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Abstract: MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target
gene expression by imperfect base-pairing with the 3′ untranslated regions (3′UTRs) of target gene
mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance,
tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that
dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human
cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer
and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on
the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the
effects of miR-205-5p on breast cancer cell proliferation, epithelial–mesenchymal transition (EMT),
metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that
regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic
value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p
direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA
capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative
breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for
metastatic breast cancer.

Keywords: miR-205-5p (miR-205); breast cancer; metastatic breast cancer; triple negative breast
cancer; luminal A/B breast cancer; Her2+ breast cancer

1. Introduction

Breast cancer is posing a tremendous threat to women’s health globally, and is the most prevalent
female malignancy in the world [1]. Traditionally, breast cancer has been classified as in situ (ductal and
lobular) or as an invasive disease based upon morphological markers [2]. Advancements in technology
has allowed breast cancer to be further classified into different subtypes based upon molecular
markers defined by immunohistochemistry (IHC): Estrogen (ER)/progesterone (PR), human epidermal
growth factor receptor 2 (HER2), or triple negative breast cancer [2]. More recently, proteomics and
gene-expression profiling of breast cancer has allowed for subtyping of breast cancer based upon
its molecular profile. The most commonly used classification system stratifies breast cancer into
four subtypes: Luminal A, luminal B, HER2 positive (+), and basal-like breast cancer [3]. Because
the treatment of breast cancer has evolved from surgery to include systemic therapy determined by
different molecular mechanisms and clinical phases, breast cancer therapy has achieved tremendous
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progress in patient survival [4]. However, despite this advancement, breast cancer remains the leading
cause of cancer death in women, with 535,000 deaths in 2016 in 195 countries or territories across the
world [5]. Approximately 90% of breast cancer-related death is ascribed to breast cancer metastasis [6].
Metastatic breast cancer is an incurable disease and has an unfavorable prognosis, with an average
5-year survival rate of around 25% [7]. Our limited understanding of the mechanisms underlying
breast cancer metastasis constrains the current efficacy of therapy. This is especially true for triple
negative breast cancer (TNBC), which is defined as estrogen receptor (ER), progesterone receptor (PR),
and HER2 negative. TNBC usually displays higher recurrence, more aggressive metastasis, and worse
clinical outcome compared with other breast cancer subtypes. Although TNBC shares many clinical
characteristics, TNBC tumors display a higher level of molecular heterogeneity compared to other
subtypes. Therefore, understanding the underlying mechanisms of TNBC is imperative, and more
novel therapeutic strategies based on molecular mechanisms of TNBC need to be developed to improve
patient prognosis [8].

MicroRNAs are endogenous small (19–25 bases) non-coding single-stranded RNAs nucleotides,
which repress their target genes by typically pairing to the 3′UTR of mRNAs. In animals, mature
microRNAs are derived from long primary transcripts (pri-miRNAs). Pri-miRNA is transcribed by
RNA polymerase II from short open reading frames of DNA which do not encode for any proteins [9].
After being transcribed in the nucleus, pri-miRNA is cleaved by nuclear RNAse III Drosha, resulting in
stem–loop intermediates termed precursor miRNA (pre-miRNA) [10,11]. After this cleavage event,
pre-miRNA is exported out of the nucleus and subsequently truncated by another RNase in the
cytoplasm, cytoplasmic RNase III Dicer, forming a 22 nt double-stranded RNA [12–14]. Afterwards,
the strand with a less stable 5′ end is degraded, while the remaining strand is referred to as a mature
miRNA [15,16]. The primary function of miRNAs is to downregulate expression of their target genes.
They accomplish this by varying mechanisms, which include RNA degradation, induced decapping,
induced deadenylation, altered cap protein binding, reduced ribosome occupancy, and sequestration of
mRNA [17]. Usually, the seed sequence of miRNAs paired by base with 3′UTRs of mRNAs. The seed
sequence usually consists of 2–8 bases and starts at the second and ends at the eighth nucleotide region
counted from the 5′ end of miRNAs [18,19]. The seed sequence plays a significant role in recognition
of target mRNAs and provides an important basis for miRNA target prediction.

MiRNAs are involved in the epigenetic regulation of cancer development. The functions of different
miRNAs vary in different cancers, but can generally be classified as oncogenic or tumor suppressive.
It has been reported that miRNAs participate in cancer initiation, tumorigenesis, proliferation,
metastasis, epithelial mesenchymal transition (EMT), stemness maintenance, and therapeutic resistance
by downregulating target oncogenes or tumor suppressive genes. Therefore, these dysregulated
miRNAs in cancers are found as biomarkers for diagnosis and potential targets for cancer treatment [20].

