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Design and evaluation 
of a novel approach to invisible 
electrocardiography (ECG) 
in sanitary facilities using polymeric 
electrodes
Aline dos Santos Silva1*, Hugo Almeida2, Hugo Plácido da Silva3 & António Oliveira4 

Multiple wearable devices for cardiovascular self-monitoring have been proposed over the years, with 
growing evidence showing their effectiveness in the detection of pathologies that would otherwise 
be unnoticed through standard routine exams. In particular, Electrocardiography (ECG) has been 
an important tool for such purpose. However, wearables have known limitations, chief among 
which are the need for a voluntary action so that the ECG trace can be taken, battery lifetime, and 
abandonment. To effectively address these, novel solutions are needed, which has recently paved the 
way for “invisible” (aka “off-the-person”) sensing approaches. In this article we describe the design 
and experimental evaluation of a system for invisible ECG monitoring at home. For this purpose, a 
new sensor design was proposed, novel materials have been explored, and a proof-of-concept data 
collection system was created in the form of a toilet seat, enabling ECG measurements as an extension 
of the regular use of sanitary facilities, without requiring body-worn devices. In order to evaluate the 
proposed approach, measurements were performed using our system and a gold standard equipment, 
involving 10 healthy subjects. For the acquisition of the ECG signals on the toilet seat, polymeric 
electrodes with different textures were produced and tested. According to the results obtained, some 
of the textures did not allow the acquisition of signals in all users. However, a pyramidal texture 
showed the best results in relation to heart rate and ECG waveform morphology. For a texture that 
has shown 0% signal loss, the mean heart rate difference between the reference and experimental 
device was − 1.778 ± 4.654 Beats per minute (BPM); in terms of ECG waveform, the best cases present 
a Pearson correlation coefficient above 0.99.

Given the increase of life expectancy in our society, and with cardiovascular disorders (CVDs) still being the 
leading cause of death globally1,2, new methods of disease monitoring and prevention using modern information 
and communication technologies are needed3. For detection and pre-screening of certain CVDs, Electrocardi-
ography (ECG) has been the established first line exam in a clinical setting. The objective of ECG analysis is to 
verify if there are any cardiovascular problems as perceived by the electrical conduction patterns of the heart, 
and is widely used to screen for atrioventricular narrowing or blockage, disorders in the activation sequence, 
ischemia, infarction, arrhythmias, tachycardia or bradycardias (i.e. when the heart beats too fast or too slowly), 
just to name a few applications. It is an initial test, in the sense that it points out possible suspicions, which 
should be confirmed with other tests, but it can still be fundamental for early CVD detection, especially if used 
in long-term non-invasive monitoring4.

Significant work has been made in the domain of wearable devices to bring the ECG to the masses5, with 
examples like the Apple Watch showing competitive results or, in some reported cases, even surpassing stand-
ard medical approaches6–8. Nevertheless, despite providing new screening opportunities, wearable devices are 
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hindered by challenges such as the need to perform a specific action for measurements to be obtained or users 
needing to remember wearing them8, and still shadowed by the abandonment rates of up to 30%9. This is paving 
the way for “invisibles” or “off-the-person” sensing approaches10,11, in which the sensors are integrated in everyday 
use objects, hence enabling data acquisition as an extension of subjects’ everyday activities.

Regular measurement of health and wellbeing with sensors integrated in the home environment is a topic of 
growing interest in the international community, as shown by previous work on the topic of “smart homes”12–14. 
However, biomedical sensors such as the ECG have specific requirements in what concerns the interface with 
the body. Our proposal is to use an approach that non-intrusively monitors the ECG without directly attaching 
sensors and transducers to the body. To avoid specific procedures to be performed by the users, in this work 
we present an experimental setup targeted at the automatic monitoring of the daily cardiovascular state of the 
patient during the use of a sanitary facility. As such, we describe a proof of concept (PoC) system, capable of 
incorporating ECG in a toilet seat for measurement in a passive way. The problem is addressed in an end-to-end 
approach, covering aspects ranging from materials for the implementation of the interface between the sensors 
and the body, sensor specifications, industrial design, basic architecture of the system, and characterization of 
the feasibility of this approach through experimental evaluation with healthy subjects.

