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Introduction

The accumulation of fluid in serous cavities can represent 
a systemic complication or local disease [1]. When sys-
temic diseases progress with effusion, the diagnostic and 
therapeutic approach is usually restricted to the identifica-
tion and treatment of the underlying cause, such as a 
pleural effusion associated with congestive heart failure 
[1] or ascites associated with cirrhosis and portal hyper-
tension [2]. In contrast, local involvement of the pleura 
and/or peritoneum requires a precise and usually multi-
laboratory typically intersectional diagnosis.

Malignancy comprises one of the leading causes of exu-
dative cavity effusion [3]. It is estimated that approximately 
100,000 to 150,000 individuals per year present malignant 

pleural effusion in the United States and Europe, of which 
50–65% are secondary to lung and breast cancers [4]. 
Although guided biopsy is the gold standard for demon-
strating neoplastic serous involvement, this procedure is not 
always feasible due to the clinical condition of most patients 
with advanced disease and the expense involved [5].

Cytological analysis of pleural and/or peritoneal fluid 
obtained by aspiration is the first step in the diagnosis 
of malignant effusions. The sensitivity of this method 
varies from 60% to 96% depending on the type and loca-
tion of the tumor, the techniques used for preparation 
and staining, and the cytologist’s expertise in identifying 
malignant cells [2, 6, 7].

Thus, cytological examination does not provide a defini-
tive diagnosis in up to 40% of cases. Ancillary techniques 
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Abstract

The cytological examination of cavity fluids has limited sensitivity in the diag-
nosis of malignancy. Aneuploidy, which is commonly observed in neoplastic 
cells, could potentially be used as an ancillary diagnostic tool. To evaluate the 
detection of aneuploid cells in cavitary effusion samples using the fluorescence 
in situ hybridization (FISH) assay UroVysion® with some adaptations and two 
different cutoff strategies. Seventy samples of pleural or peritoneal fluid with 
positive (n = 40), negative (n = 15), or suspicious (n = 15) oncotic cytology 
were subjected to FISH assay with the multitarget UroVysion® kit, which is 
composed of probes that hybridize to the centromeric region of chromosomes 
3, 7, and 17 and to the locus 9p21. FISH performance was evaluated using two 
different cutoffs: (1) the manufacturer’s cutoff (M-FISH) and 2) a proposed 
cutoff (P-FISH). Using M-FISH, the diagnostic sensitivity was 57.1%, specificity 
87.5%, and accuracy 60.0%; with P-FISH, the sensitivity was 87.3%, specificity 
71.4%, and accuracy 85.7%. When combined with cytology, the sensitivity, 
specificity, and accuracy were 88.0%, 83.3%, and 87.8%, respectively. Malignant 
cells presented a predominance of chromosomal gains. The UroVysion® test 
using the P-FISH cutoff was effective in demonstrating aneuploid cells in all 
malignant effusions, confirming the diagnosis of malignancy even in cases with 
suspicious cytology.
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using samples obtained by aspiration puncture—a pro-
cedure considered minimally invasive and of low- risk—are 
therefore recommended to improve diagnosis. Diagnostic 
tools explored in recent decades include the quantification 
of liquid- soluble tumor markers [7], immunocytochemistry 
in embedded materials [8], DNA ploidy analysis by flow 
cytometry [9], and molecular assays such as polymerase 
chain reaction (PCR) [10].

Aneuploidy is a common finding in neoplastic cells 
[11], and the demonstration of abnormal cell DNA content 
is considered indicative of malignancy. Fluorescence in 
situ hybridization (FISH) has been used in cavity fluids 
to detect aneuploidy in interphase cells, circumventing 
the need for cell culture, which could delay the turna-
round time (TAT) to result [12, 13].

This study proposes to evaluate the detection of ane-
uploid cells in pleural and peritoneal fluid samples using 
the UroVysion® test, originally developed for the diagnosis 
of bladder cancer [14]. To analyze the diagnostic perfor-
mance of UroVysion®, we used two different cutoff strate-
gies: (1) the manufacturer cutoff (M-FISH) and (2) a 
proposed cutoff (P-FISH) developed in this study.