In humans, miR-205 is located on chromosome 1q32.2 and is composed of a highly conserved
structure (Figure 1). More specifically, miR-205 sits between the second and the third exon of
LOC642587. MiR-205 is normally expressed in the breast, prostate, and thymus of humans and
regulates development of these organs [21]. However, in cancer, miR-205-5p expression is context-
and cancer-specific. For example, miR-205-5p is suppressed or silenced in breast, prostate, melanoma,
and renal cell carcinoma, but is overexpressed in non-small cell lung carcinoma, bladder cancer, ovarian
cancer, endometrioid adenocarcinoma, head and neck cancer, and esophageal adenocarcinoma [22–29].

Since microRNAs have multiple targets, thus elucidating their underlying effects on cancers
is complex. In support of this, miR-205-5p has been shown to play multiple roles in different
cancers (Figure 2). For example, miR-205-5p is involved in embryogenesis, especially in epithelium
morphogenesis [30], because it promotes epithelium differentiation in endoderm and ectoderm [31],
but miR-205-5p is also involved in epithelial maintenance [32]. Furthermore, in gastric, breast, head,
and neck cancer cell lines, epithelial identities, including morphology, increased E-cadherin expression,
decreased Vimentin and N-cadherin expression, are restored by re-expressing miR-205-5p [33,34].
However, upregulation of miR-205-5p in cervical, lung, and renal cancer cell lines under hypoxic
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conditions promotes EMT by targeting ASPP2, one of the downstream apoptosis-stimulating proteins
of p53 [35]. Interestingly, miR-205-5p was shown to suppress metastasis by downregulating LPR1,
a migration factor, in lung cancer, which indicates a context-dependent function of miR-205-5p,
even in the same type of cancer [36]. In addition to converging data with cell differentiation and
migration among cancer types, miR-205-5p is also identified as both a positive and negative regulator
of proliferation. In prostate cancer, miR-205-5p was shown to arrest cell growth by repressing the
mitogen-activated protein kinase (MAPK) and androgen receptor (AR) pathways [37,38]. Whereas
an inverse effect was reported in lung cancer as miR-205-5p inhibited PTEN signaling to enhance
proliferation [39]. This review aims to summarize the expression and function of miR-205-5p in breast
cancer subtypes and highlights the differential roles and targets of miR-205-5p in breast cancer initiation
and progression.Non-Coding RNA 2018, 4, x 3 of 16 
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Figure 2. The distinct roles of miR-205-5p in different types of cancers. Red arrows represent the
facilitating effects of miR-205-5p and blue arrows represent the suppressive effects of miR-205-5p.
The graph shows opposite roles of miR-205-5p in tumor proliferation, epithelial–mesenchymal transition
(EMT), and metastasis among different types of cancers. MiR-205-5p exerts promoting effects in cancers
listed in red boxes and exerts suppressive effects in cancers listed in blue boxes.
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2. MiR-205-5p Expression in Normal Breast Tissues and Its Dysregulation in Different Subtypes
of Breast Cancer Tissues

Originally, miR-205-5p expression was observed exclusively within myoepithelial cells in lobules
and ducts of normal breast tissue [32]. However, compared to normal breast tissue, expression of
miR-205-5p is decreased in breast cancer [40]. It is interesting to note that, although miR-205-5p
expression is lost in breast cancer, the relative levels of miR-205-5p loss varies between subtypes.
The level at which miR-205-5p is lost correlates with a variety of mechanisms for their biological
behavior (Figure 3). MiR-205-5p is upregulated in ER/PR+ breast cancer compared with HER2+ breast
cancer, and shows a significant correlation with ER/PR status [41]. Among all subtypes of breast
cancer, triple negative breast cancers (TNBCs) express the least miR-205-5p [32,40,42]. Additionally,
metastatic breast cancers express lower levels of miR-205-5p than non-metastatic breast cancers [32,43].
In support of this, our previous study found that lower expression of miR-205-5p was associated with
worse recurrence-free survival and distant metastasis-free survival [44]. Low levels of miR-205-5p
in serum has also been reported as a diagnostic biomarker for breast cancer patients, as well as an
unfavorable clinical prognostic factor [45].
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Figure 3. Differential expression levels of miR-205 among breast cancer subtypes. The expression of
miR-205-5p is lower in HER2+ than luminal A/B, and triple negative breast cancer (TNBC) has the
lowest miR-205-5p level compared with the other subtypes. Decreasing miR-205-5p expression level is
associated with enhanced metastatic capability and worsening of patient survival.