The electrical signal of the heart starts with an electrical impulse generated in the sinus-atrial node (SA) also 
called sinus node, reason for which the normal rhythm also assumes the designation of sinus rhythm. The ECG 
signal waveform is characterized by: P, QRS and T waves, which are presented sequentially and with a well-
defined interval duration; the R peak is typically the most prominent, and the deflection used to segment a beat.

Our work contributes to further extend the state-of-the-art, mainly by addressing problems related with the 
electrode materials and texture, and by adopting a sensor design that requires less contact points between the 
sensor and the body. The remainder of the article is organized as follows. Section 2 describes the background 
and state-of-the-art. Section 3 details the implementation. Section 4 summarizes the experimental evaluation 
and results. Finally, Sect. 5 outlines the main conclusions and future work directions.

Background
Previous work can be found within the state of the art focusing on the measurement of biomedical signals by 
means of sensors integrated in the sanitation facilities environment. Focusing on ubiquitous health care, Kim 
et al.15 performed an ECG measurement study on the toilet lid using capacitively coupled isolated electrodes. In 
addition, in this study they addressed the impact of the existence of electrical grounding of the body in relation 
to the analysis of heart rate variability (HRV).

Also, with the purpose of contributing to preventive health care, Conn et al.16 present in their study a toilet 
seat-based cardiovascular monitoring system with an integrated electrocardiogram, ballistocardiogram, and 
photoplethysmogram, capable of clinical-grade measurements of systolic and diastolic blood pressure, stroke 
volume, and peripheral blood oxygenation.

Due to the importance of creating intelligent sanitary equipment, both for measuring physiological param-
eters and for fall prevention, other studies have been conducted to address these issues. Park et al.17 describes 
easy-to-implement hardware and software for the long-term analysis of a user’s excreta through data collection 
and human health models. The objective is to create a toilet that can perform screening, diagnosis and monitor-
ing and pathologies of specific patient populations.

In order to use this technology for fall detection, Tsuchiyama et al.18 suggest an accident detection and patient 
monitoring system using an ultra-wideband radio sensor system in order to avoid several accidents in the sanitary 
facility. Huang et al.19, pursued the study of a system that measured various physiological parameters, including 
ECG, body weight and body fat ratio, and that also provided health management function by means of smart 
toilet seat-mounted electrodes that are used to measure ECG and bioelectric impedance.

These references further reinforce the interest, usefulness and novelty of the topics addressed by our work. In 
fact, one study suggests that as much as 11% of cardiac arrest episodes are sustained in the toilet20. Integrating 
the sensor in a toilet seat is particularly advantageous, since it is a pervasive object, with which subjects regularly 
interact, often multiple times throughout the day. The interaction mode is such that it eliminates constraints 
typically associated with wearable devices (namely the need for a voluntary action from the user prior to obtain-
ing the measurement)10.

In the scope of ECG measurement, key characteristics that differentiate our approach are related with the 
texture and number of measurement terminals that interface with the user’s body. Most solutions use metallic 
inserts and three contact points with the user; in our approach, we explored the use of conductive polymers that 
can be produced by 3D FDM (fused deposition modelling) printing and a sensor design with virtual reference 
(hence requiring only two contact points with the user).

Proposed approach
Materials overview.  A core component of our work is the interface with the body using polymeric materi-
als capable of being used as electrode. Their conductive properties were considered, taking into account that in 
a first stage the electrodes needed to be produced by FDM, in which parameters like temperature and printing 
speed affect the conductivity. Three specific types of polymers were identified, namely: Electrifi (Multi3D, LLC, 
Cary, NC, USA) (resistivity of 0.006 Ω.cm), Proto-Pasta CDP1(ProtoPlant Inc., Vancouver, WA, USA) (resistiv-
ity between 30 Ω.cm and 115 Ω.cm), and Black Magic 3D (Graphene Laboratories Inc., Ronkonkoma, NY, USA) 
conductive graphene filament (resistivity of 0.6 Ω.cm).