Materials and Methods

Seventy patients with cavitary effusion (pleural and peri-
toneal) who had been admitted to the Hospital das Clinicas 
da Faculdade de Medicina da Universidade de Sao Paulo 
(HC- FMUSP) were included in the study after providing 
informed consent. Each sample was representative of one 
patient. The fluid samples were submitted to conventional 
biochemistry, microbiology, and cytology examinations for 
diagnostic evaluation. Routine tests were performed by 
the HC- FMUSP clinical laboratory, which is accredited 
by the College of American Pathologists (CAP). The study 
was approved by the institutional ethics committee.

The variables analyzed were age, gender, and clinical 
diagnosis according to the International Statistical 
Classification of Diseases and Related Health Problems (CID), 
10th Revision of Codes. Clinical and laboratory data were 

extracted from medical records and the laboratory system 
database, respectively. Histopathological diagnosis was 
considered the gold standard for malignancy. In benign 
cavitary effusions, clinical history, laboratory and imaging 
examinations, and patient follow- up were used to exclude 
malignancy.

Cytological examination

After macroscopic sample analysis, nucleated cells were 
counted in a counting chamber, and the fluid samples 
were centrifuged (2000 rpm, 10 min) to prepare the slides. 
Cytological examination (cell differentiation and oncotic 
cytology) was performed on slides stained with hemato-
logical dye (Leishman stain) (Fig. 1).

Based on oncotic cytology, the cases were classified into 
three categories: “positive,” “suspicious,” or “negative”. 
In this study, the following conditions were considered 
“concordant”: (1) “suspicious” or “positive” oncotic cytol-
ogy and “positive” gold standard; or (2) “negative” oncotic 
cytology and “negative” gold standard. Light’s criteria [15] 
for pleural fluid and Rovelstad et al. [16] for peritoneal 
fluid were used to classify the samples in exudates or 
transudates.

Molecular cytogenetic study

For cytogenetic analysis, the samples were treated using 
the commercial multitarget UroVysion FISH kit (Abbott, 
IL, cat. nº 32- 161070) with centromeric alpha probes for 
chromosomes 3 (CEP® 3 Spectrum red), 7 (CEP7 Spectrum 
Green), 17 (CEP17 Spectrum Aqua), and the locus- specific 
probe 9p21 (LSI® p16 Spectrum Gold). The sample was 
centrifuged (1400 rpm, 5 min), and the pellet obtained 
was fixed with fresh Carnoy (methanol/acetic acid solu-
tion, 3:1 ratio) for slide preparation. The slides were 
subsequently hybridized with centromeric probes for chro-
mosomes 3 (red- labeled), 7 (green- labeled), 17 (blue- 
labeled), and the 9p21 region (yellow- labeled). The 
manufacturer’s instructions were followed with slight 

Figure 1. Cytological characteristics of a malignant and a reactive pleural fluid sample. (A) Tumor cells clustering in case of malignant pleural effusion 
(Leishman); (B) reactive mesothelial clustering of cells in benign pleural effusion (Leishman).
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modifications to timing and temperature. The digital images 
obtained were captured on an Olympus BX41 microscope 
equipped with a 100 W lamp and fluorescein filters for 
propidium iodide (FITC- PI, BP 450- 490, FI 510, and BP 
520, Cat # 487709). The Applied Imaging CytoVision System 
(San Jose, CA) was used to analyze the images.

A total of 200 interphase cells per sample were analyzed, 
and only cells with clearly distinguishable signals for 
monosomy and/or polysomy were counted. A cell was 
considered aneuploid when marked by the loss or gain 
of at least two probes (3, 7, or 17) with or not the loss 
of the 9p21. In the absence of two signals for chromo-
somes 3, 7, and 17, the cells were considered noninter-
pretable. Because benign reactive mesothelium can present 
tetraploidy, cells with these characteristics were excluded 
from the analysis. This criterion was previously used by 
Rosolen et al. [13] and Flores- Staino et al. [17] in similar 
work. The slides were evaluated by two independent 
observers, and the results represent the average of their 
measurements.

To classify a case as aneuploid, it is suggested that 
each laboratory establish its own cutoff for the genetic 
changes observed. Thus, an effusion was considered ane-
uploid when the number of abnormal cells was higher 
than the previously established cutoff (Fig. 2). To establish 
this value, we analyzed the diploid (normal) and non-
diploid (abnormal) signals emitted by cells present in fluid 
obtained from patients with a known benign effusion. 

