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Despite substantial investments, traumatic brain injury (TBI) remains one of the major dis-
orders that lack specific pharmacotherapy. To a substantial degree, this situation is due
to lack of understanding of the pathophysiological process of the disease. Experimental
TBI research offers controlled, rapid, and cost-effective means to identify the pathophysiol-
ogy but translating experimental findings into clinical practice can be further improved by
using the same or similar outcome measures and clinically relevant time points.The patho-
physiology during the acute phase of severe TBI is especially poorly understood. In this
Mini review, I discuss some of the incongruences between current clinical practices and
needs versus information provided by experimentalTBI research as well as the benefits of
designing animal experiments with translation into clinical practice in mind.
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Traumatic brain injury (TBI) annually affects more than 10 million
people worldwide (1–3). Changes in life styles and in demograph-
ics, such as increased motorization and an aging population, will
likely render TBI the number one cause of disability and death
by 2020 (4). The direct and indirect costs of TBI are enormous.
In the year 2000, the cumulative cost of medical treatment, reha-
bilitation, lost productivity, and so forth was approximately 60
billion dollars in the United States alone (4–6). Individuals who
have suffered a TBI are far more susceptible to developing chronic
neurodegenerative conditions, such as Alzheimer’s Disease (AD)
which further increases the medical, financial, societal, and emo-
tional burdens of TBI (7–9). TBI is not a single disease but a
spectrum of disorders currently classified as severe, moderate,
or mild and TBI is the only major disease that has no specific
pharmacotherapy (10, 11).

Epidemiology data show that early intervention is a key
determinant of favorable outcome in severe TBI (12–16). Neu-
romonitoring, structural imaging, and other diagnostic techniques
employed in a modern neurointensive care unit (NICU) provide
real-time or near real-time information about changes in cerebral
metabolism, cerebral blood flow (CBF), and intracranial pres-
sure (ICP) among other parameters (10, 17, 18). The collected
data guide available interventions that are aimed at normalizing
the intracerebral milieu in support of recovery. Functional out-
come can be further improved, if we know the identity, onset, and
extent of the specific pathologies associated with the secondary
injury process, by means of targeted, evidence-based pharma-
cotherapy. Experimental TBI can provide this much needed infor-
mation; however, most experiments are not designed to deliver
clinically relevant data. In clinical settings, the early, acute post-
injury phase is marked by rich data collection using various

modalities/outcome measures. Importantly, the measurements
are frequently repeated in NICUs resulting in a high temporal
resolution. Experimental TBI studies have not focused on this
acute post-injury period and typically use clinically irrelevant
outcome measures such as histology.

In this Mini review, I focus on severe TBI that requires neu-
rointensive care, list the incongruences between experimental and
clinical TBI research, discuss some of the issues that underlie the
current gap, and outline potential solutions that can narrow the
gap with benefits for both clinical and experimental TBI fields.

NEUROLOGICAL EVALUATION
The Glasgow Coma Scale (GCS), length of loss of consciousness
(LOC), alteration in mental/conscious sate (AOC), and post-
traumatic amnesia (PTA) are the “gold standards” of determining
injury severity in clinical care (10). These tests are used world-
wide due to their low-tech requirements and ease of administra-
tion. Practically all clinical TBI reports contain GCS (as well as
LOC, AOC, and PTA) data, thus enabling comparisons between
studies. These assessments are used for triaging and selecting
patients for clinical trials, and in epidemiology studies. Their
modified versions, such as the Glasgow Outcome Scale (GOS),
are used to assess the outcome and the efficacy of drug treat-
ments in clinical trials. The tests are typically repeated over
a period of time, thereby providing critical information about
the temporal profile of functional changes. While the subjec-
tive nature of these tests and the impact of pre-hospital care are
important confounding factors, they will not be discussed in this
paper.

