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Simple Summary: Circulatory tumor-derived exosomal miRNAs play key roles in cancer develop-
ment and progression. Studies have shown that serum and plasma miRNAs have the potential to
be promising biomarkers for cancer diagnosis. This meta-analysis aimed to assess the diagnostic
and prognostic performance of exosomal miRNAs in thyroid cancer. Our study analysis included
12 articles. We found that specific exosomal miRNAs found in blood provide high diagnostic value
with high sensitivity and specificity. Furthermore, certain panels of exosomal microRNAs showed
remarkable diagnostic value. The best discriminative ability to differentiate between cancer and non-
cancer individuals were for miR-146b-5p + miR-223-5p + miR-182-5p. The novel and non-invasive
use of miRNAs to diagnose TC can significantly improve patient outcomes by preventing the burden
of unnecessary surgery and providing prognosis information on thyroid cancer.

Abstract: Circulatory tumor-derived exosomal microRNAs (miRNAs) play key roles in cancer
development/progression. We aimed to assess the diagnostic/prognostic value of circulating ex-
osomal miRNA in thyroid cancer (TC). A search in PubMed, Scopus, Web of Science, and Science
Direct up to 22 May 2021 was performed. The true/false positive (TP/FP) and true/false negative
(TN/FN) rates were extracted from each eligible study to obtain the pooled sensitivity, specificity,
positive/negative likelihood ratios (PLR/NLR), diagnostic odds ratio (DOR), and their 95% confi-
dence intervals (95%CIs). The meta-analysis included 12 articles consisting of 1164 Asian patients
and 540 controls. All miRNAs were quantified using qRT-PCR assays. The pooled sensitivity was
82% (95%CI = 77–86%), pooled specificity was 76% (95%CI = 71–80%), and pooled DOR was 13.6
(95%CI = 8.8–21.8). The best biomarkers with high sensitivity were miR-16-2-3p (94%), miR-223-5p
(91%), miR-130a-3p (90%), and miR182-5p (94%). Similarly, they showed high specificity, in addi-
tion to miR-34c-5p. Six panels of two to four exosomal miRNAs showed higher diagnostic values
with an area under the curve (AUC) ranging from 0.906 to 0.981. The best discriminative ability to
differentiate between cancer and non-cancer individuals was observed for miR-146b-5p + miR-223-
5p + miR-182-5p (AUC = 0.981, sensitivity = 93.8% (84.9–98.3), specificity = 92.9% (76.5–99.1)). In
conclusion, the expression levels of exosomal miRNAs could predict TC.

Keywords: thyroid cancer; exosomal microRNAs; miRNA; liquid biopsy; meta-analysis

Cancers 2021, 13, 4295. https://doi.org/10.3390/cancers13174295 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9267-3787
https://orcid.org/0000-0002-3381-2641
https://orcid.org/0000-0001-8534-6630
https://orcid.org/0000-0003-1252-8403
https://doi.org/10.3390/cancers13174295
https://doi.org/10.3390/cancers13174295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13174295
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13174295?type=check_update&version=1


Cancers 2021, 13, 4295 2 of 19

1. Introduction

Thyroid cancer (TC) growth is one of the most common malignant tumors in the
endocrine system [1]. The incidence of thyroid cancer increases with an annual rate of
5.4% in men and 4.6% in women [2]. Ultrasound imaging, positron emission tomography-
computed tomography (PET-CT), and fine-needle aspiration biopsy (FNA) are widely
conducted to determine the properties of the masses and confirm the diagnosis [3,4]. How-
ever, these strategies have their limitations of being expensive, invasive, time-consuming,
or overly dependent on the medical staff’s precise instruments and technical levels [5,6].
Financial distress and adverse financial events were common among thyroid cancer sur-
vivors and were associated with a more inferior health-related quality of life [7]. Moreover,
about 10–40% of FNA cytology analysis cannot confirm the malignancy, and many patients
undergo unnecessary thyroidectomy for benign lesions [8]. Therefore, novel non-invasive
methods for diagnosis of TC have the potential to improve patient outcomes significantly.

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules with a length
of 21–23 nucleotides [9]. They regulate the expression of multiple protein-coding genes at
the post-transcriptional level and are implicated in controlling signaling circuits within a
cell [10]. Studies showed that miRNAs are dysregulated in human malignancies and play
an essential role in the evolution and progression of cancer [11,12]. Furthermore, functional
studies show that miRNAs affect TC cell proliferation, migration, and invasion [12,13]. In
addition, studies showed that several of these miRNAs are related to prognosis and can
serve as diagnostic markers [14].

Exosomes are vesicles with a size of 30–150 nm in diameter. They are essential for
cells to communicate with neighboring cells or with distant cells [15]. All exosomes
hold surface molecules that help them to target the recipient cells. Once attached to the
recipient cells, the exosomes fuse with the cells’ membranes to release their cargo into
target cells, thereby changing the physiological state of the recipient cells. In addition to
intra-cellular regulatory functioning, miRNA can be secreted by cells into interstitial spaces
to shuttle the regulatory signal to neighboring and distant cells. Detection of tumor-derived
miRNA in various bodily fluids may also be helpful for both early cancer diagnostic and
therapeutic management [16]. Exosomal miRNAs are more stable than free miRNAs in
circulation as they are more resistant to the proteolytic activity of ribonucleases [17,18].
Therefore, exosomal miRNA can serve as potential diagnostic and prognostic biomarkers.
Previous studies suggest promising results of exosomal miRNA in diagnosing several
human cancers, such as glioma and breast cancer [19,20]. In addition, studies report that
expression levels of exosomal miRNAs in plasma of patients with TC were significantly
different, suggesting that exosomal miRNAs have great potential to be biomarkers for
TC [21]. For example, plasma exosomal miR-146b-5p and miR-222-3p have been suggested
as potential biomarkers for lymph node metastasis (LNM) in papillary TC (PTC) [20].