So, for the analytical validation of probe parameters and 
results interpretation, we used the statistical test of the 
inverse β function (probability in decimal), where 
α = 1 + X (X represents the highest number of positive 
signals obtained by the observers) and β = number of 
cells analyzed [18]. P-FISH for the four probes were as 
follows:
1. Chromosome 3: >3.0% for one signal or >3.0% for 

three or more signals;
2. Chromosome 7: >4.0% for one signal or >2.0% for 

three or more signals;
3. Chromosome 17: >4.0% for one signal or >3.0% for 

three or more signals;
4. Chromosome 9p21: >4.6% for one signal.

According to the manufacture’s criteria (counting 25 
cells), cells were classified as aneuploid when presenting 
≥ 4 gains in the same cell for two or more chromosomes 
(3, 7, or 17) or ≥ 12 cells with zero signal for 9p21. The 
performance of the UroVysion® FISH test was calculated 
according to the two cutoffs (M-FISH and P-FISH).

Statistical analyses

Continuous variables are described by the median, mean, 
and standard deviation (SD). Categorical variables are 
presented as a percentage. A comparison of the perfor-
mance of UroVysion® FISH with both cutoffs was made 
by chi- square test or Student’s t test. The significance 

Figure 2. FISH images showing a euploid cell in a benign peritoneal effusion case (A) and an aneuploid cell in a malignant pleural effusion case (B). A. 
Pleural effusion cells showing euploid cells (2n) for chromosomes 3 (red), 7 (green), 17 (blue), and 9p21 (yellow); FISH, UroVysion, 1000×; B. pleural 
effusion cells showing aneuploidy for chromosomes 3 (red), 7 (green), 17 (blue), and 9p21 (yellow); FISH, UroVysion, 1000×.

Figure 3. Summary of the study design.
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level P < 0.05 was adopted. Contingency analyses were 
performed to determine sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 

and accuracy. Data were analyzed using the Microsoft Office 
365 Excel programs (Redmond, WA) and the 17th version 
of Minitab Statistical Software (Minitab Inc. International 
Sales and Support, State College, PA). Figure 3 summarizes 
the study design.

Results

Seventy patients with pleural or peritoneal effusion were 
included: 63 (90%) with malignant etiology and seven 
(10%) of benign origin. From the malignant effusions, 
positive cytology was observed in 40 (63.5%), negative 
in nine (14.3%), and suspicious in 14 (22.2%) cases. The 
general characteristics of the study group and of the fluids 
are shown in Table 1.

In malignant effusions, the most common tumor pri-
mary sites were breast and lung, with less representation 
of the other sites (Fig. 4). Hematological malignancies 
were represented by seven cases of lymphoma and one 
case of multiple myeloma. Of the benign effusions, three 
cases were cardiovascular system diseases, two were tuber-
culosis, one was cirrhosis, and one was chronic kidney 
disease.

In most cases of aneuploidy, a predominance of chro-
mosomal gains was observed. In all cases, it was possible 
to count 200 cells/case. The signal frequencies for each 
probe in the P-FISH analysis are shown in Figure 5.

The performance of cytology—considered the gold 
standard for etiological diagnosis—and FISH (with 
proposed and manufacturer cutoffs) is shown in 
Tables 2–4.

Table 1. Characteristics of the study group and of the fluid samples.

Patients (N) 70
Age

Mean ± SD 62.8 ± 15.0
Median 63.0

Male/Female (N) 26/44
Pleural/Peritoneal (N) 60/10

Aspect
Before centrifugation
   Yellow/Ser- H/Hemorrhagic/Brownish/

Colorless/Purulent
37/17/13/1/1/1

After centrifugation
   Yellow/Erythrochromic/Brownish/Colorless/

Purulent
65/3/1/1/0

Color
Before centrifugation
   Clear/slightly cloudy/cloudy 2/11/25
After centrifugation
   Clear/slightly cloudy/cloudy 65/2/2

Cell Count (mm3) Median 755
Neutrophils/Lymphocytes predominance (N) 21/49
Cytology

Positive/suspicious/negative 40/15/15
Transudate/Exudate (N)1 15/45
ADA ± SD 11.4 ± 9.3
Positive culture (N)

Aerobic/Anaerobic/Fungi 3/0/0

ADA, adenosine deaminase; N, number; SD, standard deviation; Ser- H, 
serum- hemorrhagic.
1There were 10 cases with insufficient data for classification.

