene expressions of the lipid-transport-related pathway in the ini-
tiation phase (mostly CD8-Tef-APOC) gradually decreased, but the gene expressions, such
as GLS, SLC44A2 and SLC38A1, relating to glycerophospholipid biosynthesis, phospho-
lipid metabolism and amino acid transport across the plasma membrane in the end phase
(mostly CD8-Tef-GZMA) were raised (Figure 5G,I). Simultaneously with metabolism repro-
gramming, the immune activation signaling pathways of CD8-Tef-GZMA were promoted,
including lymphocyte differentiation, alpha–beta T cell activation, interferon gamma pro-
duction, and the interleukin-2 family signaling pathway (Figure 5G). The genes upregulated
in these pathways included CD28, CD8, GZMA, GZMK, NKG7, and HPOX (Figure 5H).
These changes suggested that CD8-Tef-GZMA might prefer to take up a variety of amino
acids, including glutamine, to promote the endogenous synthesis of glycerophospholipids
and that this unique metabolic program facilitates proliferation and immune activation.

Overall, we tentatively realized that the metabolism reprogramming of CD8 Tef sub-
populations may be strongly associated with the glutamine nutrition partitioning between
cancer cells and CD8T cells and might be an important factor leading to the reshaping
of the immunophenotype in CD8T cells. Therefore, we speculated that interfering with
glutamine metabolism in the TME may contribute to the enhanced proliferation capacity of
CD8T cell subpopulations and may increase the efficacy of immune checkpoint inhibitors.

2.6. Glutamine Metabolism Inhibitor (JHU083) Enhances the Efficacy of Immune Checkpoint
Inhibitors (PD-1 Inhibitor)

JHU083 is a precursor drug of the glutamine-metabolizing enzyme inhibitor DON,
which inhibits a variety of intracellular enzymes related to the glutamine metabolic path-
way, including glutaminase, glutamate dehydrogenase, NAD synthase, and asparagine
synthase. Here, we compared the efficacy of four groups, including the JHU083 group, the
PD-1 blocker group, the combined JHU083 and PD-1 blocker group, and the VEH control
group. The mRNA expression levels of SLC7A5 and GLS were significantly decreased
after treatment with JHU083, which demonstrated the successful inhibition of glutamine
metabolism in subcutaneous hepatocellular carcinoma tumor tissue (Figure 6A,B). Com-
pared with the VEH group, the volumes and weights of tumors in the JHU083 group were
significantly decreased, while the efficacy of the PD-1 blocker group was not satisfactory
(Figure 6C,F). However, distinct from the poor results of PD-1 blockers alone, JHU083
combined with PD-1 blockers could not only significantly inhibit tumor growth, but also
showed a stronger efficacy than the JHU083 group. Next, we performed immunohistochem-
ical staining of tumor tissues, including KI67, CD3, and CD8 (Figure 6G). There was no
significant difference in KI67 between the VEH control and PD-1 blocker groups, suggesting
that blockading of the PD-1 signal pathway alone could not inhibit the proliferation of
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tumor cells. However, the KI67 protein expression level of tumor cells was significantly
decreased, both in the combined group of PD-1 blocker and JHU083 and in the JHU083
group (Figure 6H). With the exception of the JHU083 group and the PD-1 blocker group,
only the combined group of JHU083 and PD-1 blocker was found to have a significant
increase in the expression level of CD3 protein. For CD8 protein, we observed significant
increases both in the combined group of JHU083 and PD-1 blocker and the JHU083 group,
while a mild but not statistically significant increase was also found in the PD-1 blocker
group (Figure 6I,J).
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of primer is listed in Supplementary Table S12. (A) and SLC38A1 (B) in tumor tissue after treatment
with drugs. (C) Mouse subcutaneous tumors after inoculation with H22 cell for 22 days. (D,E) Box
plots showing volumes (D) and weights (E) of tumor tissues of 4 groups after harvesting. The raw
data on tumor volumes and weights are given in Supplementary Table S10. (F) Tumor growth curve
illustrating the tumor growth rates of different groups. Inoculation with H22 cells occurred on the
first day, and drug treatment occurred on the third day. Tumor volumes were measured every 2
days. Significance test was performed with ANOVA. Raw data on tumor volumes are given in
Supplementary Table S11. (G) Immunofluorescence of Ki67, CD8, and CD3. Brown was considered
to be strongly positive staining. (H–J) Box plots indicating immunohistochemical quantification
of Ki67, CD8 and CD3. (K) Stacked bar plot showing dynamic changes in 4 immune cells sorted
by the proportion of CD8+ T cells from small to large. Mouse numbers are marked on the x-axis.
(L,N) Cell-sorting diagrams of flow cytometry, including T cells (L), CD8+ T cells, and CD4+ T cells
(N). Antibodies used in flow cytometry are given in Supplementary Table S13. (M,O,P) Histograms
showing changes in above cell ratios of 4 groups.

