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Perturbations in endo-lysosomal trafficking pathways are linked to many
neurodevelopmental and neurodegenerative diseases. Of relevance to our current
study, MAPK8IP3/JIP3, a brain enriched putative adaptor between lysosomes and
motors has been previously implicated as a key regulator of axonal lysosome transport.
Since de novo variants in MAPK8IP3 have recently been linked to a neurodevelopmental
disorder with intellectual disability, there is a need to better understand the functioning of
this protein in human neurons. To this end, using induced neurons (i3Neurons) derived
from human iPSCs lacking MAPK8IP3, we demonstrate that loss of hMAPK8IP3 affects
endocytic uptake in neurons but does not affect the proteolytic activity of lysosomes
in neuronal cell bodies. Our findings indicate that MAPK8IP3 may be a regulator of
bulk endocytosis in neurons and that altered endocytic uptake may play a role in
MAPK8IP3-linked neurodevelopmental disorders.
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INTRODUCTION

De novo variants in MAPK8IP3, a putative adaptor protein believed to link cargo to dynein and
kinesin motors (Cavalli et al., 2005; Drerup and Nechiporuk, 2013; Gowrishankar et al., 2017, 2021;
Cockburn et al., 2018), have been found in children with neurodevelopmental disorders. In recent
years, two independent studies identified de novo variants in MAPK8IP3 in individuals presenting
with intellectual disability as well as brain anomalies including perisylvian polymicrogyria, cerebral
or cerebellar atrophy, and hypoplasia of the corpus callosum (Iwasawa et al., 2019; Platzer et al.,
2019). Our understanding of MAPK8IP3 function comes largely from studies of its orthologs in
Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio as well as from Mus musculus
(Drerup and Nechiporuk, 2013; Edwards et al., 2013; Gowrishankar et al., 2017, 2021). Originally
identified as Sunday Driver inD. melanogaster, studies of MAPK8IP3 and its orthologs (UNC 16 in
C. elegans and JIP3 in D. rerio and M. musculus), demonstrate that loss of this protein results in
altered axonal lysosome abundance in all these models (Drerup and Nechiporuk, 2013; Edwards
et al., 2013; Gowrishankar et al., 2017, 2021). While the C. elegans studies proposed a ‘‘gate keeper’’
function for UNC-16 by acting at the axon initial segment to prevent the entry of lysosomes from
the soma into axons (Edwards et al., 2013), the studies inD. rerio and themammalianmodel systems
suggest a role for removing axonal lysosomes via dynein-based retrograde transport (Drerup and
Nechiporuk, 2013; Gowrishankar et al., 2017, 2021). Further supporting a role in retrograde axonal
transport, Sunday Driver/ JIP3 was characterized as an adaptor that associates with dynein/dynactin
during the transport of axonal injury signals in neurons (Cavalli et al., 2005). JIP3 has since been
demonstrated to bind kinesin-1 in addition to the dynein-dynactin complex (Cavalli et al., 2005;
Cockburn et al., 2018; Vilela et al., 2019) and TrkB (Huang et al., 2011). Lastly, JIP3 has also been
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shown to localize to autophagosomes in axons even though
it only regulates the transport of mature autolysosomes in
these axons (Cason et al., 2021), consistent with previous
findings (Drerup and Nechiporuk, 2013; Edwards et al., 2013;
Gowrishankar et al., 2017, 2021).

The study by Platzer and colleagues that identified 13
de novo variants in MAPK8IP3 through exome sequencing
of 27,232 individuals (majority of whom had been diagnosed
with a neurodevelopmental disorder), also examined the effect
of some of these variants on axonal lysosome abundance
in C. elegans (Platzer et al., 2019). Through CRISPR
genome editing they engineered six of these variants into
the C. elegans model and found that only two of those
variants exhibited axonal lysosome accumulation like the
null version, while multiple variants affected locomotion. This
raises the possibility that MAPK8IP3 affects other cellular
processes in neurons, which may be adversely affected
by the variants linked to neurodevelopmental disease. In
this context, we examined whether MAPK8IP3 regulates
the degradative capacity of neuronal lysosomes. This is
important given that lysosomes are the primary degradative
organelles in cells whose functioning is particularly
critical for protecting long-lived, post-mitotic cells such as
neurons (Ballabio and Bonifacino, 2019; Ferguson, 2019;
Gowrishankar et al., 2020) from damaged organelles and
misfolded, aggregated proteins. We carried out a lysosomal
degradation assay using DQ-Red BSA (dye-quenched
Bovine Serum Albumin), a cargo that fluoresces when
proteolytically cleaved, in induced neurons (i3Neurons)
derived from iPSCs lacking MAPK8IP3 (Gowrishankar
et al., 2021). While MAPK8IP3 KO i3Neurons did not
exhibit a decrease in lysosomal proteolytic activity (as
measured by DQ-Red BSA fluorescence normalized to Alexa
488-BSA fluorescence in each cell), they did show defects in
endocytic uptake of BSA and Dextran, cargoes that serve as
markers for fluid phase endocytosis. The finding that loss of
MAPK8IP3 does not adversely affect the proteolytic activity
of lysosomes in neuronal cell bodies is as important as its
potential role in regulating fluid-phase endocytosis. Given
variants of MAPK8IP3 are linked to a neurodevelopmental
disorder, identifying more neuronal cellular processes that
are regulated by MAPK8IP3 will help us understand the
neurodevelopmental pathology associated with the different
variants.