While prior studies have evaluated the novel use of exosomal miRNA in various
cancers, the global profiling of exosomal miRNAs from plasma or serum of patients with
TC has not been widely investigated. This systematic review and meta-analysis aimed to
evaluate liquid biopsy-derived exosomal miRNAs from serum and plasma as diagnostic
and prognostic tools in TC.

2. Materials and Methods
2.1. Literature Search Strategy

The design of this current meta-analysis and systematic review was executed utilizing
the preferred reporting items for systematic reviews and meta-analyses (PRISMA) proto-
cols [22]. A systemic search was performed using the following search engines: PubMed,
Scopus, Web of Science, and Science Direct up to 20 May 2021. The inclusion criteria
set was adopted utilizing a combination of keywords involving (“exosomal miRNAs”,
“exosomal miRNAs”, “exosomal miRs”, “exosome miRNAs” or “exomiRs) and (“thyroid
cancer”, “thyroid carcinoma”, “thyroid neoplasm” or “thyroid tumor”) and (“prognosis”
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or “survival”). Additionally, the bibliography lists were screened manually to identify
other reports.

2.2. Inclusion and Exclusion Criteria

The selected inclusion criteria were as follows: (1) studies involved human samples in
which the expression level of exosomal miRNAs was in serum, plasma, or blood of thyroid
cancer patients; (2) any study type: observational or diagnostic accuracy studies; (3) detec-
tion method for miRNA profiling is clearly defined in the article; (4) proven diagnosis of
non-medullary thyroid tumor by histopathology; (5) comparisons of cancer and normal
subjects or cancer and benign disease as nodular goiter or thyroid adenoma; (6) reported
at least one prognostic outcome as tumor size, lymph node metastasis, extrathyroidal
extension, recurrence, overall survival (OS), disease-free survival (DFS), disease-specific
survival (DSS), or progression-free survival (PFS); (7) measures of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) could be extracted or estimated
from reported sensitivity and specificity; (8) reported odd ratio (OR), relative risk (RR),
hazard ratio (HR), or an area under the curve (AUC) and their 95% confidence intervals
(CI) for the predictive ability of exosomal miRNAs expression to predict poor prognosis;
and (9) no limitations for sex, age, or geographical distribution.

Exclusion criteria were as follows: (1) The editorial materials, literature reviews, letters,
or meetings; (2) repeated research publications/duplication; (3) the expression of miRNAs
was detected within tumor tissues or other body fluids; (4) literature with insufficient and
overlap data; (5) in vitro and in vivo studies; and (6) non-English articles.

2.3. Quality Assessment

The quality evaluation was conducted by (ASA) to assess the degree of quality of non-
randomized studies in meta-analyses based on the Newcastle–Ottawa quality assessment
scale (NOS). This assessment was developed based on the star system that applied three
levels of judgment involving (a) the selection of the study group, (b) the comparability
within the groups, and (c) the ascertainment of the outcome for the studies. The NOS scores
varied from 0 to 9. Six points or more were deemed as high quality [23]. Furthermore,
evaluation of the enrolled studies according to the guidelines on experimental methods
and minimal information for studies of extracellular vesicles (MISEV) based on three main
domains: “(i) EV isolation/purification, (ii) EV characterization, and (iii) EV functional
studies” [24] has been applied. One point has been assigned to each criterion, which should
yield a total score of 10 if fulfilled (Table S1).

2.4. Data Extraction

Three investigators (ET, RE, and MH) independently extracted the information and
data from all eligible studies. The information of each study was abstracted using a
pre-designed form: the first author, the year of publication, the research country, the
subtype of thyroid cancer, the overall number of patients and controls, method of profiling
method, and demographics of the patients. Prognostic outcomes, including survival,
were also reported. The AUC, sensitivity, specificity, and fold change were collected.
The disagreements between the three investigators were settled by discussion until an
agreement was reached with the fourth investigator (MSF).

2.5. Statistical Analysis

None of the articles reported directly diagnostic accuracy measures (TP, TN, FP,
and FN); therefore, they were calculated using MedCalc from sensitivity, specificity, and
area under the curve. Meta-Disc v1.4 and RStudio were used for statistical analysis and
generating random forests and other plots. Pooled sensitivity, specificity, likelihood ratios,
and diagnostic odds ratio were estimated. The outputs are presented numerically and
graphically as forest plots. Pooled estimates are provided with their respective confidence
intervals. The DerSimonian Laird method was used to estimate an overall diagnostic odds
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ratio. The heterogeneity was tested by I2 values; if I2 < 50%, a fixed-effects model was
used; otherwise, the random-effects model was applied. Finally, a hierarchical summary
receiver operator characteristic (sROC) was employed to estimate AUC and the Q* index
as a summary measure of global accuracy of miRNA testing. AUC > 0.75 represented
high diagnostic efficacy. Spearman correlation analysis was performed to trace the source
of heterogeneity due to the threshold effect: p > 0.05 would indicate the absence of the
threshold effect, and thus, all miRNAs could be combined. A subgroup analysis was
conducted according to the type of comparison. Meta-regression was implemented using a
generalization of the Littenberg and Moses Linear model weighted by the inverse of the
variance to explore the impact of the type of comparison on heterogeneity.