3. Mechanisms of MiR-205-5p Expression Regulation

Since the alteration of miR-205-5p expression is involved in breast cancer development, it is
necessary to understand the regulatory mechanisms of miR-205-5p. MiR-205-5p is an intragenic
miRNA, which is located within the intron of its host gene, as mentioned previously. One mechanism
of miR-205-5p regulation is methylation of CpG islands within its promoter. In breast epithelial
cells, overexpression of ERBB2 can drive miR-205-5p promotor methylation via Ras/Raf/MEK/ERK
pathway-mediated DNMT upregulation [46]. In TNBC cells, Piovan et al. found that p53 binds
a responsive element of the miR-205-5p host gene to increase miR-205-5p expression [47]. It was
concluded that the high frequency of TP53 mutations in basal-like breast cancer correlated with
suppressive expression of miR-205-5p [47]. Hairy and enhancer of split-1 (HES1) response elements
were also found within the miR-205-5p promoter, and exert a negative effect on miR-205-5p expression
in breast cancer [48].
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4. Breast Cancer Subtype-Specific Roles of MiR-205-5p Dysregulation and Underlying Mechanisms

4.1. MiR-205-5p Dysregulation and Function in Hormonal Receptor Positive (Luminal A and B Subtypes)
Breast Cancer

Hormonal receptor positive breast cancer constitutes approximately 80% of breast cancer [49].
Targeting the ER/PR-driven pathway has achieved great success in patients with hormonal receptor
positive breast cancer. Tamoxifen, as a first-line endocrine therapy for ER/PR+ breast cancers, binds to
the estrogen receptor to competitively block estrogen-induced target gene expression, which leads
to suppression of cancer cell proliferation [50]. However, up to 30% of ER+ breast cancer patients
are initially resistant to tamoxifen, and approximately 40% of patients with ER+ breast cancer that
initially responded to tamoxifen eventually develop resistance [51]. A previous study demonstrated
that miR-205-5p is involved in tamoxifen resistance of hormonal receptor positive breast cancer [52].
The molecular mechanisms of tamoxifen resistance can be summarized as follows: (1) Increased
bidirectional ER/growth factor (GF) receptor cross-talk; (2) activated ER signaling downstream
kinases, such as ERK, MAPK, and AKT; (3) absence of HDAC recruitment to ER corepressors;
(4) acetylation of EGFR promotes receptor tyrosine phosphorylation and activation; and (5) corepressor
of ER complexes inactivated and coactivator complexes activated [51]. Zhang et al. found that long
noncoding RNA-ROR (lncRNA-ROR) was involved in the molecular mechanism of tamoxifen resistance,
and found that lncRNA-ROR induced resistance by silencing miR-205-5p [52]. They generated
a tamoxifen-resistant MCF7/TR5 cell line by chronic low-dose tamoxifen treatment [52], and found that
the level of lncRNA-ROR was raised and miR-205-5p was decreased in these cells [52]. This negative
correlation between lncRNA-ROR and miR-205-5p was further analyzed by Renilla luciferase activity,
which indicated that lncRNA-ROR acted as a sponge and downregulated miR-205-5p expression [52].
Although they did not fully uncover how miR-205-5p is involved in tamoxifen resistance, it could be
speculated that miR-205-5p might play a role in activating a downstream ER-dependent kinase.

Besides its function in endocrine therapy resistance, miR-205-5p has also been found to participate
in cell proliferation of ER/PR+ breast cancer. In normal tissue, mammary duct cells are organized
asymmetrically to an apical pole toward surrounding tissue and a basal pole that interfaces with the
stroma and vasculature, and are mediated by tight junctions [53]. Dysfunction of the asymmetrical
growth of the mammary duct is one of the mechanisms of breast cancer progress. Angiomotin (AMOT)
is an adaptor protein that regulates tight junctions, and thus the spatial distribution of apical polarity
proteins which controls apical asymmetry. Studies have shown that AMOT activates the ERK1/2
pathway to drive cell proliferation in ER+ breast cancer [54], and that miR-205-5p inhibits cell growth
by direct targeting of AMOT in MCF-7 breast cancer cells [55]. This suggests that miR-205-5p function
is critical for regulating breast cancer growth.