MATERIALS AND METHODS

MAPK8IP3 KO i3Neuron Culture
The JIP3 KO/MAPK8IP3 KO iPSC line was previously
generated using CRISPR-Cas9 gene editing (Gowrishankar
et al., 2021). iPSCs were maintained in E8 media (Life
Technologies) and passaged using accutase (Corning).
The iPSCs possess a doxycycline inducible Neurogenin
2 transgene incorporated into the AAVS1 safe harbor locus
(Wang et al., 2017), allowing for dependable differentiation
of iPSCs into a neuronal fate. These i3Neurons were

differentiated from iPSCs as described previously (Wang
et al., 2017; Fernandopulle et al., 2018; Gowrishankar et al.,
2021). MAPK8IP3 KO cells stably expressing LAMP1-GFP
were generated previously (Gowrishankar et al., 2021).
i3Neurons were plated at a density of 30,000 cells per 35 mm
glass-bottom dishes (MatTek Life Sciences) coated with
0.1 mg/ml poly-L-ornithine (Sigma Aldrich) and 10 µg/ml
mouse Laminin (Gibco). i3Neurons were differentiated for
14 days in Cortical Neuron Culture Medium containing
KO DMEM F12 (Gibco) B27 supplement (Thermo Fisher),
10 ng/ml BDNF and NT3 (PeproTech), and 1 µg/ml
mouse Laminin. i3Neurons were supplemented with
Cortical Neuronal Culture Medium every 3–4 days during
differentiation.

Measurement of Lysosomal Proteolytic
Activity Using DQ-Red BSA
Lysosomal proteolytic activity was measured using the DQ-Red
BSA assay as previously described (Marwaha and Sharma,
2017; Kulkarni et al., 2021; Majumder et al., 2021), with
modifications for use in i3Neurons. DIV 14 i3Neurons were
pulsed with equal concentrations of the DQ-Red BSA and Alexa
488-BSA probes (25 µg/ml, Thermo Fischer) for a period of
either 5–7 h or 2 h, followed by gentle washes [two times
with warm imaging media (IM)]. They were then imaged
live in IM at 37◦C using a Zeiss 880 confocal microscope
in Airyscan mode with a 60× objective (NA 1.4). Healthy
i3Neurons were identified using brightfield mode and imaged
using the 561 and 488 lasers to capture fluorescence of
DQ-Red BSA and BSA-488. Fluorescence intensity for each
of the two channels was measured following outlining of
individual cells using Image J software and the normalized
ratio of DQ-Red BSA to BSA-488 intensity was computed
for each cell (Supplementary Figure 2). The mean of these
per cell ratios was then computed and normalized to the
value of Control i3Neurons to compare across multiple
experiments.

Making of DQ-Red BSA and BSA-488 probe mixture: 10%
Cortical Neuron Culture Medium (Gowrishankar et al., 2021) in
KO DMEM F12 was equilibrated at 37◦C and 5% CO2. Probes
were added to the 10% Cortical Neuronal Culture Medium and
incubated at 37◦C and 5% CO2 for 5 min for equilibration.

Composition of IM: 20 mM HEPES, 5 mM KCL, 1 mM
CaCl2, 150 mM NaCl, 1 mM MgCl2, 1.9 mg/ml glucose, and
BSA, pH 7.4.

Measurement of Endocytic Uptake of BSA
From data collected as described above, the population mean
of BSA-488 and DQ-Red BSA fluorescence intensity were each
normalized to the value of Control i3Neurons of the same
experiment to compare across multiple experiments.

