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Abstract

We reported previously that ablation of doublecortin (DCX)-immunopositive newborn neurons in mice worsens anatomical
and functional outcome measured 1 day after experimental stroke, but whether this effect persists is unknown. We
generated transgenic mice that express herpes simplex virus thymidine kinase under control of the DCX promoter (DCX-TK
transgenic mice). DCX-expressing and recently divided cells in the rostral subventricular zone (SVZ) and hippocampus of
DCX-TK transgenic mice, but not wild-type mice, were specifically depleted after ganciclovir (GCV) treatment for 14 days.
Focal cerebral ischemia was induced by permanent distal middle cerebral artery occlusion (MCAO) on day 14 of vehicle or
GCV treatment, and mice were killed 12 weeks after MCAO. Infarct volume was significantly increased and neurologic
deficits were more severe in GCV- compared to vehicle-treated DCX-TK transgenic mice at first 8 weeks, after depletion of
DCX- and bromodeoxyuridine-immunoreactive cells in the SVZ and dentate gyrus following focal ischemia. Our results
indicate that endogenous neurogenesis in a critical period following experimental stroke influences the course of long-term
recovery.
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Introduction

Stroke is the fourth leading cause of death in the United States,

after heart disease, cancer, and chronic lung disease. Even in

patients who survive stroke, 90% suffer permanent neurological

deficits [1]. No effective treatment is available to reverse brain

damage caused by stroke. Thus, stroke remains the leading cause

of disability in the world. For many stroke survivors, the best hope

is a lengthy program of rehabilitation, followed by life-long clinical

support. However, even with rehabilitation therapy, 50% to 95%

of stroke survivors remain impaired [2]. There is thus great need

for new therapeutic developments in this area.

The finding that neuronal stem/progenitor cells (NSCs) persist

in the rostral subventricular zone (SVZ) and the subgranular zone

(SGZ) of the hippocampal dentate gyrus (DG) throughout life in

mice [3], rats [4], non-human primates [5] and humans [6]

suggests new therapeutic strategies for stroke, especially consider-

ing the increased proliferation of NSCs observed in the adult brain

after injury. Focal cerebral ischemia stimulates NSC proliferation

in the SVZ [4], and global ischemia has a similar effect in the

dentate SGZ [7]. The resulting newborn neurons can migrate into

the damaged brain regions [8], where they express phenotypic

markers neuronal maturity (e.g., NeuN and MAP-2) [9,10] and

regional specificity (e.g., calbindin and dopamine- and cAMP-

regulated phosphoprotein-32) [11,12], and also form synapses

[13].

Evidence for functional neuronal replacement has been

reported in global cerebral ischemia, as intraventricular infusion

of fibroblast growth factor-2 and epidermal growth factor

promotes regeneration of hippocampal neurons, which integrate

into existing circuitry and may help to ameliorate neurological

deficits [9]. Others have employed cell-ablation techniques to

demonstrate exacerbation of ischemic deficits, implying that the

targeted cell population normally contributes to recovery. For

example, whole-brain ionizing radiation, which ablates NSCs in

the SGZ of guinea pigs [14] and mice [15], impaired performance

on a water-maze task after global cerebral ischemia [14].

Irradiation of the immature brain, which also decreases hippo-

campal neurogenesis, increased infarct size and inflammation after

hypoxic-ischemic brain injury in neonatal mice [15]. Cytosine-b-
D-arabinofuranoside also inhibited SVZ neurogenesis after focal

cerebral ischemia in adult rats [11,16], although its anatomic and

functional effects were not examined.

Ablation of NSCs by ionizing radiation and antimitotic drugs

may also affect astrocytic, microglial, and endothelial cell lineages.

To target NSCs more specifically, we generated transgenic mice

that express herpes simplex virus-1 thymidine kinase (HSV-TK)

under control of the promoter for doublecortin (DCX). HSV-TK

can phosphorylate ganciclovir (GCV), a synthetic analogue of 29-

deoxy-guanosine, to GCV-monophosphate, which is further

converted to GCV-diphosphate and GCV-triphosphate by host

kinases. GCV-triphosphate causes premature DNA chain termi-

nation and apoptosis. In these (DCX-TK(+)) mice, immature

neuronal (DCX-expressing) and recently divided (bromodeoxyur-

idine [BrdU]-labeled) cells in the SVZ and SGZ are specifically
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depleted after 14 days of GCV treatment. GCV-treated, DCX-

TK(+) mice have larger infarcts and more severe sensorimotor

behavioral deficits 1 day after stroke–induced by proximal middle

cerebral artery occlusion (MCAO)–than do control mice [17].