4.2. MiR-205-5p Dysregulation and Function in Her2-Enriched (HER2+) Breast Cancer

HER2-enriched (HER2+) breast cancer is a distinct subtype characterized as high expression of
HER2-regulated genes and low expression of hormonal receptors [56–58]. HER2+ is driven by the
overexpression of ERBB2 (HER2), an oncogene coding for a tyrosine kinase receptor belonging to
the human epidermal growth factor receptor (EGFR) family [59–61]. The other three members of the
EGFR family are HER1 (EGFR), HER3 (ERBB3), and HER4 (ERBB4). After being bound by ligand,
the receptors dimerize to either homo- or heterodimers to activate several intracellular signaling
pathways, such as the Ras/MAPK and PI3K/Akt, which ultimately promote proliferation, survival,
and motility [62]. The HER2/HER3 heterodimer in particular plays a significant role in breast cancer
proliferation, and HER3 was found to be frequently co-expressed with HER2 [63]. Furthermore, even in
the absence of ligand binding HER2, activation of the PI3K/Akt survival pathway strongly depends
on HER3 phosphorylation [64]. Recent studies have shown that miR-205-5p directly targets HER3.
This results in the inhibition of proliferation in SKBr3, MCF7, and MDA-MB-231 breast cancer cell
lines [40,42].
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Until the development of trastuzumab, a HER2-specific recombinant humanized monoclonal
antibody, the diagnosis of HER2+ breast cancer had a poor prognosis [60,65,66]. Although trastuzumab
has achieved great success in the targeted therapy of HER2+ breast cancer, the recent emerging
trastuzumab-acquired resistance of cancer cells provides yet another barrier to overcome [67].
Work looking into the development of resistance has elucidated complex answers: Some classified
HER2+ tumors express low HER2 expression, partial masking of the HER2 epitope, and/or poor
HER2–T-DM1 complex internalization, among others [68]. In addition to acquired resistance, cancer
stem cells (CSCs) also play an important role in trastuzumab resistance [69]. CSCs characteristically
have an inherent drug resistance, and therefore are likely the cause of tumor recurrence. Overexpression
of miR-205-5p in breast cancer stem cells contributed to the development of trastuzumab resistance by
lowering ERB2 and EGFR expression [69]. Furthermore, De Cola et al. indicated that miR-205-5p was
significantly upregulated in HER2+ patient-derived breast cancer stem cells (BCSCs) compared with
the same cells grown in differentiating spheroid conditions, sphere-derived adherent cells (SDACs) [69].
Knocking-down the expression of miR-205-5p in BCSCs upregulated HER2 and EGFR and sensitivity
to Lapatinib. Mechanistically, this group determined that p63 is a direct target of miR-205-5p, and there
is a feedback loop between p63 and miR-205-5p, which determines some of the features of BCSCs [69].

4.3. MiR-205-5p Dysregulation and Function in Triple Negative Breast Cancer

Triple negative breast cancer (TNBC) is a group of breast cancer subtypes characterized by traits
of aggressive tumor proliferation, early distant metastasis, and enhanced cancer relapse. Previous
studies have identified miR-205-5p as a critical regulator of these three characteristics by modulating
different signaling pathways.

Dysregulation of the cell cycle is one of the hallmarks of proliferative dysfunction. In addition to
identifying putative response elements in the promoter of miR-205-5p, Piovan and colleagues also
analyzed the effects of miR-205-5p on cell cycle progression [47]. They found that growth inhibition
of MDA-MB-231 and BT-549 overexpressed with miR-205-5p was not due to changes in apoptosis,
but rather that a reduction in E2F1 expression, a direct target of miR-205-5p, impaired G1/S phase
transition, and promoted cell senescence [47]. Additionally, suppressing miR-205-5p contributed to
tumor growth, likely by driving E2F expression and accelerating the G1/S transition [47]. In contrast,
a separate study demonstrated that in normal mammary myoepithelial and stem cells, miR-205-5p
enhanced cell growth by regulating the cell cycle through phosphatase and tensin homolog (PTEN),
a well-studied tumor suppressor gene [70]. Increasing miR-205-5p resulted in reduced PTEN expression,
which was found to promote cell G1/S transition with more cells in S phase and fewer cells in G0
phase [71].

The cancer microenvironment is critical to progression, because it not only directly interacts with
cancer cells, but also extensively affects the biological behavior of the cell, including tumor proliferation.
LAMC1 is a member of the laminin super family, a component of the extracellular matrix (ECM) and
a significant ECM regulator [72]. In MDA-MB-231 TNBC cells, LAMC1 was found to be downregulated
by miR-205-5p and was confirmed as a direct target [47]. Both repressing LAMC1 by shRNA and
overexpression of miR-205-5p inhibited clone formation ability in MDA-MB-231 cells [47]. Although
LAMC1 has multiple effects on biological activities, including cell adhesion, proliferation, migration,
and differentiation, this study at least demonstrated that miR-205-5p inhibits breast cancer growth
partly by targeting LAMC1 [47,72].