Because quantitative immunohistochemical assays are subject to subjectivity and
cannot precisely measure cell numbers, we performed flow cytometry to accurately count
the abundance of CD8T cells in the tumor tissue. We found a significant increase in T
cells for the combined group of PD-1 blocker and JHU083 compared with the individual
JHU083 and PD-1 blocker groups (Figure 6L,M). We also counted the numbers of CD8T
cells and CD4T cells in the different groups (Figure 6N–P). We detected a higher CD8T cell
proportion and a lower CD4T cell proportion in the combined PD-1 blocker and JHU083
group compared with the individual PD-1 blocker and JHU083 groups, but the numbers of
CD8T cells and CD4T cells between the PD-1 blocker group and the JHU083 group were
not statistically different. Other immune cells, including NKT cells and NK cells, did not
change significantly after the administration of the drugs. Sequential changes in the CD8T
cells, CD4T cells, NK cells, and NKT cells between the four groups are shown in Figure 6K.

Taken together, these results suggest that after the application of the glutamine
metabolism inhibitor JHU083, PD-1 blockers demonstrated dramatic efficacy for tumor
growth inhibition. In the immune microenvironment where glutamine metabolism was
blocked, the growth of cancer cells was inhibited, while T cells, especially CD8T cells, were
more proliferative.

3. Discussion

Hepatocellular carcinoma is a malignant tumor with a five-year survival rate of
less than 10% [9,10]. Although immune checkpoint inhibitors such as pabolizumab and
atilizumab have improved the overall survival rate of hepatocellular carcinoma patients,
their response rate is still unsatisfactory [11]. Therefore, the intensive investigation of the
formation mechanism of a tumor-infiltrating immunosuppressive microenvironment is an
important approach for improving therapy for hepatocellular carcinoma. In this study, we
found that the higher the glutamine-metabolism-related gene expression scores of cancer
cells, the worse the prognoses of patients. Meanwhile, a single-cell sequencing analysis
showed that immunosuppressive microenvironments of HCC occurred in patients whose
glutamine-metabolism-related gene expression scores in cancer cells were significantly
stronger than those of CD8T cells, although not in relation to the absolute strength of
glutamine-metabolism-related gene expression scores of cancer cells. Moreover, the inhibi-
tion of glutamine metabolism in the hepatocellular carcinoma microenvironment improved
antitumor immune responses and enhanced the efficacy of immune checkpoint inhibitors.

Unbalanced nutrient partitioning between tumor cells and immune subpopulations is
an important driver of immune heterogeneity among cell subpopulations. For example,
the strong fat metabolism of MC38 cells suppressed the fat uptake capacity of T lympho-
cytes and impaired immune function [12], and the uptake and consumption of arginine
by tumor cells have been found to significantly inhibit the antitumor capacity of lympho-
cytes [13–15]. In the single-cell dataset, we found that the glutamine metabolism gene



Cells 2022, 11, 3924 13 of 19

expression scores of cancer cells did not significantly correlate with the antitumor capac-
ity of CD8T cells. However, further analysis revealed that glutamine metabolism gene
expression scores were significantly higher in cancer cells than in CD8T cells in a portion
of the patients. Therefore, according to the differences in the glutamine metabolism gene
expression scores between tumor cells and CD8T cells in each patient, we divided these
patients into cancer-cell-dominant and nondominant groups. Further analysis revealed a
significant decrease in antitumor factors (GZMA, GZMB, NKG7, and PRF1) in CD8T cells
and an increase in the proportion of cancer cells, especially in the cancer-cell-dominant
group. To analyze the reasons for the decreased tumoricidal capacity in CD8T cells, we
analyzed the CD8T subpopulation. We observed a significant decrease in the proportion
of the CD8-Tef-GZMA subpopulation and a significant downregulation of cytotoxicity
scores in the CD8-Tef-APOC2 subpopulation within the dominant group, while other
subpopulations did not differ. Therefore, the immunosuppressive tumor microenviron-
ments in patients of the dominant group could be caused by the CD8-Tef-GZMA and
CD8-Tef-APOC2 subpopulations.