The Multi3D material was discarded due to the high cost, and because it presented a pasty consistency that 
makes the part lose its form very easily, even showing a significant wear in the normal contact with the skin, 
hence not suitable for our application. The conductive graphene filament was also discarded due to the high 
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cost. On the other hand, Proto-Pasta presented similar mechanical properties to that of PLA (PolyLactic Acid) 
filaments, therefore being the selected material.

These polymers use as material base PLA, which is added to other composites that enable them to be electri-
cally conductive. The PLA base allows the materials to be used in desktop 3D FDM printing machines, since the 
materials fulfil the temperature and printing speed requirements. Although the manufacturers indicate a typical 
resistivity for the materials, this property varies with the format of the part to produce, and with the printing 
parameters. As the 3D printed parts are the result of material deposition in the plane (X, Y) and stacked in Z, 
the resistivity measured in the X and Y axis is different from what is measured in Z, thus causing a resistivity 
dependent of the part geometry, i.e., the materials possess electric anisotropy.

Electrode texture.  For ECG data acquisition with the sensors integrated in everyday use objects, an ade-
quate electric contact between the skin of the subject and the electrode can depend on natural barriers such as 
androgenic hair1. This is particularly relevant in the context of our work, in which the sensor is applied on the 
legs. To address this issue, in our approach we have devised and tested electrodes with different textures to deter-
mine which (if any) would have superior performance. We tested a flat/smooth texture, which would be ideal for 
industrialization, and also sinusoidal, trapezoidal, and pyramidal textures, intended to overcome the androgenic 
hair barrier. The different textures considered are depicted in Fig. 1.

Methodology.  To test our proposed approach an experimental test bed was created, in which the electrodes 
were embedded in an off-the-shelve toilet seat (OWCO TAURUS) as four pairs of side pads, for the acquisition 
of the ECG signal. Each pair of pads matches the textures described in “Electrode texture”, and the electrical 
connection to the sensor module located at the rear is performed by means of a fused wire (as per the results in 
“Material resistivity”).

Given that it does not affect the behavior of the sensor and electrodes, the data acquisition system (i.e. from 
the sensor output onwards), is based on the state-of-the-art BITalino (PLUX, S.A., Lisbon, Portugal) development 
kit21, which has been scientifically validated in previous work22. Four ECG sensors with our custom analog front 
end (one per electrode pair) were used and connected to the analog inputs on the MCU.

With this setup, the toilet seat streams the collected signals via Bluetooth to a receiver (i.e. a computer or 
mobile phone). The ECG signal is amplified at the analog front end with a gain of 11,000× and filtered with a 
band pass filter with passing band [0.5; 40] Hz, limiting the signal band to the typical ECG monitor frequency, 
reaching the receiver thereafter as raw data. The acquisition is performed with a sampling frequency of 1 kHz 
and transmitted according to the acquisition protocol23; in the acquisition of all four channels, each sample is 
converted with 10-bit resolution, and packaged in a frame with 7 bytes, resulting in a data rate of 56 kbits/s or 7 
Kbyte/s, which is the maximum throughput that the system requires.

Figure 2 depicts the experimental setup, complete with the electronics, electrodes and respective wiring. It 
is also possible to notice the different pads on the left and right sides of the toilet seat top surface, which were 
always used in the same order/position throughout the tests.

The experimental setup also included an LED and a luminosity sensor to enable the synchronization of the 
device with external systems; this optical approach was adopted to ensure electrical decoupling between systems. 
In particular, we use this facility to support simultaneous data collection using the toilet seat and a second system 
applied to a reference location on the body of the tested subjects (herein considered as the gold standard), in a 
way that allows the independent ECG time series to be matched in post-processing.