Alterations in EGFR signaling pathways drive tumor initiation and progression. As with HER2+

breast cancer, miR-205-5p can regulate TNBC growth by modulating members of the EGFR signaling
pathway. Typically, tumors are unable to grow beyond a volume of 1–2 mm3 due to the lack of nutrients
perfusing the whole tumor [73]. Therefore, cancer survival and growth relies upon angiogenesis, or the
creation of new blood vessels. The high-mobility group box (HMGB) family is a family of non-histone
DNA-binding proteins that participate in the formation of new blood vessels by binding to receptors,
such as advanced glycation end products (RAGE), to improve angiogenic cytokine release [73]. In breast
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cancer patients, one member of this family (HMGB3) was found to be overexpressed, and its expression
correlated with worse prognosis [49]. Elgamal et al. discovered that overexpression of miR-205-5p
in MDA-MB-231 and BT549 TNBC cell lines had similar proliferation rates to those that suppressed
HMGB by RNAi [49]. They also demonstrated that HMGB3 is the direct target of miR-205-5p by
a dual-luciferase assay, thus proving that miR-205-5p impeded breast cancer growth by targeting
HMGB3 [49].

In a different study, 16 miRNA expression profiles were scanned across 32 TNBC samples and
their corresponding non-tumor adjacent tissues [74]. In these samples, the miR-205-5p levels were
significantly suppressed in the lymph node metastatic group [74]. Compared with their non-tumor
adjacent tissues, expression of miR-205-5p was found be decreased more than 2-fold in tumor tissues [74].
These data suggest that miR-205-5p may play a significant role in TNBC metastasis.

Epithelial–mesenchymal transition (EMT) has been demonstrated as a major contributor to cancer
metastasis and invasion [75,76]. Polarized epithelial cells undergo a biochemical transformation into
cells that display a more mesenchymal-like phenotype and morphology with enhanced migratory
capacity, invasiveness, resistance to apoptosis, and productivity of ECM [77]. Through EMT, cancer
cells acquire the critical features needed to initiate aggressive invasion, which advances to subsequent
metastatic cascade [78]. On the molecular level, EMT is concordant with the upregulation of factors
implicated in cytoskeletal changes and the mesenchymal phenotype, including ZEB1, ZEB2, SNAIL,
SLUG, TWIST, SMAD 2/3, Vimentin and N-Cadherin, and repressed markers implicated in the
maintenance of an epithelial phenotype, including E-Cadherin, Occludin, Claudin, and Laminin [79].
One of the first studies on miR-205-5p observed that expression of miR-205-5p and the miR-200
family in breast cancer was upregulated in epithelial-like phenotype compared with mesenchymal-like
phenotype. They also negatively correlated this change in miR-205-5p expression with the expression
level of ZEB1 and SIP1, and positively correlated with the expression level of E-cadherin. Then,
they demonstrated that miR-205-5p and the miR-200 family targeted ZEB1 and SIP1 to regulate
EMT/MET by restoring expression of E-cadherin in the kidney epithelial cell line [34]. Lee et al.
further confirmed that miR-205-5p directly targeted ZEB1 and ZEB2 in MDA-MB-231 TNBC cells by
a luciferase reporter assay [80]. They also found that polycomb group protein Mel-18, a well-known
regulator of chromatin modifications [81], upregulates miR-205-5p expression by methylation of
a CpG island within its promoter [80]. More mechanistically, they also found that Mel-18 prevented
DNMT recruitment to the promoter of miR-205-5p to reduce methylation effects and rescue miR-205-5p
expression [80]. The miR-205-5p re-expression inhibited the invasive and migratory phenotype of
MDA-MB-231 and MCF-7 cells driven by shRNA knockdown of Mel-18 (shMel-18) [80]. Furthermore,
in vivo NOD/SCID mice models were also established by MCF-7 cells treated with a control shRNA
(shcon) or shMel-18. They found more aggressive and mesenchymal-like tumors in mice injected with
knockdown of Mel-18, and an upregulation of mesenchymal markers and downregulation of epithelial
markers [80]. In addition to being involved in angiogenesis and cell proliferation, HMGB3 is another
target of miR-205-5p that is responsible for EMT in breast cancer [82]. In a transwell invasion assay,
miR-205-5p was shown to suppress MDA-MB-231 and BT549 invasion [82]. These data suggest that
miR-205-5p is an important regulator of EMT, and those phenotypic processes that are associated with
EMT, such as cell migration.