A genetic dynamics pseudotime analysis and a GSEA revealed that immune remodel-
ing of tumor-infiltrating CD8T cells was accompanied by the reprogramming of metabolic
patterns. During the remodeling of the immunosuppressive CD8-Tef-APOC2 subpopu-
lation into a tumor-killing CD8-Tef-GZMA subpopulation, the metabolic pattern of ex-
ogenous lipid metabolism was gradually replaced by the metabolic patterns of amino
acid and endogenous lipid synthesis. The CD8-Tef-APOC2 subpopulation, which was
heavily infiltrated in the TME of the cancer-cell-dominant group, was characterized by the
upregulation of the exogenous lipid metabolism and immunosuppressive pathways. The
proportion of the CD8-Tef-GZMA subpopulation was significantly elevated in the cancer
cells nondominant group, and this process was accompanied by the upregulation of amino
acid metabolism and endogenous lipid synthesis [16]. Existing research proved that tumor
cells consume most of the nutrients in the immune microenvironment, while CD8T cells
only consume less than 5% of glutamine [4]. At the same time, the enrichment of the exoge-
nous lipid metabolism pathway in patients in the dominant group suggested that CD8T
cells are likely to ingest exogenous fatty acids as alternative energy to maintain metabolism.
This unique lipid metabolism mechanism has been confirmed in many tumors [17–19] and
may be related to the fact that lipolysis-derived ketobodies can provide energy faster than
other metabolic substrates in an anaerobic environment [20].

Blockading the PD-L1/PD-1 signaling pathway has been demonstrated as an impor-
tant means to break tumor immune escape in a large number of clinical drugs [21–23],
but sufficient immune cells are also a prerequisite for the sustained action of PD-1 block-
ers [24–26]. The results of the single-cell RNA-seq data suggest that interfering with the
glutamine metabolism of tumor cells and CD8T cells may produce a positive effect on the
tumor-killing ability of CD8T cell subsets. In our subcutaneous tumor model of mice, we
demonstrated that a glutamine metabolism inhibitor increased the number of CD8T cells in
the immune microenvironment and enhanced the inhibitory effect on tumor growth of a
PD-1 blocker. In the glutamine metabolism inhibitor group, the volumes and weights of
subcutaneous tumors were significantly decreased. Furthermore, the immunohistochemical
results also suggested that tumor cell proliferation was inhibited and was accompanied by
the significant proliferation of CD8T cells, and the flow cytology results were consistent
with the immunohistochemical results. In the PD-1 inhibitor group, we did not observe
either the growth inhibition of subcutaneous tumors or the significant proliferation of CD8T
cells. However, we found that PD-1 inhibitors in the combination group exerted stronger
growth inhibition of tumor cells and greater proliferation of CD8T cells than PD-1 inhibitors
alone, and this effect was even stronger than that of JHU083. Combined with the results of
immunohistochemistry and flow cytometry, we speculated that the excellent effects may
be closely related to the growth inhibition of tumor cells and the proliferative effect on
CD8T cells of JHU083. The distinct effects of JHU083 on these two cell subpopulations
have been found and confirmed in colon cancer research. Under the overall inhibition
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of the glutamine metabolic pathway, CD8T cells can still uptake compensatory glucose,
increase PC enzymatic activity, and enhance the activity of the acetate metabolism pathway
to guide carbon sources into the TCA cycle and increase intracellular metabolism [27]. In
addition, the inhibition of GLS can reduce the accumulation of α-ketoglutarate, which has
been proved to promote CD8T cell differentiation to memory cells, giving CD8T cells the
phenotypic characteristics of high proliferation and long life [28,29]. However, this flexible
metabolic compensation mechanism was also shown to be lacking in tumor cells [27].

Additionally, a shortcoming of this study is that, although we demonstrated that the
inhibition of glutamine metabolism in the TME induced the proliferation of CD8T cells,
we could not exclude whether JHU083 regulated CD8T cells by affecting other immune
cell subpopulations, such as CD4Trg or MDSCs. The specific regulatory mechanism of
glutamine nutrient partitioning between CD8T cells and tumor cells for reshaping tumor
immunity also needs further experimental validation. Finally, the animal model we used
only partially summarized the pathological and clinical characteristics of human tumors,
so the sensitizing effect of glutamine metabolism inhibitors on PD-1 blockers also needs
further validation in human clinical trials.