This suggests that neurogenesis contributes to acute stroke

outcome, but whether this effect persists in the long term, after

neurogenesis is restored, is unclear.

In the current study, we examined the effect of NSC depletion

on long-term anatomic and functional outcome from MCAO,

using a less severe insult (distal MCAO) to ensure long-term

survival. Our results indicate that acute postischemic neurogenesis

exerts a persistent beneficial effect on outcome.

Materials and Methods

Generation of DCX-TK Transgenic Mice
Transgenic CD1 mice that express HSV-TK under control of

the DCX promoter were generated at the Buck Institute for

Research on Aging as described in our previous publication [17].

All animal procedures were conducted in accordance with

National Institutes of Health guidelines and with the approval of

the Institutional Animal Care and Use Committee of Buck

Institute for Research on Aging.

GCV Administration
Mice were anesthetized with 4% isoflurane in 70% N2O/30%

O2, implanted with an osmotic minipump (Alzet 1003D), and

infused continuously for 14 days with 0.25 ml/hr of either 20 mM

GCV (Cytovene, Roche) or vehicle (PBS). MCAO was induced 14

days after the onset of GCV administration. Depletion of DCX-

expressing cells was confirmed by immunohistochemistry.

BrdU Administration
BrdU (50 mg/kg in saline; Sigma) was given by the in-

traperitoneal route twice daily for 24 hr before mice were

euthanized (12 weeks post-MCAO). Brains were freshly isolated,

and 50-mm coronal sections were cut with a cryostat and stored at

280uC. Some brains were perfused with 4% paraformaldehyde in

PBS (pH 7.4) and embedded in paraffin.

Permanent Focal Cerebral Ischemia
Male mice weighing 30–35 g were anesthetized with 2.0%

isoflurane in 30% O2 and 70% N2O using a vaporizer. Distal

MCAO was performed as previously described [18]. After making

a 1 cm skin incision between the left eye and ear, a burr hole was

drilled through the temporal bone. The dura mater was removed

and the middle cerebral artery (MCA) was occluded permanently

using a bipolar electrocoagulation forceps. Interruption of blood

flow was confirmed under a microscope, and cerebral blood flow

was measured by laser-Doppler flowmetry (Moor Instruments,

Devon, England) in selected mice. During the operation, rectal

temperature was maintained at 3760.5uC with a thermostat-

controlled heating blanket (Harvard Apparatus). After suturing the

skin, mice were placed in a cage under an infrared heating lamp

until recovery from anesthesia. Sham-operated mice underwent

identical surgery except that the MCA was not occluded. Overall

mortality in this MCAO model was ,5%.

Immunohistochemistry
Immunohistochemistry (5–6 animals per group) was per-

formed as described previously [17]. Primary antibodies were

mouse monoclonal anti-BrdU (2 mg/ml; Roche) and affinity-

purified goat anti-DCX (1:200; Santa Cruz Biotechnology);

secondary antibodies were biotinylated donkey anti-goat or

biotinylated horse anti-mouse IgG (both 1:200; Santa Cruz

Biotechnology). Sections were examined with a Nikon E800

epifluorescence microscope. Controls included omitting the

primary and secondary antibodies.

Dual-label Immunohistochemistry
Dual-label immunohistochemistry (5–6 animals per group)

was performed as described elsewhere [17]. Primary antibodies

were those listed above; secondary antibodies were Alexa Fluor

488-, 594-, or 647-conjugated donkey anti-mouse or anti-goat

IgG (1:200–500; Molecular Probes). Fluorescence signals were

detected using an LSM 510 NLO Confocal Scanning System

mounted on an Axiovert 200 inverted microscope (Carl Zeiss)

equipped with a two-photon Chameleon laser (Coherent), and

images were acquired using LSM 510 Imaging Software (Carl

Zeiss). Two- or three-color images were scanned using Ar, 543

HeNe, 633 HeNe, and Chameleon lasers. Selected images were

viewed at high magnification. Controls included omitting either

the primary or secondary antibody or preabsorbing the primary

antibody.