Integrins are a family of heterodimeric transmembrane receptors that bind extracellular
matrix proteins, which are extensively involved in tumor cell adhesion, migration, invasion,
and metastasis [83,84]. Integrin α5 (ITGA5) is one of the members of integrins and is found to
play an essential role in breast cancer metastasis and growth [85,86]. According to our recent study,
we found that ITGA5 expression was increased upon suppression of miR-205-5p in TNBC [44].
Overexpressing miR-205-5p in MDA-231-LM2 and SUM-159 TNBC cell lines drastically inhibited their
migration and invasion capabilities [44]. Through rescue experiments, we found that re-expression of
ITGA5 restores those metastatic characteristics. Further probing revealed that miR-205-5p directly
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targeted, and thus downregulated, ITGA5 and suppressed TNBC metastasis through the Src/Vav2/Rac1
signaling pathway [44].

Angiogenesis is not only necessary for tumor survival, but also plays an essential role in the
dissemination and establishment of tumor metastases. In order to escape the primary tumor, tumor cells
hijack endothelial cells to form new blood vessels. These neovessels allow for tumor cells to enter
into the bloodstream. Therefore, the more highly vascularized the tumor is, the greater the chance
that a cancer cell can metastasize [87]. Not surprisingly, miR-205-5p is also involved in angiogenesis.
Wu et al. confirmed miR-205-5p paired to the 3′UTR of VEGF-A by a luciferase reporter assay
and hypothesized that the observed reduced lung metastasis of MDA-MB-231 cell line transfected
with miR-205-5p in vivo was partly due to repressed VEGF-A expression [40]. Cancer-associated
fibroblasts (CAFs), a critical tumor stroma participant for tumor angiogenesis, were also found to be
regulated by miR-205-5p in breast cancer. MiR-205-5p targets YAP1 (Yes-associated protein) in normal
fibroblasts (NFs), preventing CAFs transformation from NFs, and suppresses angiogenesis, invasion,
and metastasis of breast cancer cells in vivo [88].

Cancer stem cells mediate cancer relapse, metastasis, and therapy resistance. The stemness
of cancer cells encompasses the capacity of asymmetrical self-renewal to one stem cell and one
progenitor cell, as well as symmetrical division into two identical stem cells which can retain the
original capacity for self-renewal [89]. MicroRNAs are a significant regulator of CSCs by targeting
some critical members of pathways that regulate CSC phenotypes or EMT, including Bmi1, Suz12, Sox2,
Klf4, and ZEB1/2 [34,90–92]. Sempere et al. reported that the low expression level of miR-205-5p was
associated with increased relapse rate in patients with triple negative breast cancer that were enriched
with breast cancer stem cells, implicating miR-205-5p in cell stemness [32]. In regard to EMT, the loss
of E-cadherin during EMT discharges β-catenin from the plasma membrane and activates canonical
Wnt signaling by β-catenin translocation to the nucleus, which is an essential pathway for cancer stem
cells [93–95]. Loss of epithelial polarity also induces the Hippo pathway to promote mammosphere
formation, an assay that can define stemness in vitro [96–98]. Because, disturbed epithelial polarity
contributes to self-renewing symmetric divisions of CSCs that drives those CSC subgroups surging
among cancer cell pools [99]. To further uncover the relation between miR-205-5p and self-renewing
symmetric division, Chao et al. found that ZEB1, a direct target of miR-205-5p, and suppression of
miR-205-5p results in enhanced ZEB1 expression. Enhanced ZEB1 expression drove self-renewing
symmetric division and maintenance of stemness of CSCs by redistribution of NUMB, a protein
primarily participating in controlling the polarity of stem cells [48]. Meanwhile, overexpression of
miR-205-5p in MDA-MB-231 and BT-549 TNBC cell lines inhibited NOTCH2 expression, another direct
target of miR-205-5p, which resulted in a loss of stem cell identity [48]. Intriguingly, Notch2 and
its ligand, Jagged-1, could also upregulate HES1 expression to inhibit miR-205-5p, and constituted
a negative feedback loop of Notch2/miR-205-5p/ZEB1 signaling in breast cancer cells [48].

The CSC-like property suppressive effects by miR-205-5p were also observed in our previous
study [44]. A well-established serum-free suspension culture mammary sphere formation assay was
performed to assess the CSC-like property of SUM-159 TNBC cells [44]. We found that the counts
of spheres formed were reduced by miR-205-5p expression and increased by ITGA5 re-expression.
These data support our in vivo data of nude mouse orthotopic mammary xenograft models, showing
that miR-205-5p acts as a CSC inhibitor [44].