3. Results
3.1. Characteristics of Included Studies

A total of 332 articles were initially screened, and 274 articles remained after 58 du-
plicates were eliminated. The literature was then screened according to title and abstract,
and 187 more studies were excluded for being irrelevant and an additional 71 articles for
not being derived from circulatory exosomes. The full text of the remaining 16 studies
was reviewed in-depth, and 4 additional studies were excluded. Finally, the remaining
12 articles, including 1164 patients and 540 controls, met the inclusion criteria (Figure 1).
Apart from a single study [25], all articles were conducted in China [21,26–35]. They were
published between 2016 and 2021. The sample size ranged from 10 to 491 patients per
study (Table 1). Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction
(qRT-PCR) was utilized in miRNA profiling of circulatory exosomes. Evaluation of study
quality using the NOS scale demonstrated the high quality of all articles with scores of
either 7 or 8 (Figure S1). However, evaluation of the enrolled studies according to the
MISEV guidelines revealed a score range from 3 to 8 (Table 1).

3.2. Diagnostic Value of Exosome-Derived miRNAs

A total of 49 exosomal miRNAs (37 up and 12 down) were significantly deregulated
in the circulation of thyroid cancer patients. Pooled meta-analysis of studies showed
16 upregulated miRNAs [30,32–35] and four downregulated miRNAs [26,28,32] in the
circulatory exosomes of cancer versus normal subjects. To compare cancer and nodular
goiter, 21 upregulated [25,31–33] and 9 downregulated miRNAs [31,32] were observed. The
intersection between both types of comparisons yielded one downregulated (miR-34c-5p)
and nine upregulated miRNAs (miR-223-5p, miR-4306, miR-16-2-3p, miR-223-3p, miR-376a-
3p, miR-204-3p, miR-4433a-5p, miR-146b-5p, and miR-485-3p) consistently differentially
expressed (Figure 2A). Of those with reported expression levels, miR-187-3p, miR-4306,
and miR-485-3p had the highest values, while miR-101-3p, miR-34c-5p, and miR-9-5p
were under-expressed in cancer compared to goiter (Figure 2B). Abstracted raw data are
demonstrated in Table S2.

Diagnostic accuracy measures were able to be estimated for eighteen miRNAs of the
reported studies. All miRNAs were analyzed in the Asian population and were quantified
using qRT-PCR assays. Figure 3 summarizes the sensitivity and specificity of each miRNA,
pooled by comparison type and summarized as overall estimates. Pooled sensitivity was
82% (95%CI = 77–86%). It was higher comparing cancer to normal (83%, 95%CI = 79–87%)
than cancer to nodular goiter 77% (95%CI = 66–85%) (Figure 3A). Overall pooled specificity
was 76% (95%CI = 71–80%). Consistently, higher specificity was observed when compared
to normal subjects (77%, 95%CI = 70–82%) than goiter patients (74%, 95%CI = 67–80%)
(Figure 3B). The best biomarkers with high sensitivity were miR-16-2-3p (94%), miR-223-5p
(91%), miR-130a-3p (90%), and miR182-5p (94%). Similarly, they showed high specificity
(87%, 84%, 90%, and 81%, respectively) in addition to miR-34c-5p (87%).
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Table 1. The main features of eligible studies in the systemic review.

First
Author Year Country No of

Patients
No of

Controls
Test

Method
Name of
PCR Kit

Method of
Exosomes Isolation MISEV

Target
Exosome
miRNA

Tumor
Subtype

Mean
Age, Y

Female
(%) Ref.

Yin 2021 China 40 40
qRT-PCR

(SYBR
Green)

SYBR Green
Super mix
(Bio-Rad

Laboratories,
Inc.)

Invitrogen™
Exosome Isolation
Kit (Thermo Fisher

Scientific, Inc.)

7 miR-130a-3p DTC 64.9 27.5% [26]

Xin 2021 China 491 – Not estimated – – miR-129-2
miR-889 PTC – – [27]

Wen 2021 China 119 100 qRT-PCR

TaqMan
MicroRNA RT
Kit (Applied
Biosystems)

ExoQuick Exosome
Precipitation

Solution (System
Biosciences)

3 miR-29a PTC – 52.1% [28]

Li 2021 China – qRT-PCR Not estimated – – miR-148a-3p DTC – – [29]

Zou 2020 China 100 96 qRT-PCR

SYBR Green
(SYBR® Premix

Ex TaqTM II,
TaKaRa, Dalian,

China).

ExoQuick Exosome
Precipitation

Solution (System
Biosciences,

Mountain View,
CA, USA).