Cell Counting
BrdU- and DCX-positive cells in SVZ and DG were counted in

five to seven 50-mm coronal sections per animal (n = 6 per group),

spaced 200 mm apart, by an observer blind to the experimental

condition using a Zeiss microscope in bright field mode and a 406
objective. Two-photon confocal microscopy was used to count

double-labeled cells. In SVZ, DCX- or BrdU-labeled cells were

counted along the lateral walls of the lateral ventricles for a total of

five to six sections per mouse, beginning 1.18 mm anterior to

bregma. For the DG, all DCX- or BrdU-labeled cells within two

cell diameters from the inner edge of the granule cell layer (GCL)

of the dentate gyrus were included in the analysis. Results were

expressed as the average number of BrdU- and DCX-positive cells

in SVZ and DG per section.

Histology
Mice (n = 5 each group) were anesthetized and decapitated 12

weeks after MCAO. Brains were removed and a series of adjacent

40-mm thick sections were cut in the coronal plane and then

stained with hematoxylin and eosin (H&E). Contralateral and

ipsilateral hemisphere areas were measured by a blinded observer

using the NIH Image program, and areas were multiplied by the

distance between sections to obtain the respective volumes.

Volume loss (mm3) was calculated as a percentage of the volume

of the structures in the control hemispheres according the

following formula: [1006(VC2VL)/VC (VC= control hemisphere

volume, VL= lesioned hemisphere volume)], as described pre-

viously [19].

Limb Placing Test
Limb placing (12 animals per group), which tests sensorimotor

function [20], was evaluated bilaterally at 24 hr, 72 hr, 1 week,

2 weeks, 4 weeks, 8 weeks, and 12 weeksafter MCAO. Limb-

placing tasks were scored by a blinded observer and forelimb and

hindlimb scores based on the number of correct placing responses

were averaged for each animal.

Corner Test
The corner test (12 animals per group), which also assesses

integrated sensorimotor function, was performed at 24 hr, 72 hr, 1

week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after MCAO as

described [21], using two cardboard panels aligned to create
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a 30ucorner. Twenty trials were performed for each mouse and the

percentage of turns involving full rearing along either board was

recorded. Normal mice rear equally to both sides whereas after

MCAO, rearing to the unimpaired side predominates.

Elevated Body Swing Test (EBST)
The elevated body swing test (12 animals per group) was used to

evaluate symmetry of motor function, with the initial direction of

upper body swing (.10u) recorded in three sets of 10 trials,

performed over 5 min. The percentage of turns made to the side

contralateral to the ischemic hemisphere (percent left-biased

swing) was then calculated and average scores determined for

each mouse. EBST was performed at 24 hr, 72 hr, 1 week,

2 weeks, 4 weeks, 8 weeks, and 12 weeks after MCAO.

Beam-walking Test
The beam-walking test (12 animals per group) was performed to

assess coordination and motor integration in the hindlimb [22] at

24 hr, 72 hr, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks

after MCAO as previously described with modification [22,23],

Each test session consisted of four trials (two in each direction), in

which latency to cross a beam and the number of forelimb and

hindlimb foot faults was recorded. Four trials were averaged to

give a mean foot fault score.

Statistical Analyses
Quantitative data were expressed as mean 6 SEM from the

indicated number of experiments. Behavioral data were analyzed

by two-way analysis of variance (ANOVA) with repeated

measures, followed by post hoc multiple comparison tests (Fisher

PLSD or Student’s paired t test with the Bonferroni correction).

Brain atrophy data were analyzed by one-way ANOVA followed

by Fisher PLSD post hoc tests. P values ,0.05 were considered

significant.

Results

As shown in Figure 1, brain volume loss (atrophy) at 12 weeks

post-MCAO was increased by ,50% in GCV-treated DCX-

TK(+) mice, compared to vehicle-treated DCX-TK(+) and either

GCV- or vehicle-treated wild-type (DCX-TK(-)) mice.

Neurobehavioral testing (n = 12 per group) was performed in

the same four experimental groups at 24 hr, 72 hr, 1 week, 2

weeks, 4 weeks, 8 weeks, and 12 weeks post-MCAO (Figure 2).
GCV-treated DCX-TK(+) mice performed worse than mice from

the other three groups at one or more time points in each test. The

beam walking test (especially testing for hindlimb slips) showed the

most consistently deficient performance over the first 8 weeks post-

ischemia; the elevated body swing test and corner test tended to

show impairment early in the course, whereas a relative deficit in

forelimb slip steps on the beam walking test was observed later. No

differences between groups could be detected at the 12-week time

point (not shown).