5. Potential Diagnostic and Therapeutic Values of MiR-205-5p in Breast Cancer

5.1. MiR-205-5p Abnormal Expression as a Potential Diagnostic Marker for Breast Cancer

Different types of cancers have varying microRNA molecular profiles. Therefore, characterizing
specific microRNA levels for a particular cancer is helpful not only for confirming the diagnosis, but also
for treatment decision, staging, and prognosis. Therefore, understanding the relationship between
microRNAs and the cancer and subtype will contribute to a much more accurate diagnostic, subtype,
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grading, response, and prognosis prediction tool. In regards to miR-205-5p, Berber found that a 5-fold
decrease in miR-205-5p expression levels compared to normal breast tissue was accurate to predict
breast cancer lymph node metastasis [74]. This paper was able to obtain a sensitivity of 68.8% and
specificity of 81.3% in a sample size of 32 patients with TNBC who underwent radical mastectomy and
axillary dissection [74]. This study demonstrates the usefulness of miRNAs, particularly miR-205-5p,
in patient prognosis prediction, and revealed that miR-205-5p expression levels might be one of the
candidate indicators for TNBC metastasis [74].

It is well-known that intracellular miRNAs are excreted by cells into the blood stream after being
packaged into exosomes or microvesicles [100]. This suggests that circulating miRNAs serve as ideal
biomarkers for earlier detection of cancer [101]. Shaker and colleagues collected blood samples from
100 breast cancer patients and 30 healthy females, and identified the expression levels of miRNAs [102].
In this case, miR-205-5p was identified as a critical differential circulating miRNA between these groups.
The sensitivity of miR-205-5p for detection of breast cancer was 98.8% and the specificity was 100% by
using the optimal cutoff value [102]. Zhang et al. also performed a case control study on 58 breast
cancer patients and 93 healthy controls [72]. The diagnostic proficiency of serum miR-205-5p for breast
cancer was achieved at a sensitivity of 86.2% and a specificity of 82.8% [72]. Together, these studies
demonstrate that miRNAs, and more specifically miR-205-5p, are potent diagnostic and prognostic
prediction tools.

5.2. The Role of MiR-205-5p in Breast Cancer Treatment: A Potential Therapeutic Agent and Regulation of
Drug Response/Resistance

As microRNAs are shown to be tremendous tumor suppressive effects, the prospects of
anti-microRNAs and microRNAs themselves as therapeutics are promising. Since miR-205-5p shows
differential effects between breast cancer subtypes, miR-205-5p therapy likely has the most patient
benefit in TNBC. This is because many studies have shown that miR-205-5p is highly downregulated
in TNBC, and re-expression of miR-205-5p in TNBC consistently inhibits tumor growth, stemness,
and metastasis. However, in order to use miRNAs in the clinic, many barriers revolving around
preventing microRNA degradation in vivo, inefficient systemic and targeted delivery, and reduced
uptake by cells remains to be solved [103].

MicroRNAs are extensively involved in therapeutic resistance [20,104–106]. The luminal A
subtype of breast cancer is less sensitive to chemotherapy than other subtypes. Instead, treatment of
luminal subtypes of breast cancer consists of endocrine therapy, which is highly effective. Although
endocrine therapy is effective, chemotherapy is still required to be administered to those with early
stage, or with high risk and advanced disease states. In addition to their involvement in drug resistance,
miRNAs can also sensitize cells to chemotherapy, resulting in enhanced response and better patient
prognosis. For example, circulating miR-205-5p was identified as a potential predictor of resistance to
chemotherapy of epirubicin plus paclitaxel in luminal A subtype [107]. Additionally, miR-205-5p was
also found to sensitize MDA-MB-231 TNBC and MCF-7 cells to docetaxel, both in vitro and in vivo [108].
In another study, Hu et al. analyzed 30 breast cancer tissues from patients and found that miR-205-5p had
a positive correlation with neoadjuvant chemotherapy response rate [109]. MCF-7/A02 and CALDOX
are chemoresistant breast cancer cell lines derived from the chemosensitive cell lines MCF-7 and Cal51
cells, respectively. MiR-205-5p was found to be downregulated in MCF-7/A02 and CALDOX compared
with their parental cell lines [109]. Re-expression of miR-205-5p re-sensitized MCF-7/A02 and CALDOX
response to doxorubicin and docetaxol [109]. It was further revealed that over-expression of miR-205-5p
blocked the PI3K/AKT pathway by targeting VEGF-A and FGF2, which resulted in increased apoptosis
upon chemotherapy treatment [109]. MiR-205-5p was also suggested to be an important negative
mediator of radiotherapeutic resistance [110]. Ionizing radiation (IR) enhanced hypermethylation of
CpG islands of the host gene of miR-205-5p and suppressed miR-205-5p expression [110]. A miR-205-5p
mimic attenuated the IR induced Bcl-w increase, malignancy, and lung metastasis in H460 and
MDA-MB-231 cells [110].
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6. Summary and Perspectives