Figure 4. Tumor primary sites in cases with malignant effusion.
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Discussion

In the present study, UroVysion® FISH using the manufac-
turer’s cutoff performed worse than with the proposed cutoff 
for the identification of malignant effusions. Using the pro-
posed cutoff, the diagnostic sensitivity was 87.3%, with an 
accuracy of 85.7%, a PPV of 96.4%, and a specificity of 
71.4%. When combined with cytology, the sensitivity was 
88.0%, with an accuracy of 87.8%, and an improved specific-
ity of 83.3%. P-FISH was the only examination that identified 
two cases of malignant pleural effusion secondary to ovarian 
and lung cancer. However, it failed to identify a case of 
malignant pleural effusion due to myelomatous infiltration.

Figure 5. Frequency of cell signals according to probe (median).

Table 2. Diagnostic performance of cytology and UroVysion® FISH.

TP (N) TN (N) FP (N) FN (N)

Cytology 54 6 1 9
M-FISH 36 6 1 27
P-FISH 55 5 2 8

FN, false negative; FP, false positive; N, number; TN, true negative; TP, 
true positive.

Table 3. Sensitivity, specificity, PPV, NVP, and accuracy of cytology and 
UroVysion® FISH.

S (%) E (%) PPV (%) NPV (%) ACU (%)

Cytology 85.7 85.7 98.1 40.0 85.7
M-FISH 57.1 85.7 97.2 18.1 60.0
P-FISH 87.3 71.4 96.4 38.4 85.7
Cytology 
and M-FISH

81.3 83.3 97.2 38.4 81.6

Cytology 
and P-FISH

88.0 83.3 98.1 41.0 87.8

ACU, accuracy; E, specificity; NPV, negative predictive value; PPV, posi-
tive predictive value; S, sensitivity.

Table 4. Comparative analysis between cytology and UroVysion® FISH.

Test P*

Cytology vs. M-FISH <0.0006
Cytology vs. P-FISH NS
M-FISH vs. P-FISH <0.0006

NS, not significant.
*P < 0.05 significant.
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Figure 6. Chromosomal abnormalities observed on chromosomes 3, 7, 17, and 9p21.
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The clinical presumption of malignant effusion in 
patients with or without prior history of cancer poses a 
challenge to the cytologist, especially in cases where cytol-
ogy, although atypical, is inconclusive. Thus, complemen-
tary examinations of the pleural or peritoneal fluid should 
be considered potential tools for diagnosis without adding 
further risk to the patient. In this context, new method-
ologies such as proteomic assays have shown promising 
results (for example, CARD9—isoform 1 of caspase recruit-
ment domain member 9), but have limitations and are 
not widely used [19]. In the same way, the detection of 
circulating tumor cells (CTCs) in liquid biopsies has 
emerged as a tool with great diagnostic and prognostic 
potential, spawning new clinical trials using blood, urine, 
saliva, feces, sputum, cavitary, and cerebrospinal fluid for 
the diagnosis and monitoring of patients with cancer, 
mainly by detecting copy number variation of genes by 
next- generation sequencing (NGS) or FISH assay [20].

The FISH assay is widely used in the clinical laboratory 
and can be applied in the evaluation of chromosomal 
abnormalities in nondividing cells, with results available 
within 24 h [21]. In the present study, this cytogenetic 
technique was used to recognize numerical DNA altera-
tions in genomic regions of interest for oncology without 
significantly altering the turnaround time (TAT) to 
diagnosis.

Aneuploidy is triggered by a high rate of single chro-
mosomal missegregation, as seen in the chromosomal 

instability and inactivation of the p53 pathway [11]. In 
cavity fluid, abnormal cellular DNA content may be an 
important indicator of malignancy, especially in cases in 
which cytology does not allow for definitive diagnosis 
[22]. In our study, we evaluated the detection of aneuploid 
cells in effusions with the UroVysion® FISH test, which 
was originally developed for the urine diagnosis and follow-
 up of patients with bladder cancer. The UroVysion® FISH 
test consists of four labeled probes that hybridize to the 
centromeric regions of chromosomes 3, 7, and 17, as well 
as to the 9p21 locus, which are considered potential targets 
for carcinogenesis and the development of metastasis [23-
57]. Figure 6 details the major chromosomal abnormalities 
present in these target regions.