For data analysis and reporting we used Python 3.8, the BioSPPy (0.6.1) library24 for the digital filtering and 
segmentation methods, and PyHRV (0.4.0) for Heart Rate Variability (HRV) analysis. Unless otherwise noted, 
mean values and standard deviation were computed over all subjects.

Figure 1.   Electrode textures considered for the implementation of our approach.
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Results
Material resistivity.  To understand the impact of the printing temperature on the material conductivity, 
several cubic volumes with 1 cm edge were printed, and their resistivity between faces along the Y- & Z-axes 
was measured. This method is used to determine the volumetric resistivity and, since it does not depend on the 
volume of the piece, but on its proportions, it is used as a standard measure, with the SI unit, Ω cm. Volumes 
were produced using three different temperatures. Table 1 summarizes the results of resistivity as a function of 
temperature. From this part of the work, it was possible to conclude that the temperature that maximizes con-
ductivity for this material is of 230 °C (the maximum limit specified by the manufacturer without compromising 
stability and reactivity).

Given that we are using polymeric materials, the electric contact between the electrode and the connecting 
wire (to interface with the actual sensor) is yet another variable to consider. To address this aspect, we tested 
two different methods, namely, fusing of the wire in the electrode, and using a metallic insert to which the wire 
could be screwed. In the latter case, the wire is heated and inserted in the electrode as it is being produced. In the 
former case, the metallic insert is heated to the point where it melts into the polymer; after that, a brass terminal 
in the electric wire is screwed to the insert in such a way that the electrode makes contact with metallic insert 
and with the connecting wire through the screw.

We tested both options to better assess the effect of the electric contact between the printed electrode material 
and the connecting wire. Table 1 also presents the result of the measurements. Sample A shows the resistance 
values for the material alone, while in Sample B a wire was fused next to one of the edges and resistance was 
measured according to axis Y and Z. In Samples C and D inserts were applied perpendicularly to the axis Y and 
Z, and the resistance was measured in each.

Results show that the resistivity decreases with a higher printing temperature, as specified by the manufac-
turer, however, the resistivity is much higher than the announced 30 Ω cm along the Y-axis and 115 Ω cm along 
the Z-axis. Furthermore, this test enables us to conclude that the method of wire fusion presents lower values of 
resistivity than the method based on metal inserts; the latter finding may be related with the material of the metal 
inserts (brass—28 IACS (International Annealed Copper Standard)) comparatively to the wire (copper—100 
IACS). However, the differences between the two for a temperature of 230 °C are negligible. In the experimental 
evaluation, both methods were tested, and no significant differences were detected in the quality of the measured 
data, hence both methods are possible to use in a practical application. Nevertheless, the fused wire requires less 
components and fewer assembly steps.

Data acquisition.  The overall setup used in our study is depicted in Fig. 3. Data was simultaneously col-
lected using our device and the reference system. From our setup, seven data sources are produced, these being 

Figure 2.   Prototype of the toilet seat, highlighting the electrodes positioning. A1: Flat texture; A2: Sinusoidal 
texture; A3: Trapezoidal texture; A4: Pyramidal texture.

Table 1.   Resistivity on the Y and Z axes as a function of temperature for the material alone (Sample A), fused 
wire on material (Sample B), and metallic insert embedded on material (Samples C and D).

Temperature (ºC)

Sample A Sample B Samples C and D

Resistivity 
(Ω cm) Resistivity (Ω cm) Resistivity (Ω cm)

Y-axis Z-axis Fusion (Y-axis) Fusion (Z-axis) Insert (Y-axis) Insert (Z-axis)