6
miR-25-3p

miR-296-5p
miR-92a-3p

PTC – – [30]

Pan 2020 China 13 7
Small

RNA se-
quencing

TruSeq SR
Cluster Kit
v3-cBot-HS

(Illumina, San
Diego, CA, USA)

Exosomes were
isolated from the
plasma through

ultracentrifugation
method.

7

miR-5189-3p
miR-5010-3p
miR-598-5p
miR-3161

miR-6516-5p
miR-4644
miR-1283

miR-1227-3p
miR-149-3p
miR-210-5p
miR-3662

miR-187-5p

PTC – 100% [31]
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Table 1. Cont.

First
Author Year Country No of

Patients
No of

Controls
Test

Method
Name of
PCR Kit

Method of
Exosomes Isolation MISEV

Target
Exosome
miRNA

Tumor
Subtype

Mean
Age, Y

Female
(%) Ref.

Liang 2020 China 51 69 qRT-PCR SYBR Green PCR
Kit (QIAGEN)

Exosome
Precipitation

Solution
(EXOQ20A-1, SBI,
Mountain View,

CA, USA)

8

miR-16-2-3p
miR-223-5p
miR-34c-5p
miR-182-5p
miR-223-3p

miR-146b-5p
miR-16-2-3p
miR-223-5p

PTC 44.0 51.4% [32]

Jiang 2020 China 64 qRT-PCR Not determined Not determined –

miR-146b-5p
miR-221-3p
miR-222-3p
miR-21-5p

miR-204-5p

PTC 41.2 78.1% [21]

Dai 2020 China 96 30 qRT-PCR

MiR-X miRNA
qRTPCR SYBR

Kit (Takara) and
miDETECT A

Track™ miRNA
RT-qPCR
Primers

(Ribobio).

Exosomes were
isolated with a
combination of

centrifugation and
ultracentrifugation.

5

miR-485-3p
miR-4433a-5p

miR-4306
miR-376a-3p
miR-204-3p

PTC 56.6 – [33]

Ye 2019 China 60 30 qRT-PCR

miScript SYBR
Green PCR Kit

(Qiagen,
Germany).

Exosomes were
isolated with

ultracentrifugation.
5 miRNA423-5p PTC – – [34]
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Table 1. Cont.

First
Author Year Country No of

Patients
No of

Controls
Test

Method
Name of
PCR Kit

Method of
Exosomes Isolation MISEV

Target
Exosome
miRNA

Tumor
Subtype

Mean
Age, Y

Female
(%) Ref.

Wang 2019 China 120 160 qRT-PCR

The expression
levels of miRNAs

in plasma and
exosomes were
measured using
SYBR Green dye

Exosomes of
peripheral plasma
were isolated by

using ExoQuick™
(System Biosciences,

Mountain View,
CL, USA)

6
miR-346

miR-10a-5p
miR-34a-5p

PTC – – [35]

Samsonov 2016 Russia 10 8 qRT-PCR

qPCR was
performed using

Cancer Focus
microRNA PCR

Panels and
ExiLENT SYBR
Green master

mix (both from
Exiqon,

Denmark) on
CFX96 Touch™
Real-Time PCR

Detection System
(Bio-Rad, USA).

Exosomes were
isolated with

centrifugation
method.

5 miR-21
miR-181a PTC 54.5 80% [25]

DTC: well-differentiated thyroid cancer; MISEV: minimal information for studies of extracellular vesicles [24]; PTC: papillary thyroid cancer; qRT-PCR: quantitative Real-Time Polymerase Chain Reaction.



Cancers 2021, 13, 4295 8 of 19Cancers 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 1. Flow chart describing search strategy. Workflow of study selection according to the PRISMA guidelines [22]. 

3.2. Diagnostic Value of Exosome-Derived miRNAs 

A total of 49 exosomal miRNAs (37 up and 12 down) were significantly deregulated 

in the circulation of thyroid cancer patients. Pooled meta-analysis of studies showed 16 

upregulated miRNAs [30,32–35] and four downregulated miRNAs [26,28,32] in the circu-

latory exosomes of cancer versus normal subjects. To compare cancer and nodular goiter, 

21 upregulated [25,31–33] and 9 downregulated miRNAs [31,32] were observed. The in-

tersection between both types of comparisons yielded one downregulated (miR-34c-5p) 

and nine upregulated miRNAs (miR-223-5p, miR-4306, miR-16-2-3p, miR-223-3p, miR-

376a-3p, miR-204-3p, miR-4433a-5p, miR-146b-5p, and miR-485-3p) consistently differen-

tially expressed (Figure 2A). Of those with reported expression levels, miR-187-3p, miR-

4306, and miR-485-3p had the highest values, while miR-101-3p, miR-34c-5p, and miR-9-

5p were under-expressed in cancer compared to goiter (Figure 2B). Abstracted raw data 

are demonstrated in Table S2. 

Figure 1. Flow chart describing search strategy. Workflow of study selection according to the PRISMA guidelines [22].