Although we obtained satisfactory results with the 
UroVysion® test in the diagnosis of malignant effusions, 
data in the literature show varying sensitivity, specificity, 
PPV, and NPV values in the diagnosis and follow- up of 
patients with urinary tract tumors (mainly bladder cancer) 
and of patients with tumors in the bile ducts and pan-
creas, as can be observed in Table 5. Flores- Staino et al. 
[17]. reported chromosomal aberrations in 29 samples of 
pleural fluid from patients with metastatic carcinoma using 
the UroVysion® test. Cora et al. [22], Ioakim- Liossi et al. 
[58], Roka et al. [59], and Fiegl et al. [60] also used the 
FISH assay to investigate chromosomal aberrations in 
cavitary fluids using other protocols and probes for  
different chromosomes.

Table 5. Literature data describing the use of UroVysion® FISH in several cancer types.

Tumor N S (%) E (%) PPV (%) NPV (%)

Liew et al. [61] Cholangiocarcinoma 30 84.2 100 100 65.4
Virk et al. [62] Bladder 377 44.6 81.8 47.1 80.2
Lavery et al. [63] Bladder 129 67 76 — —
Gomella et al. [64] Upper Urinary Tract/Bladder 415 50/51.9 69.9/89.3 40.3/90 77.4/50
Gopalakrishna et al. [65] Bladder 2040 37 84 — —
Mischinger et al. [66] Bladder 1048 71.9 69.3 39.4 89.9
Miki et al. [67] Bladder 91 62.5 100 100 85.7
Zhou et al. [68] Bladder 1532 78.9/65.91 59.2/78.91 77/84.41 61.8/57.11

Dudley et al. [69] Periampullary 72 55 94 — —
Glass et al. [70] Urothelial 942 55.1 78.7 — —
Fritcher et al. [71] Cholangiocarcinoma/Pancreas 272 46 91 — —
Fritsche et al. [72] Urothelial high- grade 210 95 93 76 99
Breen et al. [73] Urothelial 939 47.7 87.7 — —
Todenhöfer et al. [74] Bladder 483 74.3 69.6 46.8 88.2
Vlajnic et al. [75] Pancreas and Biliary Pathways 90 26.7 100 100 63.3
Ho et al. [76] Urothelial 627 89.2 83.4 47.1 97.9
Dimashkieh et al. [77] Bladder 1835 61.9 89.7 53.9 87.5
Todenhöfer et al. [77] Upper Urinary Tract/Bladder 2365 70.8/61.5 80.1/80.1 — —
Youssef et al. [78] Urothelial 123 23.5 94.3 40 88.5
Caraway et al. [79] Urothelial 1006 61 58 42 79
Mian et al. [80] Upper Urinary Tract 55 100 89.5 84.6 100
Kehinde et al. [81] Bladder 178 80 48 61 71.2

E, specificity; N, number; NPV, negative predictive value; PPV, positive predictive value; S, sensitivity.
1Criteria considered with tetrasomy/without tetrasomy.
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Considering that the majority of patients with malignant 
effusions present advanced disease with significant systemic 
impairment [4], the possibility of establishing a cancer 
diagnosis using aspirated fluid samples is of great value in 
clinical practice, as it avoids submitting patients to invasive 
diagnostic procedures. In this study, the increase in diag-
nostic sensitivity with P-FISH was not significant when 
compared to cytology. However, the assay was effective in 
demonstrating aneuploidy and, therefore, in confirming 
malignancy in all cases of suspicious cytology (14 cases). 
It is important to emphasize that this study is the first to 
propose a different cutoff value for the diagnosis of malig-
nant pleural or peritoneal effusion with the UroVysion® 
test, including samples from patients with metastases of 
solid tumors and hematological malignancies.

However, although the results are promising, we must 
highlight some limitations of the study: (1) the absence 
of malignant mesothelioma in the study casuistic, as the 
homozygous deletion of the 9p21 gene is more frequently 
observed in this type of tumor; (2) the small number of 
benign effusions, which are important for validation of 
assay specificity; and (3) the small number of hematologi-
cal malignancy cases included.

In conclusion, the present study showed that the 
UroVysion® P-FISH was effective in the identification of 
aneuploid cells in cavity fluids of patients with malignant 
effusions. UroVysion® P-FISH exhibited good sensitivity 
and accuracy, especially in cases of inconclusive cytology. 
However, for use in clinical practice, a greater number of 
effusions should be evaluated, including a wider spectrum 
of malignancies known to evolve with cavitary effusions.
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