In summary, we proposed a new tumor metabolic microenvironment signature at
the transcriptome level that could affect the immune function of CD8T cells, namely
the glutamine nutrient partitioning between cancer cells and CD8T cells. Specifically,
when the glutamine metabolism gene expression scores of tumor cells exceeded those
of CD8T cells at the transcriptome level, we found that immunosuppressive CD8T cell
subsets were enriched. This suggested that interference with the glutamine metabolism
of the immune microenvironment could be beneficial to enhance the efficacy of immune
checkpoint inhibitors. Our animal model of liver cancer verified our conjecture. JHU083
in combination with a PD-1 inhibitor exhibited excellent tumor-suppressive effects. We
noticed that the number of tumor-infiltrating CD8T cells increased after treatment with
glutamine metabolic inhibitors, which could be the reason for the increased efficacy of
the PD-1 inhibitors, but the potential regulatory mechanism needs further study. Here,
we proposed a new target to improve the number of tumor-infiltrating CD8T cells in
HCC patients and provided new ideas for further research on metabolism combined with
immunotherapy.

4. Materials and Methods
4.1. Data Resources for scRNA-Seq and Bluk RNA-Seq

CNP0000650 single-cell RNA sequencing data (https://db.cngb.org/search/project/
CNP0000650/ (accessed on 15 March 2022)) [30] were downloaded from the China National
GeneBank (CNGB), and 10 patients with primary hepatocellular carcinoma were selected
(2 patients with fewer than 10 tumor cells were excluded). First, cells with gene counts
greater than 50 and genes expressed in three or more cells were included. Then genes with
mitochondrial gene proportions ≥ 4%, ribosomal gene proportions ≤ 2%, and hemoglobin
gene proportions≥ 10% were excluded. The remaining eligible cells and genes were filtered
for downstream analysis (Figure S1).

FPKM data of bulk RNA-seq data and clinical follow-up data from TCGA-LIHC
(https://portal.gdc.cancer.gov/ (accessed on 22 February 2022)) were downloaded for
clinical analysis. After excluding patients without survival information and expression
matrices, 363 transcriptional profiles of tumor tissue, 11 clinical pathological parameters
corresponding to patients (T-stage, age, degree of inflammation of paracancerous tissue,
plasma AFP value, cirrhosis, tumor grade, vascular invasion, tumor margin, history of
hepatitis, alcohol consumption, and smoking), and 2 survival indicators (survival status and
survival time) were included (Table S1). All patients were diagnosed with hepatocellular
carcinoma after pathological examination.

https://db.cngb.org/search/project/CNP0000650/
https://db.cngb.org/search/project/CNP0000650/
https://portal.gdc.cancer.gov/
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4.2. Data Processing and Analysis of TCGA Cohort

The ‘ssGSEA‘ function was used to assess the cancer cell glutamine-metabolism-related
gene expression scores of each patient for glutamine-metabolism-related genes (ALDH18A1,
GCLC, GCLM, GLS, GLUD1, GOT2, MTHFS, SLC38A1 and SLC38A2). Similarly, due to
the specific expression of cytotoxicity-related genes in immune cells, the bulk transcriptome
data could also be used to calculate the cytotoxicity score of the immune population in each
patient to assess their antitumor activity. The median value of the glutamine-metabolism-
related gene expression scores was defined as the cut-off value, and the 363 patients
were divided into a high score group and a low score group to explore the relationship
between cancer cell glutamine-metabolism-related gene expression scores and prognosis.
To investigate the effects of glutamine-metabolism-related gene expression scores and
other clinical factors on prognosis in HCC patients, we performed univariate (screening
criteria: combined with clinical background and p < 0.2) and multivariate (screening criteria:
p ≤ 0.05) Cox proportional hazards regression (CPHR) analyses in the TCGA cohort.