The studies on miR-205-5p have shed light on the complicated molecular mechanisms of breast
cancer initiation and development. In general, miR-205-5p plays a tumor suppressive role in breast
cancer. It inhibits tumor growth, metastasis, EMT, cancer stem cell maintenance, and drug resistance
(Figure 4). The miR-205-5p expression is reduced in breast cancer compared with normal breast
tissue. The expression of miR-205-5p in breast cancer varies among subtypes, with hormonal receptor
positive (ER+) expressing the highest levels, HER2-enriched expressing lower levels, and triple
negative breast cancer expressing the lowest levels of miR-205-5p. In hormonal receptor positive breast
cancer, miR-205-5p not only suppresses tumor growth, but also participates in tamoxifen sensitivity
maintenance. In HER2-enriched breast cancer, miR-205-5p plays a controversial role, which on the
one hand downregulates HER3 to inhibit HER2/HER3 dimerization and effects on tumor growth,
and on the other hand, downregulates HER2 expression, thus inducing lapatinib resistance. In TNBC,
miR-205-5p is more extensively involved in tumor growth, metastasis, EMT, and stemness maintenance.
The known direct targets of miR-205-5p in breast cancer are summarized in Table 1.
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Figure 4. A summary of miR-205-5p expression regulation and direct targets of miR-205-5p and
their biological effects. Overexpression of ERBB2 promotes methylation of the miR-205-5p promoter
via the Ras/Raf/MEK/ERK pathway which upregulates DNMTs, which finally results in miR-205-5p
downregulation. TP53 and HES also inhibit miR-205-5p expression. MiR-205-5p targets different genes
directly to regulate cell proliferation, tumor metastasis, stemness, and therapeutic resistance.
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Table 1. A summary of the validated direct targets of miR-205-5p in breast cancer.

Direct Targets Function of the Targets in Breast Cancer Reference

AMOT Regulator of spatial distribution of mammary duct epithelial cells [55]

ERBB3 One of the EGFR family, co-function with ERB2 in activating the
PI3K/Akt survival pathway [40,42,111]

VEGF-A Regulator of angiogenesis of tumors [40,109]

HMGB Nonhistone DNA-binding protein, participates in angiogenesis [82,112]

YAP1 A transcription regulator of the Hippo signaling pathway [88]

E2F1 Promoter of G1/S transition [47]

PTEN Suppressor of G1/S transition in mammary myoepithelial cells [70]

LAMC1 A component of the extracellular matrix, regulating cancer
microenvironment [47]

ZEB1/ZEB2/SIP1 Regulating EMT [34,80,113]

ITGA5 A member of integrin family, regulating tumor cell adhesion,
migration, invasion, and metastasis [44]

Notch2 Regulating cancer cell stemness [48]

FGF2 Regulating cell survival [109]

ERBB2 Activating p63 to maintain sensitivity to Lapatinib [69,114]

Bcl-w Mediating acquired IR-induced malignancy [110]

Since more and more targets for miR-205-5p in breast cancer are being discovered, the mechanisms
of how miR-205-5p regulate breast cancer development are expanding and are better understood.
The roles of those target genes in breast cancer have been further discussed as well. Furthermore,
the significance of miR-205-5p as a potential therapeutic target has been highlighted, as well as its target
genes. However, there are still many questions that need to be answered in the future. Both miR-205-5p
and the miR-200 family function similarly in breast cancer and even share some target genes, such as
ZEB1 and SIP1 [34,74,115]. This opens up the possibility that these miRNAs share more commonalities,
such as their regulating mechanism, as well as if they interact with each other, and even if these
miRNAs have synergistic effects. The combination therapy of the two is also an understudied topic
in the field. MiR-205-5p also interacts with other non-coding RNAs, such as lincRNA-ROR and
lncRNA-PNUTS, which has opened a new horizon in studying miR-205-5p [52,116,117]. In addition,
while studies clearly show that miR-205-5p displays strong tumor suppressive effects and has the
potential to be a therapeutic agent for treating triple negative breast cancer, the challenge is how to
safely and efficiently deliver miR-205-5p to tumor tissues.
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