215 510 540 190 230 260 850

220 500 570 260 300 300 880

230 200 230 150 170 190 240
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in one of the devices O1—LED and A1—ECG REF, while in the other device the ports A1—ECG FLAT, A2—
ECG SINUSOIDAL, A3—ECG TRAPEZOIDAL, A4—ECG PYRAMIDAL, and A6—LUMINOSITY SENSOR 
were used. The ECG REF sensor was applied to the subject with the IN + terminal on the left clavicle, the IN- 
terminal on the right, and the REF on the cervical—C5/C6 (Fig. 3), corresponding to an Einthoven Lead I. 
The use of LED and LUMINOSITY SENSOR allows the synchronization of the data collected by both devices 
in post-processing. In the gold standard (ECG REF sensor) the disposable Covidien (Covidien Ltd., Gosport, 
UK) KENDALL ARBO H124SG EMG/ECG/EKG surface electrode (24 mm diameter) were used, and while the 
electrodes described in “Electrode texture” were used on the other sensors. The latter is a dry electrode, while the 
Covidien electrode is a typical clinical use electrode, which has an adhesive side with non-irritant gel, especially 
developed to improve conductivity, preventing allergic reactions.

A total of 10 healthy volunteers aged between 26 and 68 years were enrolled; of these participants, 4 were 
female, 50% had androgenic body hair, and only one had hypertension. For each participant 5 min of data were 
recorded using the methodology described in “Methodology”, and subjects were asked to have the legs projected 
to the front, with the heels touching the ground, to ensure a uniform weight distribution across the electrodes. 
The experimental protocols and methods were followed the guidelines and ethical principles for research involv-
ing human subjects set forth by the Declaration of Helsinki, and submitted to and approved by the IT—Instituto 
de Telecomunicações licensing committee. An informed consent was obtained from all participants.

As described in “Methodology”, the ECG sensor already filters the signal at the hardware level. However, 
even after this conditioning, the signal may be contaminated by other noise sources; furthermore, for a deeper 
analysis of the ECG signal trace, segmentation of the heartbeat waveforms is a fundamental step for which the 
performance is maximized with filtered data. For this, we used the digital filters and segmentation methods 
included in the BioSPPy; a Finite Impulse Response (FIR) filter of order 300 was used to preserve the signal only 
in the 3–45 Hz range, while the Hamilton method was used for segmentation25.

Figure 4 illustrates the original signal, and resulting filtered signal (black trace), in which the elimination 
of much of the noise present in the source signal (red trace) is already visible. The following “Heart rate” and 
“Heartbeat waveform morphology”, aim to characterize the system performance in terms of heart rate and ECG 
signal wave morphology, using the collected data.

Before comparing the experimental signal with the reference, we ensure that only matched segments are used; 
i.e., as described in “Methodology”, both systems were optically synchronized. In post-processing this enables 
the temporal alignment of the independent time series. Due to the influence of noise, some QRS complexes of 
the reference sensor may not have valid matching QRS complexes in the experimental sensor (and vice-versa). 
For the heart rate analysis we only consider segments in which two or more R peaks are available (allowing the 
calculation of heart rate in both signals). With this approach, we ensure that the number of QRS segments is 
the same in both devices. The full waveform morphology (i.e. P-QRS-T waves) is also compared for the seg-
ments that have a matching in both the reference and experimental sensors, as further described in “Heartbeat 
waveform morphology”.

Heart rate.  The goal of this analysis is to characterize potential differences in the heart rate as computed 
from the signals collected with the reference setup and with our approach; distortions in the R peak may intro-
duce a latency that affects the heart rate calculation, and artefacts in the signal may lead to undetected or wrongly 
detected peaks. In our work, the segmentation method used is the one described in Ref.25. Given that a normal 

Figure 3.   Experimental setup. A1: Flat texture; A2: Sinusoidal texture; A3: Trapezoidal texture; A4: Pyramidal 
texture. 
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heart rate at rest lies between 60 and 100 BPM, when values outside this range are detected we suggest that the 
analysis is repeated since the values are outside the estimated.