4.3. Data Processing and Subgroup Annotation of Single-Cell RNA-Seq

The Seurat package in R (version 3.0, Ross Ihaka, Auckland, New Zealand) was used
for single-cell RNA-seq data. By applying the ‘NormalizeData’ function of the Seurat
package, the expression matrix of all the cells was normalized with a scale factor of 10,000,
and 3000 highly variable genes were filtered with the ‘FindVariableFeatures’ function using
the ‘vst’ method. Next, the ‘ScalData’ function scaled the data, and all genes were set as
reference genes. PCA analysis was used to identify significantly available dimensions
with p-value < 0.05. We operated a t-distributed stochastic neighbor embedding (t-SNE)
algorithm to reduce the dimensionality of 15 PCs and then performed cluster classifica-
tion analysis across all the cells. The clustered cells were annotated as different biologic
subpopulations according to known molecular markers summarized in the previous litera-
ture, including T cells (CD3E and CD3D), B cells (CD19), NK cells (NCAM1, KLRD1 and
FCGR3A), myeloid cells (CD163 and CD86), and tumor cells (EPCAM, KRT18 and KRT8).

T cell subpopulations were extracted individually, and batch effects of T cells were
corrected using the ‘Harmony’ package to ensure penalties for any specified unwanted
technical or biological factors. Then, the same standardized and dimensional reductions
were performed on the T cells. The ‘FindNeighbors’ and ‘FindClusters’ functions were
performed with resolutions of 0.8–2 to identify individual cell clusters. The biological
background of each cell cluster was defined by molecular markers supported by the avail-
able literature. The cited literature for each subpopulation and corresponding molecular
markers is listed in Supplementary Table S2.

4.4. Calculating Pathway Enrichment Scores and Patient Grouping

Glutamine-metabolism-related gene expression scores of tumor cells (GStumor) and
CD8T cells (GSimmune) were calculated with the ‘ssGSEA’ algorithm of the GSVA package
based on the expressions of glutamine-metabolism-related genes (ALDH18A1, GCLC,
GCLM, GLS, GLUD1, GOT2, MTHFS, SLC38A1, and SLC38A2). We performed two
methods to group patients. First, we divided the patients into the glutamine-metabolism-
related gene expression high score group (high score group) and the glutamine-metabolism-
related gene expression low score group (low score group) according to the median value
of GStumor for each patient. Second, we calculated the score differences in glutamine-
metabolism-related genes between cancer cells and CD8T cells as the dominance score
for each patient. Patients whose glutamine-metabolism-related gene expression scores
were significantly higher in tumor cells than in CD8T cells were defined as the cancer cell
glutamine-metabolism-dominant group (dominant group), and patients with the opposite
proportions were in the cancer cell glutamine-metabolism-nondominant group (nondomi-
nant group). After grouping, the cytotoxicity scores of CD8T cells between the two groups
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were also calculated and compared according to the expressions of cytotoxicity-related
genes (GZMA, GZMB, PRF1, IFNG, EOMES, and NKG7).

Dominance Score = Median (GStumor)− Median (GSimmune)

4.5. Immunophenotype Remodeling and Metabolism Reprogramming of Tumor-Infiltrated CD8 T
Cells in Dominant and Nondominant Groups

In order to clarify the difference in the tumoricidal capacity of CD8T cells, we further
compared the expression levels of the cytotoxic genes of CD8T cells and compared the
proportion changes in tumor cells for the 2 groups. Next, we investigated the changes
in cytotoxicity scores and cell ratios in 4 CD8T subpopulations between the 2 groups. To
further investigate the pathway changes of effector CD8T cells (Tef) undergoing glutamine
metabolic stress in cancer cells, we applied the Monocle2 package in R to perform a
genetic dynamics pseudotime analysis of CD8 effector CD8T cells. Monocle2 performed
a reversed graph-embedding algorithm with a semiclustering machine learning method
to simulate the cell development process and establish a “one root and multibranch”
differentiation tree, where cells in the same branch shared the same characteristics of gene
expression patterns and the same differentiation state. We extracted the gene expression
matrix, gene information, and cell phenotype information of CD8 effector CD8T cells to
construct CellDataSet objects. The ‘estimateSizeFactors’ function helped us to normalize
the differences in the mRNA matrices. Upregulated different expression genes (DEGs) of
effector CD8T cells displaying two metabolic patterns were screened (p-value < 0.05 and
average logFC > 0.25) with the ‘FindAllMarkers’ function. Then, single cells were projected
into the space and ordered into a trajectory with branch points using the ‘DDRTree’ method.