There was homogeneity across studies for specificity analysis; however, mild het-
erogeneity was detected in the sensitivity analysis due to lower diagnostic performance
than cancer and goiter cohorts. The source of heterogeneity was traced by analysis of the
diagnostic threshold. Visual inspection of forest plots showed that the inverse relationship
between pairs of accuracy estimates (sensitivity and specificity, positive and negative likeli-
hood ratios) was absent. There was no significant correlation between true positive and
false positive rates (Spearman’s correlation coefficient = −0.273, p = 0.27), indicating the
absence of threshold effect. Meta-regression analysis revealed the insignificant influence of
the type of comparison on detected heterogeneity (coefficient = −0.41, p = 0.48).
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Figure 2. Deregulated exosomal miRNAs in thyroid cancer. (A) Venn diagram shows the intersection
between aberrantly expressed miRNAs across studies with different comparisons [25,26,28,30–35].
The Venn diagram was plotted online (http://www.interactivenn.net/) (accessed on 15 July 2021) [36].
(B) The lollipop plot shows the fold change of deregulated miRNAs in datasets comparing cancer
versus normal and cancer versus nodular goiter. Only miRNAs with reported expression level values
are shown [30,32,33,35]. R package ‘ggplot2′ and ‘ggpubr’ were used.

The trade-off between sensitivity and specificity was examined by estimating the
diagnostic odds ratio to compare the performance of miRNA tests. Overall analysis
showed a DOR of 13.6 (95%CI = 8.8–21.8). The best four markers were miR-16-2-3p
(DOR = 11.4, 95%CI = 18.9–655.1), miR-130a-3p (DOR = 81.0, 95%CI = 18.9–349.1), miR-
182-5p (DOR = 68.8, 95%CI = 12.8–369.8), and miR-223-5p (DOR = 55.5, 95%CI = 12.1–254.1)
(Figure 4A). The pooled negative likelihood ratio of reported miRNAs was 0.25
(95%CI = 0.19–0.33), indicating a 4-fold decrease in the odds of having cancer in a pa-
tient with a negative test result. Significant heterogeneity between miRNAs was ob-
served (I2 = 66.0%, p < 0.001). Across studies, the best markers for excluding can-
cer from normal individuals in the presence of negative test results were miR-130a-3p
(NLR = 0.11, 95%CI = 0.04–0.28) followed by miR-16-2-3p (NLR = 0.12, 95%CI = 0.05–0.29),
and for discriminating cancer from nodular goiter patients was miR-5010-3p (NLR = 0.11,

http://www.interactivenn.net/
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95%CI = 0.02–0.76) (Figure 4B). The overall positive likelihood ratio was 3.15
(95%CI = 2.46–4.03), which would indicate a 3-fold increase in the odds of having cancer
in a patient with a positive test. The best significant increase in the probability of cancer
was found in the case test results that yielded overexpression of miR-16-2-3p (PLR = 12.9,
95%CI = 3.4–49.5) and miR-223-5p (PLR = 8.36, 95%CI = 2.8–24.6) and lower levels of
miR-182-5p (PLR = 11.4, 95%CI = 2.9–43.6). There was remarkable heterogeneity across
testing of the 18 exosomal miRNAs reported (I2 = 68.3%, p < 0.001) (Figure 4C). Based on
the pooled negative and positive likelihood ratios and prior probability value of 50%, the
probability of the disease increases to 76% (95%CI = 74–78%) with positive test results and
decreases the probability of having the disease to 20% (95%CI = 17–22%) in the presence
of a negative test. Fagan’s Bayesian nomogram is shown in Figure 4D. The hierarchical
summary ROC (sROC) model jointly summarizes sensitivity and specificity irrespective
of the threshold effect of different miRNA tests. The area under the sROC curve was
0.866 ± 0.022 (Figure 4E).