The lack of comparable data in experimental TBI represents one
of the major gaps between the two fields. Despite the availability of
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inexpensive neurobehavioral and injury severity tests for rodents
(19), a PubMed search shows that only a fraction of experimental
TBI studies utilize such tests. This phenomenon creates the follow-
ing paradox: in clinical TBI, we know the extent of the functional
deficits but not the parameters of the causative physical forces, and
in experimental TBI, we know the parameters of the physical forces
(we can calibrate them) but (typically) not the type and extent of
the functional deficits caused by these forces. The temporal aspect
of injury severity assessment is also overlooked in experimental
vs. clinical TBI. Even though the similarities and/or dissimilarities
between the timelines of human and rodent pathologies (in severe
TBI or in any other conditions) are not known, assessing injury
severity at several early time points in experimental TBI could pro-
vide important, albeit currently missing information that mimics
clinical practice. Additionally, serial assessment of neurological
deficits would greatly benefit the experimental TBI field by vali-
dating existing models and helping to determine the correlation
between physical forces and the biological/functional responses
to them.

STRUCTURAL IMAGING
Structural imaging by computed tomography (CT) and mag-
netic resonance imaging (MRI) or diffusion tensor imaging (DTI)
is routinely performed upon admission to a NICU, and the
pathoanatomic information is quantified by scores, such as Mar-
shall and Rotterdam (20–22). Imaging can identify a range of
macroscopic changes that include skull fracture, contusion, lac-
eration, hemorrhage of different types, swelling/edema, as well
as axonal injury (10). Furthermore, serial imaging can pro-
vide information about disease progression and the efficacy of
interventions in an objective manner. Contrary to its routine
use in clinical settings, there are no experimental TBI studies
using CT imaging. A PubMed search of existing literature indi-
cates that imaging, typically MRI or positron emission tomog-
raphy (PET) studies, is rarely performed in experimental TBI.
Importantly, very few if any of these studies focused on struc-
tural changes during the clinically relevant acute post-injury
period.

In vivo imaging of small animals presents a number of techni-
cal challenges, including low spatial resolution and dealing with
motion artifacts (23). Obtaining sufficient spatial resolution of
the rat brain requires several hours of scanning time, which can
only be performed under anesthesia. This may not be a major
caveat given that most TBI patients in NICUs are sedated; how-
ever, the limited availability of imaging modalities optimized for
small animal research makes scanning live animals very diffi-
cult. The alternative is to perform ex vivo imaging. In addition
to flexible scheduling, ex vivo imaging allows for extended scan-
ning times. Nonetheless, the fixation process can produce artifacts
that may affect imaging quality (e.g., reduced DTI sensitivity)
(24). A major unresolved issue in animal imaging studies is the
lack of standard analytical protocols, including standardized brain
atlases for rodents (25–28). In the absence of such standards,
imaging studies performed at different laboratories are rendered
incomparable.

The benefits of performing imaging studies in experimental
TBI include the validation of TBI models and the elucidation of

injury heterogeneity, which is inherent in human TBI. Analyz-
ing and interpreting imaging data, a routine in clinical setting,
in the context of histological changes, a major experimental out-
come, would allow us to relate structural level changes to cel-
lular level changes. For example, we currently have a limited
understanding of how altered fractional anisotropy (FA) values
relate to axonal function. Experimental TBI studies that inte-
grate MRI and histopathology can address this important issue.
Combined with yet another clinically relevant non-invasive tech-
nique that measures axonal functionality, magnetoencephalogra-
phy (MEG), we can gain an even deeper understanding of the
connection between structural changes and altered functional-
ity (29, 30).

PHYSIOLOGICAL/SYSTEMIC MONITORING
Physiological parameters such as blood pressure, breathing, heart
and pulse rates, and blood oxygen saturation are monitored in
the NICU. Injury to the head alone can adversely affect vital
physiological functions, e.g., by causing apnea. Apnea contributes
to decreased blood oxygen saturation which in turn triggers
complex downstream molecular events, including the activation
of hypoxia-induced molecular compensatory mechanisms (31).
However, severe head injury without additional trauma is very
rare. Polytrauma,a frequent occurrence in severe human TBI cases,
can substantially complicate the course and outcome of the brain
injury but rarely modeled in experimental TBI.