4.6. Gene Set Enrichment Analysis of CD8T Cells

A gene set enrichment analysis (GSEA) is a statistical method used to calculate distribu-
tion trends according to ranked genes correlating with phenotype and genes on predefined
gene lists to determine their contributions to the phenotype. Compared with the classical
GO and KEGG enrichment analyses, GSEA avoids the subjective bias of setting artificial
thresholds to retain more valid information and quantifying the activity statuses of gene
sets. We downloaded the gene sets of C2: CP: KEGG, C2: CP: REACTOME, and C5: GO
(including BP, MF and CC) from MsigDB (https://www.gsea-msigdb.org/gsea/msigdb/
(accessed on 11 April 2022)). After extracting CD8T cell subpopulations, the ‘FindAll-
Markers’ function was conducted to filter upregulated and downregulated DEGs in the
dominant group, and their corresponding expression fold changes were calculated. We
used the GSEA function of the clusterProfiler package to analyze the sequenced DEG list
and obtain different pathways of CD8T cells in the 2 populations.

4.7. Animal Experiments

Thirty C57BL/6 mice (female: 15; male: 15) were purchased from Beijing Huafukang
Biotechnology Co. and fed in a barrier system at the Animal Experimentation Center of
Southwest Medical University. Mice of 8–12 weeks of age were used in all the experi-
ments. The animal experiments were approved by and conducted under the supervision
of the Animal Experimentation Ethics Committee of the Affiliated Hospital of Southwest
Medical University.

To establish a subcutaneous tumor-forming animal model, 0.1 mL H22 cell line with
a concentration of 1 × 106/mL was inoculated into the right groins of mice. After five
days of feeding, the long and short diameters of subcutaneous tumors were measured and
tumor volume was calculated as V (mm3) = length (mm) ∗width (mm) ∗width (mm) ∗ π/6.
Twenty mice with no statistical differences in subcutaneous tumor volume were selected
and randomly divided into four groups: (I) the blank control group (VEH) which received
a gavage of 100 µL 0.9% saline (once daily for 17 days) and an intraperitoneal injection of
100 µL 0.9% saline (once every 3 days for 17 days); (II) the glutamine metabolism inhibitor
group (JHU083), which received a gavage of JHU083 dissolved in 100 µL saline (1 mg/kg/d

https://www.gsea-msigdb.org/gsea/msigdb/
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once daily) and an intraperitoneal injection of 100 µL saline (once every 3 days for 17 days);
(III) the immune checkpoint inhibitor group (PD-1 blocker group), which received an
intraperitoneal injection of PD-1 blockers dissolved in 100 µL saline (1 mg/kg/d every
3 days) and a gavage of 100 µL 0.9% saline (once daily for 17 days); and (IV) the combined
group of PD-1 blocker with JHU083, which received a gavage of JHU083 dissolved in
100 µL saline (1 mg/kg/d once daily) and an intraperitoneal injection of PD-1 blockers
dissolved in 100 µL saline (1 mg/kg/d once every 3 days for 17 days).

Tumor volumes were measured every 2 days, and all mice were dosed for 17 days.
Mice were euthanized on day 22, and subcutaneous tumor specimens were harvested
for PCR, immunohistochemistry, and flow cytometry. The preparation and experimental
procedure relating to the tumor tissues are described in the Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11233924/s1, supplementary experimental detailed methods;
Figure S1: Quality assurance of single-cell sequencing data; Figure S2: Dimensionality reduction
and clustering of single-cell sequencing data; Figure S3: t-SNE plots of marker genes in the main
population; Figure S4: t-SNE plots of marker genes in the subpopulations; Table S1: Clinical pa-
rameters of patients in the TCGA-LIHC cohort; Table S2: molecular markers of main clusters and
subpopulations; Table S3: Univariate and multivariate Cox proportional hazards regression analyses
in the TCGA cohort; Table S4: Patient grouping; Table S5: Metadata of CD8+ T cells in the TME
of 10 primary hepatocellular carcinoma patients; Table S6: DEGs of CD8 + T cells in the TME for
dominant group and nondominant group; Table S7: The results of GSEA (GO, REACTOME and
HALLMARK) for the dominant group and nondominant group; Table S8: DEGs in 5 clusters; Table S9:
The enriched pathways (GO and REACTOME) of DEGs in 3 clusters; Table S10: Tumor volumes
and weights in 4 groups after harvesting; Table S11: Raw data of tumor volumes; Table S12: primers
used in study; Table S13: Antibodies used for flow cytometry. References [31–34] are cited in the
supplementary materials.
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