As depicted in Figure 5, various miRNA panels were suggested in the literature. Six
panels of two to four exosomal miRNAs showed higher diagnostic value with AUC ranging
from 0.906 to 0.981. The best discriminative ability to differentiate between cancer and non-
cancer individuals was observed for miR-146b-5p + miR-223-5p + miR-182-5p (AUC = 0.981,
sensitivity = 93.8% (84.9–98.3), specificity = 92.9% (76.5–99.1) at cutoff > 0.769), followed by
miR-223-5p + miR-182-5p (AUC = 0.975, sensitivity = 90.8% (80.9–96.5), specificity = 96.4%
(81.6–99.9) at cutoff > 0.855) [32]. The De Long test showed no significant difference between
different combinations (p > 0.05). Whereas, the triple biomarker, miR-346 + miR-10a-5p +
miR-34a-5p, demonstrated high performance to discriminate between cancer and benign
nodular goiter disease (AUC = 0.887, 95%CI = 0.81–0.97) [35] (Table S3).
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represented the miRNA result of a study/dataset. Estimate and confidence intervals are shown as box and bar. Pooled
result of the subgroup analysis is shown separately in red (cancer versus normal) and green (cancer versus nodular goiter)
diamonds. Heterogeneity was assessed using the Q test, and the magnitude of heterogeneity was quantified using I2. If I2
exceeded 50%, heterogeneity across studies was reported, and random-effects model results were considered; otherwise, a
fixed-effects model was used. The final overall results are illustrated in the lower panel with grey diamonds. (A) Forest plot
for the sensitivity of testing exosomal miRNAs. (B) Forest plot for the specificity of testing exosomal miRNAs. R package
‘meta’ was used.
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Figure 4. Effectiveness of exosomal miRNAs as a diagnostic test. All tested miRNAs were upregu-
lated in cancer patients except miR-130a-3p, miR-29a, miR-34c-5p, miR-182, 5p, and miR-5010-3p.
(A) Diagnostic odds ratio. It is defined as the odds of the test being positive if the subject has cancer
relative to the odds of the test being positive if the subject does not have the disease (=PLR/NLR).
The higher diagnostic odds ratios are indicative of better test performance. The DerSimonian–Laird
pooling method was used [37]. (B) Negative likelihood ratio. It gives the odds of having a diagnosis
in patients with a negative test. The change is in the form of a ratio, usually less than 1. The smaller
the -LR, the more informative the test. (C) Positive likelihood ratio. It is the ratio of the probability
that a positive test result is expected in a diseased individual to the probability that a positive result
occurs in a healthy subject. It tells us how many times it is more likely to observe a positive test result
in a diseased than in a healthy individual. The more the likelihood ratio for a positive test (+LR) is
greater than 1, the more likely the disease is. (D) Fagan’s Bayesian nomogram for the 18 combined
miRNA panel. Lines are then drawn from the prior probability on the left through the likelihood
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ratios in the center and extended to the posterior probabilities on the right. Pretest probability on
the left vertical line, likelihood ratio in the middle vertical line. The predicted posttest probability
is on the right vertical line. Pooled results showed a moderate shift in posttest probability. With
the prior probability of 50%, the probability of the disease increases to 76% (95%CI = 74–78%) with
positive test results and decreases the probability of having the disease to 20% (95%CI = 17–22%) in
the presence of a negative test. (E) Summary ROC curve. It is created by plotting the true positive
rate (sensitivity) against the false positive rate (1-specificity). Symmetric sROC curve fitted using
Moses’ Model (weighted regression: inverse variance). Significant miRNA testing for cancer versus
normal in red circles and for cancer versus nodular goiter in yellow circles. The position of the dots
depends on their discriminatory ability; the more accurate the test is, the closer the curve to the
upper left-hand corner of the ROC plot. The middle blue line indicates the estimated sROC curve,
surrounded by two other lines for the 95% confidence region for the summary estimate. Q* is the
point of the curve in which sensitivity equals specificity. Meta-DiSc v1.4 was used for meta-analysis
(https://meta-disc.software.informer.com/1.4/) (accessed on 8 June 2021) [38].
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Figure 5. Comparison of the diagnostic accuracy of various miRNA-based panels. Area under the curve (AUC) and 95%
confidence interval (CI) of the receiver operator characteristic curve analysis for each panel are plotted [30,32,35]. The
threshold for optimum diagnostic accuracy was set at 0.75. Subgroup analysis for exosomal miRNA expression was carried
out based on the type of comparison. (A) Cancer compared to normal subjects; (B) cancer compared to nodular goiter.

3.3. Prognostic Value of Exosome-Derived miRNAs

Across studies [21,32,33], some miRNAs were reported to be associated with poor
prognostic outcomes (Table 2). Thirteen miRNAs were significantly downregulated in
patients with lymph node metastasis, including miR-130a-3pmiR-1915, miR-323a-5p, miR-
543, and miR-381-3p. Elevated levels of 12 miRNAs were associated with lymph node
metastasis, including miR-485-3p, miR-221-3p, miR-222-3p, miR-146b-5p, and miR-21-5p
(Table S4).

Considering studies reporting multivariate analysis for predicting survival and lymph
node biopsy [21,28], the relative risk and 95% confidence interval for univariate and
multivariate analyses are reported in Figure 6. Lower expression of miR-29a was associ-
ated with shorter survival times and nearly 4-fold increased risk of mortality (RR = 3.85,
95%CI = 1.76–6.25, p = 0.010), whereas the upregulated profiles of miR-146b-5p (RR = 1.71,
95%CI = 1.16–2.56, p = 0.012) and miR-222-3p (RR = 1.86, 95%CI = 1.21–2.89, p = 0.002) were
independent predictors for lymph node metastasis in thyroid cancer.

https://meta-disc.software.informer.com/1.4/
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Table 2. Association of exosomal miRNAs with poor prognostic features in thyroid cancer patients.

miRNA Expression LNM TNM
Stage

Tumor
Size ETE BRAF

Mutation
Short

Survival Recurrence Ref.

miR-130a-3p Low (+) (+) (+) [26]
miR-29a Low (+) (+) (+) (+) (+) [28]

miR-148a-3p Low (+) (+) [29]
miR-146b-5p High (+) (+) [21]
miR-222-3p High (+) (+) [21]
miR-423-5p High (+) [34]
miR-204-3p High (+) [33]
miR-4306 Low (+) [33]

miR-4433a-5p High (+) (+) (+) (+) [33]
miR-485-3p High (+) (+) (+) (+) (+) [33]
miR-21-5p High (+) [21]

miR-204-5p High (+) [21]
miR-221-3p High (+) [21]
miR-182-5p High (+) [32]
miR-26b-5p High (+) [32]
miR-126-3p High (+) [32]
miR-542-3p High (+) [32]
miR-32-5p High (+) [32]

miR-363-3p High (+) [32]
miR-1912 Low (+) [32]

miR-323a-5p Low (+) [32]
miR-543 Low (+) [32]

miR-381-3p Low (+) [32]
miR-128-3p Low (+) [32]
miR-139-5p Low (+) [32]
miR-885-3p Low (+) [32]
miR-409-5p Low (+) [32]
miR-28-5p Low (+) [32]

miR-151a-5p Low (+) [32]
miR-490-3p Low (+) [32]

LNM: lymph node metastasis; ETE: extrathyroidal extension, BRAF mutation: missense mutation V600E. (+): positive association.