Measurement of Alexa-647 Dextran Uptake
Prior to the overnight pulse of 10 µg/ml Alexa-647 Dextran
(Invitrogen) to label endo-lysosomes (Angarola and Ferguson,
2019) in 10% CM, 2 ml of culture media was saved at 37◦C
and 5% CO2. One hour prior to imaging i3Neurons were
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washed with warm PBS and the saved culture medium was
replaced for a One hour washout. Cells were then imaged
in IM at 37◦C as described above using the 633 laser.
Fluorescence intensity wasmeasured for each cell using ImageJ as
described above and population means were compared between
genotypes.

Validating Proteolytic Lysosomal Identity
of DQ-Red BSA Positive Vesicles
To validate the DQ-RedBSA assay (and confirm that the DQ-Red
BSA signal corresponds. To proteolytic activity), avacuolar
ATPase inhibitor, Bafilomycin A (Sigma Aldrich; known to
inhibit the function of lysosomes), was used (Yamamoto
et al., 1998). The DQ-RedBSA assay was performed in
MAPK8IP3KOLAMP1-GFP i3Neurons with a 5 h pulse with the
addition of Bafilomycin A at 100 nM final concentration 1 h into
the 5 h pulse. Cells were identified during live imaging using the
LAMP1-GFP signal.

Statistical Analysis
Data represent mean ± SEM unless otherwise specified. All
statistical tests were performed using Graphpad Prism9 software.
Statistical tests performed are indicated in their respective.

Figure legends [including the number of experiments (N),
number of cells (n), statistical test used, and p values].

RESULTS

Loss of MAPK8IP3 in Neurons Affects
Endocytosis but Not Lysosomal
Degradation
Our assay examining lysosomal proteolytic activity in Control
and MAPK8IP3 KO i3Neurons, as read out by fluorescence of
DQ-Red BSA normalized to fluorescence of BSA-488 for each
cell, revealed that theMAPK8IP3 i3Neurons do not have reduced
lysosomal proteolytic activity compared to Control i3Neurons
(Figures 1A–D). However, it was apparent from the images
(Figures 1B,C) that the fluorescence signal from both channels
was dimmer in MAPK8IP3 KO i3Neurons compared to Control
i3Neurons. Indeed, our analysis indicated that the fluorescence
intensity of each of the BSA probes was reduced by 28% in
MAPK8IP3 KO i3Neurons compared to Control (Figures 1E,F).
While a drop in DQ-Red BSA in MAPK8IP3 KO neurons
alone with BSA-488 fluorescence remaining comparable would
indicate a proteolysis defect, a drop in fluorescence intensity of
both probes is suggestive of defective endocytic uptake of these
probes (Figure 1A). The drop in fluorescence intensity could also
result from reduced axonal transport to the soma of BSA-loaded
endocytic vesicles, given the known role of MAPK8IP3 in
regulating axonal endo-lysosome transport (Gowrishankar et al.,
2021). While the KO i3Neurons did not exhibit a defect in
lysosomal proteolysis, we confirmed that they exhibited the
previously demonstrated phenotypes (Gowrishankar et al., 2021)
of axonal lysosome accumulation (Supplementary Figure 1).

The relatively longer pulses of 5–7 hwere carried out to ensure
the trafficking of endocytosed probes to lysosomes (Marwaha

and Sharma, 2017; Kulkarni et al., 2021). Since our findings
suggested a potential endocytic defect (Figures 1A,E,F), we
next examined the difference in fluorescence following a shorter
pulse of 2 h. This is because, with longer pulses, other cellular
trafficking events such as recycling or regurgitation (Mayor
and Pagano, 2007; Kumari et al., 2010) may also play a role
and obscure the extent of the endocytic defect. Indeed, we
found a much more dramatic and significant decrease in the
signal of both probes in MAPK8IP3 KO i3Neurons at 2 h
(Figures 2A–E).

Loss of MAPK8IP3 Affects Endocytosis of
Fluorescently Tagged Dextran, a
Well-Established Reporter of Fluid Uptake
in Cells
Given the strong decrease in BSA uptake in MAPK8IP3 KO
i3Neurons, we examined how the uptake of fluorescently
tagged Dextran (Alexa-647 Dextran) was altered in these
MAPK8IP3 KO i3Neurons compared to Control i3Neurons.
We found a similar decrease in Alexa-647 Dextranfluorescence
in MAPK8IP3 KO i3Neurons compared to Control i3Neurons
(25% reduction, Figures 3A–C) as we did with BSA (28%
reduction, Figures 1E,F). Collectively, these results suggest
that while loss of MAPK8IP3 does not reduce the proteolytic
activity of lysosomes in the neuronal cell body, it does
affect endocytic uptake of certain cargo in these human
i3Neurons.