Table 2 shows a summary of the comparative analysis for the heart rate calculation. Each line corresponds to 
the heart rate derived from the time series from each of the sensors under evaluation, and for which the mean 
( µ ) heart rate is also shown together with the standard deviation ( σ ). The heart rate difference between each 
experimental channel and the reference channel is presented for each pair of matching R peaks between both 
time series. Finally, the percentage of noisy segments is shown, i.e., corresponding to periods in which the signal 
is saturated (on the maximum or minimum value), or highly corrupted by noise. Signal Detection Error (SDE 
in %) is given by the equation: 

 
Based on the results, electrodes A2 and A4 have the best results, by comparison with the gold standard. In 

order to further characterize the performance, we performed HRV analysis, namely comparing the results of the 
Detrended Fluctuation Analysis (DFA) and the Poincaré scatter plot. Detrended Fluctuation Analysis (DFA) is a 
method of non-linear dynamics normally used for the characterization of non-stationary signals. In particular, 
this technique has been used in HRV to analyze correlations of heartbeat time series intervals. Poincaré scatter 
graphs, on the other hand, are a geometric visualization technique used to quantify the correlation between 
two consecutive data points in a time series; this has been used as an indicator of long-term correlation in a HR 
time series.

The DFA and Poincaré plots were created based on the Normal to Normal (NN) intervals, which are analo-
gous to the R–R intervals but further emphasizes that only R-peaks considered to be normal were considered. 
From the Poincaré plots we derived the parameters Standard deviation along the minor axis (SD1), Standard 
deviation along the major axis (SD2), SD1/SD2 ratio, and Poincaré ellipse area (S). The SD1 (Eq. 2) parameter is 
the standard deviation of the data series along the minor axis and is computed using the time domain Standard 
deviation of successive differences (SDSD) parameter. The SD2 (Eq. 3) parameter is the standard deviation of the 
data series along the major axis and is computed using the Standard deviation of successive differences (SDSD) 
and the Standard deviation of the NN series (SDNN) parameters. The SD1/SD2 ratio is computed as Eq. (4). The 
area of the ellipse fitted into the Poincaré scatter plot is computed as Eq. (5).

(1)SDE(%) =
total signal − signal outside the measurement range

total signal
.

Figure 4.   Example of raw and filtered data.

Table 2.   Comparative analysis of the heart rate values determined using each sensor. Δ#QRS Percentage of 
the number of QRS complexes detected by the experimental sensor (Ax, with x ∈ [1, . . . , 4] ) in relation to 
the reference QRS (REF), HR Heart rate (in BPM), ΔHR Difference between HR detected with the (REF) and 
experimental sensor (Ax), SDE Signal Detection Error, p-value Two-sided p-value (the unpaired t-test used in 
the analysis of the data derived from the signals obtained with the A2, A3 and A4 electrodes in relation to the 
REF electrode).

CHANNEL Δ#QRS (%) HR ( µ± σ) ΔHR ( µ± σ) SDE (%) p-value

REF 78.39 ± 8.45

A1 53.77 82.52 ± 7.71 0.07 ± 6.76 60 0.992

A2 100.10 80.00 ± 5.67 0.15 ± 5.12 10 0.963

A3 113.86 78.72 ± 7.66 − 3.67 ± 5.05 40 0.409

A4 97.15 76.62 ± 8.48 − 1.78 ± 4.65 0 0.644
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DFA, much like the Hurst exponent, is used to find long-term statistical dependencies in time series. The 
idea behind DFA originates from the definition of self-affine processes. A process X is said to be self-affine if 
the standard deviation,δ, of the values within a window of length n changes with the window length factor L in 
a power law, Eq. (6):

where δ(X, k) is the standard deviation of the process X calculated over windows of size k. In this equation, H is 
called the Hurst parameter, which behaves indeed very similar to the Hurst exponent. Like the Hurst exponent, 
H can be obtained from a time series by calculating δ (X,n) for different n and fitting a straight line to the plot 
of log(δ(X,n)) versus log(n). To calculate a single δ (X,n), the time series is split into windows of equal length n, 
so that the ith window of this size has the form Eq. (7).

The value δ (X,n) is then obtained by calculating δ (W_(n,i)) for each i and averaging the obtained values 
over i.