As depicted in Table 3, the overexpression of miR-204-3p had a higher ability to
differentiate patients with large tumor size > 1 cm (AUC = 0.798, 95%CI = 0.71–0.88).
Upregulated miR-485-3p was associated with extrathyroidal extension (AUC = 0.726,
95%CI = 0.62–0.83), BRAF mutation (AUC = 0.890, 95%CI = 0.83–0.96), and advanced
clinical stage (AUC = 0.753, 95%CI = 0.65–0.86) [33]. Another miRNA, miR-29a had similar
discrimination ability to predict the late stage (AUC = 0.758, 95%CI = 0.70–0.81), which was
not significant from miR-485-3p (De Long test: p > 0.05). Lower expression of exosomal miR-
29a was also associated with recurrence prediction (AUC = 0.753, 95%CI = 0.68–0.80) [28].

Table 3. Receiver operator characteristic curve analysis for assessment of the prognostic performance of exosomal microRNAs.

miRNAs Cases Controls Expression AUC Lower Upper Ref.

Tumor size ≥ 1 cm vs. <1 cm miR-204-3p 56 40 High 0.798 0.71 0.88 [33]
ETE vs. none miR-485-3p 59 37 High 0.726 0.62 0.83 [33]

BRAF mutation vs. wild type miR-485-3p 65 31 High 0.890 0.83 0.96 [33]

Late stage vs. stage I/II miR-485-3p 33 63 High 0.753 0.65 0.86 [33]
miR-29a 41 78 Low 0.758 0.70 0.81 [28]

Recurrence vs. none miR-29a 30 89 Low 0.753 0.68 0.80 [28]

The area under the curve (AUC) and 95% confidence interval (lower and upper limits) are reported.
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Due to the limited available data and the small number of studies, we could not
perform subgroup analysis categorized by population demographics, histological subtypes,
disease stage, mutation status, initial curative therapy, or response to treatment.

3.4. Functional Enrichment Analysis

Around 50 miRNAs were included in the current meta-analysis. To unleash their
potential mechanism in cancer, we performed KEGG and gene ontology analyses with the
experimentally validated target genes of miRNAs. KEGG analysis demonstrated that the
miRNAs might play an important part in pathways closely related to thyroid cancer (e.g.,
thyroid cancer pathway, pathways in cancer, miRNAs in cancer, p53 signaling pathway, etc.
GO analysis showed that the miRNAs could also regulate important biological processes,
including DNA damage response, cell growth, apoptosis, and response to hypoxia. Results
of KEGG and GO analyses for miRNAs are presented in Figure 7. Target genes in each
KEGG pathway are demonstrated in Table S5.
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Figure 7. Functional enrichment analysis. (A) KEGG pathway enrichment. Top enriched pathways are represented in a
scatter plot. The vertical axis represents the pathname, and the horizontal axis represents the q-value. The color of the point
represents the size of the q-value. The number of differential genes included in each pathway is expressed by the size of the
point. (B) The vertical axis represents the gene ontology term, and the horizontal axis represents the number of gene targets
(hits) for 3′UTR, CDS, and 5′UTR in that GO. The top significantly enriched terms with q values < 0.05 were considered.
Data source: MirWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/) (accessed on 12 June 2021), using the following filter:
0.95, Targetscan, miRDB, and miRTarbase.

4. Discussion

Recently, research on exosomes and TC prognosis has become a medical hotspot. Many
studies have found that exosomes play a vital role in the diagnosis/prognosis and treatment
of TC, although the results remain controversial [25,27,31]. To our knowledge, this is the
first systematic review and meta-analysis evaluating the diagnostic and prognostic value
of exosomal miRNAs in thyroid cancer. Our meta-analysis consists of 12 articles, including
1164 patients and 540 controls. The pooled sensitivity was 82% (95%CI = 77–86%), pooled
specificity was 76% (95%CI = 71–80%), and pooled DOR was 13.6 (95%CI = 8.8–21.8). The
best biomarkers with high sensitivity were miR-16-2-3p (94%), miR-223-5p (91%), miR-
130a-3p (90%), and miR182-5p (94%). Similarly, they showed high specificity, in addition to
miR-34c-5p. This indicates that miRNAs can be potentially useful biomarkers when used
as a diagnostic tool for thyroid cancer.