DISCUSSION

In this study, we use i3Neurons that lack MAPK8IP3
(Gowrishankar et al., 2021) to identify defects in endo-lysosomal
traffic that arise from the loss of this protein. Given two
independent and recent studies have implicated de novo
variants in MAPK8IP3 as a cause of a neurodevelopmental
disease with intellectual disability and variable brain anomalies
(Iwasawa et al., 2019; Platzer et al., 2019), identifying neuronal
cellular processes altered by changes to MAPK8IP3 is
critical. Our experiments using MAPK8IP3KO i3Neurons
reveal a potential new role for the MAPK8IP3 protein in
regulating endocytic uptake in neurons, in addition to its
well-established role in regulating axonal transport (Cavalli
et al., 2005; Huang et al., 2011; Drerup and Nechiporuk,
2013; Gowrishankar et al., 2017, 2021; Cockburn et al.,
2018). Of equal importance, our studies suggest that loss
of MAPK8IP3 does not affect the proteolytic activity of
lysosomes in the neuronal cell body. A critical aspect to
understanding how the different MAPK8IP3 variants contribute
to neurodevelopmental pathology will involve examining
how these variants affect processes such as endocytosis,
axonal lysosome abundance, and lysosome function when
compared to complete loss of the protein. Such studies
would help determine if these variants (several of which
are missense mutations) represent loss of function mutations.
For instance, the study by Platzer and colleagues which used
the CRISPR-Cas9 system to target six conserved positions in
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FIGURE 1 | MAPK8IP3 I3Neurons show reduced endocytic uptake of BSA. (A) Schematic showing that proteolytically active lysosomes are positive for both
DQ-Red BSA and BSA-488, shown in yellow, and BSA-488 positive endosomes shown in green (i). If lysosomal proteolysis is perturbed (ii), there will be a decrease
in the ratio of DQ-Red BSA fluorescence intensity/BSA-488 fluorescence intensity (as both probes are taken up but due to lack of optimal proteolysis, there is
reduced DQ-Red BSA fluorescence signal). Lastly, if there is reduced endocytic uptake of both probes, the ratio of DQ-Red BSA fluorescence intensity/BSA-488
fluorescence intensity appears comparable to that of normal cells (indicating normal lysosomal proteolysis) but overall intensity of each of those probes is lower than
normal cells (iii). (B,C) Representative images of Control and MAPK8IP3 KO i3Neurons at DIV14 after 5–7-h incubation with both probes. Scale bar: 5 µm. (D)
Quantification showing the normalized mean DQ-Red BSA/BSA-488 ratio in Control and MAPK8IP3 KO i3Neurons from four independent experiments. (E)
Quantification of DQ-Red BSA fluorescence intensity in Control and MAPK8IP3 KO i3Neurons. (F) Quantification of BSA-488 fluorescence intensity in Control and
MAPK8IP3 KO i3Neurons. (D–F) Quantifications represent mean ± SEM across four independent experiments (*P < 0.05, ***P < 0.001; ns, not significant; unpaired
t-test). Control = 85 cells; MAPK8IP3 KO = 96 cells.
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FIGURE 2 | MAPK8IP3 KO i3Neuron endocytic uptake is more dramatically decreased with a shorter pulse. (A,B) Representative images of Control and MAPK8IP3
KO i3Neurons at DIV14 after 2-h pulse with DQ-Red BSA and BSA-488, sclae bar: 5 µm. (C) Quantification of mean normalized DQ-Red BSA/BSA-488 mean ratios
in Control and MAPK8IP3 KO i3Neurons. (D) Quantification of DQ-Red BSA fluorescence intensity normalized to Control. (E) Quantification of BSA-488 fluorescence
intensity normalized to Control. (C–E) Quantifications show mean ± SEM for two independent experiments, each with two technical repeats (****P < 0.0001; ns, not
significant; unpaired t-test). Control = 75; MAPK8IP3 KO = 54 cells.
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FIGURE 3 | Dextran uptake is reduced in MAPK8IP3 KO i3Neurons. (A,B) Representative images of Control and MAPK8IP3 KO i3Neurons at DIV15 after overnight
Alexa-647 Dextran incubation and 1 h washout. Scale bar: 5 µm. (C) Quantification of Alexa-647 Dextran fluorescence intensity normalized to Control. Mean ± SEM
from three independent experiments (**P < 0.01; unpaired t-test). Control = 60 cells; MAPK8IP3 KO = 74 cells.

C. elegans, found that two of the six human alterations resulted in
elevated axonal lysosome density while five affected locomotion
(Platzer et al., 2019).