Figure 5 and Table 3 depicts the DFA and Poincaré data for a randomly selected subject, showing that, while 
the REF and A4 data exhibit comparable trends, A2 has a higher amount of outlier NN intervals. Based on these 

(2)SD1 =

√

1

2
SDSD2,

(3)SD2 =

√

2SDNN2 −
1

2
SDSD2,

(4)SDratio =
SD1

SD2
,

(5)S = π × SD1× SD2.

(6)δ(X,L×n) = LH×δX,n ,

(7)W_(n,i) = [xi , xi+1, xi+2, . . . , xi+n−1].

Figure 5.   DFA and Poincaré plots for REF, A4, and A2 electrodes.
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findings, we can conclude that the electrode texture A4 (“Electrode texture”) has the best performance, when 
compared to the gold standard, hence being the data source considered hereinafter for further analysis.

Heartbeat waveform morphology.  In addition to the heart rate and HRV analysis, we also performed 
a heartbeat waveform morphological comparison (i.e., P-QRS-T). For the segmentation of the heartbeat wave-
forms, the R peaks of the reference ECG are detected first; afterwards, a decision criterion was used for the 
detection and removal of outlier heartbeat waveforms. In Ref.25, two different approaches were proposed, namely 
DMEAN and DBSCAN, however, previous work has shown that the DMEAN method has better performance 
comparatively to DBSCAN21, reason for which in our study the DMEAN method was used. A heartbeat wave-
form is considered an outlier, based on the following steps:

1.	 Calculate the distance D(xi ,µi) of each heartbeat to its mean; for this it was necessary to calculate the mean 
of the templates (µi ) and the standard deviation ( σµi ). The mean is given by µi =

∑

xi
n  , being xi the templates 

and n the total of heartbeat waveforms, and the distance is calculated as D(xi ,µi) = xi − µi.
2.	 Calculate from D(xi ,µi) the mean µD(xi ,µi) and the standard deviation σD(xi ,µi).
3.	 The condition of the DMEAN method was applied, which is given by the equation: 

D(xi ,µi) > (µD(xi ,µi)+ 0.5× σD(xi ,µi) , comparing all the beats of each heartbeat and at the end pre-
senting a percentage referring to the proportion of false values in relation to the established condition, given 
by the equation: %TruePositive(TP) =

npositive×100

60
.

As an improvement of the DMEAN method, a more specific decision criterion was created for removing 
outlier heartbeat waveforms. Therefore, after obtaining the percentage of TP, the following decision criterion is 
established: if the template presents a TP greater than 70%, it will be used, and it is considered to be an outlier 
otherwise. In Fig. 6 we illustrate the individualized heartbeat waveforms, with the heartbeat waveforms consid-
ered valid represented in black and the heartbeat waves considered as outlier represented in blue. Table 4 presents 
the values of Pearson’s correlation coefficient and Normalized Root Mean Square Error (RMSE), for the waveform 
morphology obtained with the electrodes that demonstrated better performance, calculated according to Eqs. (6), 
(7), and (8). Based on the results from “Heart rate”, which were further confirmed experimentally, electrode A4 
shows the best performance, hence we summarize the results only for this texture. Thus, in Fig. 7 is presented 
the final texture of the electrode proposed for implantation and an example of the heartbeat wave obtained by it.

Conclusions
In this paper, a new sensor design and system for “invisible” ECG has been described and evaluated. Created in 
the form of a toilet seat, it allows ECG measurements without the use of devices directly attached to the body 
surface, which brings a new approach to automated pervasive health monitoring systems that work as an exten-
sion of people’s everyday life. To acquire the ECG signals on the toilet seat, a specific sensor has been designed, 
and polymeric dry electrodes with different textures were designed. According to the results obtained, not all 
textures allow the adequate acquisition of ECG signals, however, the pyramidal texture (A4) showed the best 
results, as shown by the heart rate, HRV, and morphological analysis of the ECG collected signals. As shown in 
“Heart rate” and “Heartbeat waveform morphology”, experimental results have confirmed that the flat/smooth 
texture electrode does not favour an adequate contact with the skin in all subjects. The application of a textured 
surface presents good results, with the best overall performance being the pyramidal, wherewith the acquisition 
of the signal was adequately obtained for all subjects.