The monitoring of vitals, such as heart rate, breathing rate,
and oxygen saturation, is seldom performed in experimental TBI
despite the availability of devices (and analysis software) specifi-
cally adapted for use in rodents (32, 33). Monitoring such para-
meters in experimental TBI and analyzing the data in the context
of histological and molecular (and functional) outcomes would
help clarify the role the secondary injury process plays in affect-
ing systemic pathological changes. This knowledge would provide
the basis for improving current NICU practices and making TBI
models more clinically relevant.

CEREBRAL MONITORING
In the absence of specific, evidence-based therapeutic interven-
tions in severe TBI, the current strategy is to normalize the
intracerebral environment, thereby facilitating recovery (“medicus
curat, natura sanat ” meaning the physician treats, nature heals).
The anatomical and biochemical uniqueness of the central ner-
vous system (CNS) requires close monitoring of ICP, cerebral
perfusion pressure (CPP), CBF, and cerebral metabolic rate of
oxygen (CMRO2), and glucose consumption (CMRGlc) (34, 35).
Early experimental studies have determined the effects of cerebral
insult(s) in various animal models of TBI; however, these studies
are far from being clinically relevant (36, 37). Epidemiology stud-
ies have shown that monitoring and maintaining these parameters
within their normal physiological ranges is a key determinant of
functional outcome (10, 18). Transcranial Doppler (TCD) (38,
39) and quantitative electroencephalography (qEEG) (40) have
been used in clinical settings to provide information about blood
flow, seizure activity, ischemia, and vasospasm. All of these mon-
itoring techniques currently have animal versions available (41).
Combining the readouts of TCD and qEEG measurements with
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biochemical, molecular, and histological analyses in experimen-
tal TBI studies can help interpret clinical TCD and qEEG data in
the context of molecular and cellular pathologies that are easily
measurable under controlled experimental conditions. Experi-
mental TBI would also benefit from such analyses, particularly
when the validation of experimental models is concerned. A
limited number of TBI studies using large animal models have
provided information about changes in the intracranial cellular
environment over time in a setting closely mimicking NICU (42).
Using the controlled cortical impact (CCI) model of swine, this
pioneering study has established the correlation between injury
severity (the depth of depression), ICP (as well CPP) and neu-
ronal degeneration, axonal damage, and cell death. The obtained
data provided the basis to test an evidence-based therapeutic
measure, infusing hemoglobin-based oxygen-carrying (HBOC)
solution after severe TBI with hemorrhage (43). HBOC treatment
improved CPP and MAP and significantly improved histological
outcome. These studies are great examples of how experiments
designed to mimic clinical scenarios can result in developing
evidence-based treatments in TBI and can also provide infor-
mation about the correlation between physical forces and tissue
damage thereby helping to calibrate and validate experimental
TBI models.

BIOCHEMICAL MONITORING OF BIOSAMPLES
In a typical NICU, systemic blood is routinely collected (as fre-
quently as necessary) for monitoring changes in electrolytes,
metabolites, and inflammatory markers (15, 44–47). Serum lev-
els of various protein biomarkers indicative of neuron and/or glia
damage and/or loss –neuron-specific enolase (NSE), neurofila-
ment (NF), tau protein and its phosphorylated forms, ubiqui-
tin carboxyl-terminal hydrolase-L1 (UCH-L1) and αII-spectrin
breakdown product (SBDP145), glial fibrillary acidic protein
(GFAP), and S100β – are also getting measured (48–52). It has been
shown that the temporal profile (or trend) of changes in serum
biomarker levels may be an important indicator of outcome (53,
54). However, the reported associations between serum levels of
these protein biomarkers and injury severity and/or outcome are
rather study specific. Despite the clinical practice and importance
of such monitoring, obtaining and analyzing blood/serum sam-
ples at multiple post-injury time points (monitoring), are almost
completely absent in experimental TBI work. While obtaining ser-
ial blood samples from small rodents under anesthesia can be
challenging, determining time-dependent changes in serum bio-
marker levels has a very high clinical relevance. Serum biomarker
data obtained in an experimental setting, when analyzed and
interpreted in the context of other outcome measures (e.g., his-
tology), greatly facilitate the understanding of serum biomarker
changes as they relate to specific pathologies, injury severity, and
prognosis.