The endocytic uptake of Dextran (10 kDa) into cells
normally occurs via a clathrin and dynamin independent
endocytic pathway, as well as by macropinocytosis, a form
of bulk endocytosis that relies on actin polymerization to
form around extracellular material (Mayor and Pagano, 2007;
Grant and Donaldson, 2009; Kumari et al., 2010; Lin et al.,
2020). Interestingly, MAPK8IP3/JIP3 has been implicated
in regulating macropinocytosis (Williamson and Donaldson,
2019) as well as fast endosomal recycling and endosome
movement in cultured cell lines, through its interaction with
the small GTPase ARF6 (Isabet et al., 2009; Marchesin et al.,
2015). JIP3, post-recruitment via ARF6, is proposed to aid
in the completion of macropinosome formation through a
coupling of the dynein motor to the growing structure in
HT1080 cells, which exhibit constitutive macropinocytosis on
the expression of an active form of H-Ras (Williamson and
Donaldson, 2019). Interestingly, some of theMAPK8IP3 variants
linked with neurodevelopmental pathology exhibit mutations
in the leucine zipper domain (Platzer et al., 2019), which is
implicated in ARF6 interaction (Isabet et al., 2009). However,
the role of MAPK8IP3 in regulating macropinocytosis in
neurons has not been demonstrated thus far. Our results
showing reduced Dextran and BSA uptake in MAPK8IP3 KO
i3Neurons could suggest that MAPK8IP3 plays a similar role in
regulating macropinocytosis as observed previously in cultured
cancer lines (Marchesin et al., 2015). While Dextran can
enter the cell through multiple endocytic pathways, including
constitutive clathrin-independent routes and macropinocytosis
(which is usually stimulated), we propose that MAPK8IP3 affects
macropinocytosis in human neurons, based on its previously
demonstrated role in this process in HT1080 cells (Williamson
and Donaldson, 2019). This could explain the modest but

consistent drop of 25% in Dextran uptake in the KO i3Neurons,
as other redundant pathways for Dextran entry may be
unaffected. Some of the reduction in fluorescence intensity of
the endocytic cargo (Dextran and/or BSA) could also result
from reduced axonal transport to the soma of cargo-loaded
endocytic vesicles. However, similar BSA uptake experiments in
the hippocampal neurons suggest that the number of BSA-loaded
vesicles in axons is about ten percent of those in dendrites
(Kulkarni et al., 2021), which in turn is less than those in
soma, suggesting that a block in axonal transport of endocytosed
vesicles could only partially account for decreased fluorescence
intensity. In further support of a link between MAPK8IP3 and
macropinocytosis, loss of MAPK8IP3 in i3Neurons causes focal
accumulation of actin and Myosin II (Rafiq et al., 2022), both of
which are involved in macropinosome formation (Araki et al.,
2003; Jiang et al., 2010; Williamson and Donaldson, 2019; Lin
et al., 2020). Future studies that include the use of inhibitors
such as amiloride (Koivusalo et al., 2010; Yerbury, 2016;
Aravamudhan et al., 2020; Ueda et al., 2021) and blebbistatin
(Kolpak et al., 2009; Williamson and Donaldson, 2019) in these
uptake assays will shed light on whether MAPK8IP3 is involved
in macropinocytosis in neurons. The extent and nature of stimuli
that induce macropinocytosis in neurons is not as extensively
characterized (Lin et al., 2020). However, macropinocytosis has
been identified as a means for viral entry into neurons (Kalia
et al., 2013; Aravamudhan et al., 2020), propagation of protein
aggregates between neurons in culture (Münch et al., 2011;
Holmes et al., 2013), and as a mediator of the axon growth
cone turning and collapse (Kabayama et al., 2009; Kolpak et al.,
2009). Additionally, a role for bulk endocytosis at the synapse is
suggested to be a mechanism for maintaining the size of the axon
terminal during prolonged activation (Bonanomi et al., 2008).
Interestingly, several of the individuals with MAPK8IP3 variants
present with thinning or hypoplasia of the corpus callosum
(Iwasawa et al., 2019; Platzer et al., 2019). Whether these are due
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to a lack of normal axonal development or axonal degeneration
remains to be investigated.

In conclusion, our studies reveal a role for MAPK8IP3 in
regulating endocytic uptake in human neurons. Future work
will focus on elucidating other molecular machinery that acts
in concert with MAPK8IP3 in this pathway, as well as whether
MAPK8IP3 variants linked with intellectual disability affect this
pathway in neurons.
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