MiRNAs play a key role in various processes, including cancer development, progres-
sion of the disease, and metastasis [39]. These highly conserved molecules are exceptionally
stable in blood and urine due to their small size and resistance to nucleolytic cleavage
by RNAse [40]. This feature allows miRNAs to be a reliable, non-invasive, and sensitive
method of detecting tumors. Furthermore, miRNA exhibit unique “molecular signatures.”
These mutations can be used to identify a wide range of malignancies, including hepatocel-
lular, lung, and thyroid cancer [41–43]

More studies are emerging on circulating miRNA for detecting TC [18,21,32,44]. For
instance, Liu et al. conducted a meta-analysis and found that circulating miR-222 and
miR-146b had high diagnostic value for PTC in the Asian population [18]. Specifically, miR-
222 had a sensitivity of 0.70%, specificity of 0.90%, and a diagnostic ratio of 22.55. Other
miRNAs reported to be associated with thyroid cancer include miR-146b and miR-221,
which are upregulated in benign and malignant thyroid nodules [45–47]. MiR-146b can
serve as an independent risk factor for poor prognosis in PTCs. However, overexpression
of miR-146b can be found in both PTCs and FTCs and cannot help differentiating between
tumors [45]. Additionally, Samsonov et al. confirmed that plasma exosomal miR-21 could
help differentiate benign tumors and FTC [25]. Our results add miR-21, miR-451a, miR-

http://mirwalk.umm.uni-heidelberg.de/
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1290, and miR-638 to the existing repertoire of miRNAs that can be used as diagnostic tools
for TC.

Our results support previous studies demonstrating that a panel of multiple miRNA
assays has higher diagnostic accuracy than single miRNA assays [18,48,49]. The best
discriminative ability to differentiate between cancer and non-cancer individuals was an
miR-146b-5p + miR-223-5p + miR-182-5p panel. Thus, it is important to consider using
a combination of miRNA rather than single miRNAs when using these biomarkers as a
diagnostic tool.

The utility of miRNAs is extensive as they can serve as prognostic markers for TNM
staging, tumor size, short-term survival, overall survival, and recurrence [27,50]. Our study
adds to the existing literature by demonstrating that circulating exosomal miR-21, miR-
451a, miR-1290, and miR-638 can be used to predict OS and DFS in these patients further.
Jiang et al. described exosomal miR-146-5p and miR-222-3p to be upregulated in PTC with
LNM [21]. Overexpression of these various miRNA may play a role in the migration and
invasion of PTC. By further deciphering the roles of miRNAs in cancer outcomes, such as
lymph node metastasis, surgical interventions can be limited. For instance, prophylactic
neck dissection is controversial in patients with clinically LNM-negative PTC patients.
Thus, non-invasive biomarkers can help prevent unnecessary surgery while providing
information on prognosis [51].

The biomarkers with highest sensitivity in our study were miR-16-2-3p (94%), miR-223-
5p (91%), miR-130a-3p (90%), and miR182-5p. Liang et al. similarly reported that miR-16-2-
3p and miR-223-5p could be utilized for detecting PTC from benign nodules [32]. MiR130a-
3p has been previously studied in glioblastoma, which regulates disease progression [52].
We found that miR-182-5p underexpression was associated with TC. MiR-182-5p has
been studied in other cancers, including hepatocellular cancer and breast cancer, where
it is proposed to be responsible for the proliferation and metastasis of cancer [53,54]. In
thyroid cancer, other studies have shown that miR-182-5p can be a helpful marker for PTC,
particularly metastasis, which agrees with our results [55].

The clinical advantages of miRNAs are multi-fold. First, miRNAs can be used as a
screening tool for early detection of PTC, which would aid in early cancer prevention and
improve patient survival. Secondly, the use of these biomarkers can help prevent unneces-
sary diagnostic surgery. Using the Bethesda classification of thyroid nodule fine-needle
aspiration, 20–30% of thyroid nodules are considered “indeterminate” (Bethesda Class
III/IV), and approximately 15–30% of these that are surgically removed are malignant [56].
Therefore, most patients who undergo surgery under these classifications have benign
diseases and do not require surgery. By using miRNA, we have the potential to save
patients from the burden of surgery.

This study had some limitations. First, except for one study, all studies included in
our analysis originated from China and included an Asian population. We recommend
that future studies include other ethnicities to improve the generalization of the miRNAs
panel. Secondly, studies involving biomarkers should expand their analysis to demonstrate
comprehensive diagnostic accuracy measures. Thirdly, measures of test accuracy are
not fixed properties of a test, and there are generally many contributing factors leading
to variation. Variation between studies in following the MISEV guidelines [35] on the
experimental methodology can add a further element of heterogeneity that also should
be considered. Therefore, heterogeneity is a common feature of DTA reviews. Due to this
wide variability or heterogeneity between studies, we suggest that future studies narrow
their analysis to select the best miRNAs and follow the standard published methodology
for reporting their results.

Future research should continue to evaluate the causative role of these miRNAs in
thyroid cancer development. By understanding the underlying mechanisms in which
miRNAs affect tumor progression or metastasis, we can better develop therapeutics using
miRNAs. For instance, studies have shown that exosomal miRNA-423-5p secreted by
PTC can, in turn, deliver the miRNA into PTC cells [34]. Thus, there is potential to use
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exosomal miRNAs as therapeutic targets in PTC. Furthermore, we recommend that a panel
of exosomal miRNAs is tested and validated.

5. Conclusions

We are the first to report on circulating exosomal miRNA as a promising diagnostic
tool to distinguish between malignant and benign thyroid cancer. Specifically, miR-16-2-3p,
miR-223-5p, miR-130a-3p, and miR182-5p can provide high diagnostic value with high
sensitivity and specificity. We recommend that circulating exosomal miRNAs be considered
potential biomarkers to establish diagnostic and prognostic information for thyroid cancer.
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exosomal miRNA meta-signature.
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