Analyzing biomarkers in the cerebrospinal fluid (CSF) sig-
nificantly improves the CNS specificity of detected changes (10,
55–59). CSF is also routinely collected in NICUs and is analyzed
for changes in metabolism, inflammation, and the presence of
infectious agents. Similar to blood/serum samples, CSF has been
increasingly tested in clinical TBI for changes in protein biomark-
ers (56, 60–64). There are several promising candidates including

ubiquitin C-terminal hydrolase-L1 (UCH-L1) that show correla-
tion with injury outcomes. In contrast to clinical practice, very few
experimental TBI studies have analyzed injury-induced changes of
biomarkers in the CSF (65–67). Obtaining CSF from small rodents
is not without its technical challenges, but volumes (~50 µl) suf-
ficient for several biochemical and immunological assays can be
obtained from rats using cistern puncture. Even though obtain-
ing CSF from large animals (e.g., pigs) is relatively easy, it also
rarely performed (65). Experimental data obtained by analyzing
CSF samples at multiple time points, mimicking clinical practice,
would be especially valuable in validating clinically used biomark-
ers and linking their changes to injury severity and outcome.
Concurrent sampling and subsequent analysis of serum and CSF
samples would help validate injury-induced changes in blood-
based biomarkers in the context of injury severity as well as CNS
specificity.

The CNS specificity of biomarkers can be even further
improved by analyzing injury-induced changes in the brain inter-
stitial fluid (ISF) collected by cerebral microdialysis (CMD) (68–
73). The biochemical analysis of ISF has been used to moni-
tor cerebral metabolism in numerous NICUs, because it pro-
vides important spatial information about ongoing pathological
changes (10). Novel types of microdialysis catheters enable the
collection of molecules up to 100 kDa molecular weight. Studies
have shown that ISF samples can be analyzed by high-resolution
mass spectrometry-based proteomics (74–76). Performing similar
analyses in experimental TBI would require the use of large animal
models with gyrencephalic brain and physiology close to humans.

CAVEATS
Important, albeit potentially confounding factors such as pre-
existing and/or predisposing conditions (medications, the role of
age and gender), comorbidities (polytrauma), and the effect of
anesthesia are beyond the scope of this paper. While we are seek-
ing to match clinical and experimental practices and outcomes,
it is essential to remember that humans and rodents (most fre-
quently used in TBI modeling), live on very different timescales
(77). Therefore, scalability – due to innate species differences in
anatomy and physiology – is of the utmost importance when
it comes to animal modeling of a complex human disease. For
example, protein turnover and metabolic rate, respectively, are
~10× and ~6× higher in rats compared to humans (78, 79).
Heart and respiration rates are ~4–6× higher in the rat while
gestation and sexual maturity, respectively, are ~12× and ~100×,
faster. Of the pathological processes after various insults includ-
ing TBI, inflammation (various components) is 4–30× faster
in the rat (80). There is no algorithm or “conversion formula”
available, even for normal biological processes. The lack of such
information represents an important gap in our understanding of
how the temporal profiles of clinical and experimental TBI data
compare. Furthermore, complex pathological processes such as
inflammatory response can be vastly different in rodents than in
humans (80).

Finally, the rapid advancement of non- and/or minimally
invasive technologies, various imaging modalities combined with
increasingly powerful analytical tools, finite element, and other
computational modeling will eventually make experimental TBI
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obsolete (81). In the meantime, TBI experiments should be
designed with real-life clinical TBI in mind. Doing so would not
only provide clinicians with much needed data to refine cur-
rent clinical practices, but also help research scientists validate
and refine their experimental models. An additional benefit for
the clinical TBI field would be the ability to analyze clinical data
in the context of molecular pathologies studied (and validated)
under controlled conditions – a fundamental step toward targeted,
evidence-based pharmacotherapies for TBI.
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