(8)ρ =

∑n
i=1 (xi − x)

(

yi − y
)

√

∑n
i=1 (xi − x)2 ×

√

∑n
i=1

(

yi − y
)2

,

(9)x =
1

n

n
∑

i=1

xi ,

(10)y =
1

n

n
∑

i=1

yi .

Table 3.   Comparative analysis of the heart rate values determined using each sensor.

Channel

Poincaré DFA

SD1 (ms) SD2 (ms) S (ms2) SD1
/

SD2 α1 α2

REF 1.97 ± 89.40 6.81 ± 47.30 38.39 ± 10.44 0.259 ± 2.34 1.55 ± 0.89 0.89 ± 0.97

A2 27.94 ± 97.20 19.925 ± 63.70 999.62 ± 34.45 0.934 ± 9.65 0.89 ± 1.23 0.91 ± 1.23

A4 2.03 ± 46.90 6.86 ± 88.50 38.03 ± 12.67 0.261 ± 7.13 1.79 ± 0.99 0.79 ± 0.89
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A prototype of an instrumented toilet seat was created, which aggregates the technical solutions that demon-
strated the best performance and format during the design and development process. For final deployment, two 
elongated electrodes were designed with a shape consistent with the toilet seat lid (Fig. 7b). These retain a texture 
like a pyramid, but this time with hemispheres, as can be seen in the cut shown in Fig. 7a. The adapted texture 
is a change of the pyramidal texture in order to improve the comfort and visual perception to the users. Future 
work will focus on exploring injectable materials with conductive properties and extending the experimental 

Figure 6.   Normal heartbeat waveforms and outliers removed after the decision criteria.

Table 4.   Pearson correlation coefficient (PCC) and Normalized Root-mean-square error (NRMSE) between 
the heartbeat waveforms of the reference channel and the experimental channel with the best overall 
performance (A4).

Subject

A2 A3 A4

PCC NRMSE PCC NRMSE PCC NRMSE

1 0.56 ± 0.29 28.49 ± 24.97 0.59 ± 0.30 29.03 ± 25.02 0.59 ± 0.30 29.02 ± 24.63

2 0.78 ± 0.30 37.39 ± 10.52 0.87 ± 0.25 34.49 ± 6.53 0.82 ± 0.29 36.16 ± 10.71

3 – – – – 0.36 ± 0.12 57.65 ± 15.22

4 0.98 ± 0.05 24.35 ± 3.98 0.99 ± 0.03 23.94 ± 5.87 0.98 ± 0.05 21.19 ± 4.51

5 0.88 ± 0.15 29.26 ± 11.07 0.98 ± 0.04 31.89 ± 4.58 0.95 ± 0.09 19.86 ± 4.58

6 0.81 ± 0.14 21.59 ± 3.97 – – 0.83 ± 0.12 18.70 ± 3.48

7 0.95 ± 0.07 11.19 ± 3.01 – – 0.97 ± 0.04 10.31 ± 2.77

8 0.97 ± 0.09 25.69 ± 16.88 0.98 ± 0.06 25.31 ± 6.42 0.98 ± 0.06 26.16 ± 8.33

9 0.89 ± 0.76 34.07 ± 12.83 0.97 ± 0.98 35.06 ± 3.46 0.99 ± 0.00 32.06 ± 5.46

10 0.99 ± 0.03 31.18 ± 11.89 – – 0.99 ± 0.02 24.75 ± 5.38
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component to the assessment of users with known pathological conditions. In addition, we will study the per-
formance of this approach comparatively to capacitive sensing methods. Nevertheless, this work represents 
an important prior step to demonstrate the feasibility of ECG data acquisition on the thighs, using polymeric 
electrodes integrated in a surface with which the subjects normally interact.
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