Next we asked if numbers of BrdU- and DCX-immunopositive

cells were restored during the 12-week postischemic interval, after

administration of GCV was discontinued. Figure 3 illustrates that

when BrdU was administered for 1 day prior to euthanizing mice

at 12 weeks, there was no significant difference in the number of

BrdU-positive cells in the SVZ or SGZ among GCV- or vehicle-

treated, DCX-TK(+) or DCX-TK(-) mice. As shown in Figure 4,
the same was true when DCX-positive cells were counted. Thus,

both the rate of cell division (BrdU incorporation over 24 hr) and

the number of new neurons (DCX-immunopositive cells) no

longer showed an effect of prior GCV treatment, suggesting that

normal neurogenesis was restored. This time course is consistent

with the observation that neurogenesis begins to return by 6 weeks

after GCV treatment in nestin-TK transgenic mice (24) and

reaches approximately half-normal levels by 8 weeks in the DCX-

TK(+) mice we studied. Dual-label immunohistochemistry showed

that ,50% of DCX-positive cells in SVZ and ,15% of DCX-

positive cells in SGZ incorporated BrdU (Figure 5), reflecting the
limited efficiency of BrdU labeling.

Discussion

We reported previously that conditional depletion of DCX-

expressing cells in neurogenic brain regions, achieved by

administration of GCV to DCX-TK(+) transgenic mice, increased

volume loss and neurobehavioral deficits measured 1 day after

MCAO (17). This finding suggests that endogenous neurogenesis

normally promotes a more favorable acute outcome after stroke,

Figure 1. Brain volume loss in vehicle- and GCV-treated, wild-
type and DCX-TK transgenic mice, 12 weeks after MCAO. (A)
Transgenic (DCX-TK(+)) and wild type (DCX-TK(-)) mice were treated for
14 days with vehicle or GCV, received behavioral training, and then
underwent MCAO. Behavioral testing was conducted for 12 weeks after
MCAO, following which some mice were given BrdU for 1 day, and then
all mice were euthanized for measurement of brain volume and
immunohistochemistry. (B) H&E-stained coronal brain sections from
vehicle- and GCV-treated DCX-TK transgenic (DCX-TK(+)) and wild-type
(DCX-TK(-)) mice. Dashed lines delineate normal brain contour based on
the nonischemic hemisphere. (C) Volume loss (expressed as a percent-
age of hemispheric volume) in vehicle (black)- and GCV (red)-treated
DCX-TK(+) and DCX-TK (-) mice. *P,0.05 compared to vehicle-treated
mice.
doi:10.1371/journal.pone.0038932.g001
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since its ablation worsens outcome, and studies in which NSCs

were ablated by other means support a similar conclusion

(14,15,24).

In the present study, we asked whether the adverse effect of

transiently ablating NSCs is persistent. Volume loss remained

greater in DCX-TK(+) than in control young-adult mice 12 weeks

after MCAO, whereas neurobehavioral deficits, which were

initially greater in DCX-TK(+) mice, gradually equalized. No

significant neurobehavioral differences were found in GCV-

treated DCX-TK(+) mice, compared to vehicle-treated DCX-

TK(+) mice at 12 weeks after MCAO. Of interest, neurogenesis in

SVZ and SGZ also returned to normal levels by 12 weeks. We

conclude that ablation of endogenous neurogenesis exerts an early,

persistent effect on damaged size, whereas its effect on neurobe-

havioral outcome is transient. This transiency may or may not be

related to restoration of neurogenesis after GCV treatment is

discontinued. These findings add further support to the notion that

endogenous neurogenesis exerts a beneficial influence on stroke

outcome.

The DCX-TK(+) transgenic mouse model that we used relies on

the fact that GCV is phosphorylated by HSV-TK and ultimately

incorporated into newly synthesized DNA. This results in the

arrest of DNA synthesis and leads to subsequent DNA fragmen-

tation [24]. Since HSV-TK is under the control of the DCX

promoter, only dividing DCX-expressing cells are depleted. We

chose to target this cell population to ablate neurogenesis because

Figure 2. Neurobehavioral deficits in vehicle- and GCV-treated, wild-type and DCX-TK transgenic mice, 12 weeks after MCAO.
Transgenic (DCX-TK(+)) and wild type (DCX-TK(-)) mice were treated for 14 days with vehicle (PBS) or GCV, then underwent MCAO. Behavioral testing
was performed at the indicated times after MCAO. (A) Beam-walking test scores, expressed as the mean numbers of forelimb (left panel) or hindlimb
(right panel) slip steps when traversing an elevated narrow beam; higher scores represent more severe deficits. (B) Corner test scores, expressed as
a percentage of rearing to the contralesional (impaired) side; lower scores represent more severe deficits. (C) Elevated body swing test scores,
expressed as a percentage of turns to the contralesional (impaired) side; lower scores represent more severe deficits. (D) Limb-placing test scores,
expressed as a score derived from the number of correct limb placements; lower scores represent more severe deficits. *, P,0.05 compared to
vehicle-treated DCX-TK(+) mice.
doi:10.1371/journal.pone.0038932.g002

Figure 3. BrdU-immunopositive cells in SVZ and dentate SGZ of vehicle- and GCV-treated, wild-type and DCX-TK transgenic mice
12, weeks after MCAO. Mice were treated as described in the legend to Figure 1. (A) Representative images of BrdU-immunoreactive cells in SVZ
(top) and dentate SGZ (bottom) from vehicle (left)- and GCV (right)-treated DCX-TK(+) transgenic mice. (B) Quantification of BrdU-immunoreactive
cells in SVZ (left panel) and dentate SGZ (right panel) from GCV (red bars)- and vehicle (black bars)-treated DCX-TK(+) and DCX-TK(-) mice. There were
no significant differences between vehicle- and GCV-treated groups.
doi:10.1371/journal.pone.0038932.g003
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in adult brain, DCX is expressed almost exclusively in newborn

and migrating neurons (26–28). We found previously that GCV

treatment of DCX-TK(+) mice for 14 days depletes DCX-positive

cells from SVZ and DGZ (17), which was the basis for adopting

this treatment interval in the present study. We also observed that

this treatment regimen does not deplete other cell types, notably

astrocytes, and is not associated with microglial activation

suggestive of an inflammatory response that could affect

untargeted bystander cells (17).

One difference between this and our previous study is that, in

the present case, the MCA was occluded distal to the origin of the

lenticulostriate arteries, producing a cortical infarct, but sparing

the striatum. This was done because long-term survival is better

after distal than after proximal MCAO, and our goal was to study

long-term persistence of the effects of NSC ablation. We have

shown that both corticostriatal infarcts (4) and infarcts involving

only cortex (29) enhance endogenous neurogenesis. Although the

present study suggests that endogenous neurogenesis promotes

improved outcome after MCAO, it does not address the

mechanism involved. After MCAO, some newborn neurons

migrate into the ischemic striatum and cerebral cortex

(8,11,12,30), and a subpopulation of these assume phenotypic

features of mature neurons (31), including tetrodotoxin-sensitive

Na+ action potentials and spontaneous excitatory post-synaptic

currents (32), suggesting that NSCs are able to reestablish local

interneuronal connections and synaptic connectivity ischemia

[25], and neuronal replacement may be one of mechanisms

underlying neurogenesis-mediated beneficial effect in the chronic

phase after stroke. Notably, only a small portion of SVZ-derived

cells differentiate into functional mature neurons, and most

newborn cells in the SVZ appear to die during migration after

focal ischemia [11], perhaps due to local hypoxic environment,

which prevent from cell survival. Therefore, other mechanisms

may be also involved in neurogenesis-mediated functional re-

covery in the late stage of stroke, which include, but not limit to,

that NSCs act as local pumps to release the neurotrophic and

growth factors, such as brain-derived neurotrophic factor (BDNF),

glial derived neurotrophic factor (GDNF) and never growth factor

(NGF), etc. Those factors, in turn, support cell function and

prevent cascade of apoptosis or further prevents subsequent cell

death [26].

If endogenous neurogenesis contributes to a more favorable

outcome from stroke, as this and other (14,15,17,24) studies

suggest, therapeutic implications might follow. Clinically used

Figure 4. DCX-immunopositive cells in SVZ and dentate SGZ of vehicle- and GCV-treated, wild-type and DCX-TK transgenic mice,
12 weeks after MCAO. (A) Representative images of DCX-immunoreactive cells in SVZ (top) and dentate SGZ (bottom) from vehicle (left)- and GCV
(right)-treated DCX-TK(+) transgenic mice. (B) Quantification of DCX-immunoreactive cells in SVZ (left panel) and dentate SGZ (right panel) from GCV
(red bars)- and vehicle (black bars)-treated DCX-TK(+) and DCX-TK(-) mice. There were no significant differences between vehicle- and GCV-treated
groups.
doi:10.1371/journal.pone.0038932.g004
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drugs such as antidepressants and mood stabilizers, as well as

environmental enrichment and physical activity, can all enhance

endogenous neurogenesis. This property could be exploitable in

the clinical management of stroke.
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