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Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients,
and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to
antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we
demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small
molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa
ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS), a toxin involved in Type III secretion. We show
that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct.
Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo.
Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the
known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we
demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we
identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin
mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach
demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new
compounds against a broad range of human pathogens.
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Introduction

Microbial resistance flourishes in hospitals and community

settings, and represents a major threat to human health worldwide

[1,2]. Despite the threat, drug discovery methods have failed to

deliver new effective antibiotics [3]. This problem is likely to

worsen because major pharmaceutical and biotech companies are

withdrawing from antibacterial drug discovery [4]. To address the

challenge of developing new antibiotics and managing microbial

resistance, alternative strategies are needed to define and inhibit

pharmacologically validated targets [5]. Several lines of evidence

support the hypothesis that bakers yeast Saccharomyces cerevisiae can

contribute during early stages of antimicrobial development.

Because many essential molecular mechanisms of cells are

conserved, we hypothesized that bacterial virulence proteins could

act similarly in both yeast and human cells. Indeed, the study of

virulence proteins in S. cerevisiae has proved an effective alternative

and proxy for a human model of bacterial infection [6,7,8]. In

addition, S. cerevisiae is well-suited for screening small molecule

inhibitors to inhibit overexpressed proteins [9,10], and to discover

molecules that disrupt protein-protein interactions [11]. Finally,

the arsenal of available yeast functional genomics tools provides a

powerful means to study the targets and pathways modulated by

drugs (reviewed in [12]). Together, these observations support the

idea that compound screening in S. cerevisiae is a powerful tool to

isolate small molecule inhibitors against potential drug targets of

human pathogens.

In antibacterial drug discovery, a particular concern is the

emergence of multidrug resistant strains that require several drugs

for efficient disease management. This problem is exacerbated in

immunocompromised patients [13]. For example, P. aeruginosa

affects immunocompromised individuals afflicted with cystic

fibrosis and is the primary Gram-negative causative agent of

nosocomial infections [14]. P. aeruginosa is resistant to the three
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major classes of antibiotics, namely b-lactams, aminoglycosides

and fluoroquinolones [15]. Notably, P. aeruginosa strains have

demonstrated an alarming ability to resist antibiotics, underscoring

the need to discover novel molecules with new mechanisms of

action [16,17]. Ironically, there are few innovative antibacterial

molecules available or under development and the majority of

these target Gram-positive bacteria [18]. Therefore, research on

the opportunistic Gram-negative bacterium P. aeruginosa is

medically relevant and is a logical choice to explore the utility of

the yeast-based approach to discover new small-molecule

inhibitors.

A key feature of a number of Gram-negative bacterial infection

is the Type III Secretion System (T3SS) [19]. P. aeruginosa

manipulate host cells by injecting four effector proteins, exoen-

zyme S (ExoS), exoenzyme T (ExoT), exoenzyme Y (ExoY) and

exoenzyme U (ExoU), through the T3SS. ExoS and ExoT are

bifunctional enzymes containing an amino-terminal GTPase-

activating protein domain and a carboxy-terminal ADP-ribosyla-

tion domain. They inhibit phagocytosis by disrupting actin

cytoskeletal rearrangement, focal adhesions and signal transduc-

tion cascades [20]. ExoY is an adenylate cyclase that elevates

intracellular levels of cyclic AMP and causes actin cytoskeleton

reorganization [21]. ExoU is a phospholipase whose expression

correlates with acute cytotoxicity in mammalian cells [6,22].

Therefore, targeting P. aeruginosa virulence factors with small

molecule inhibitors would be expected to modulate the pathogen’s

virulence and provide a starting point for antimicrobial drug

development [23].

The pivotal role played by ExoS during P. aeruginosa infection

validates this toxin as a promising target to discover small

molecules that may interfere with P. aeruginosa pathogenicity and

infectivity [20]. ExoS was initially described as a secreted ADP-

ribosyltransferase (ADPRT) [24]. The toxin is a well-characterized

bi-glutamic acid transferase that requires interaction with a 14-3-3

protein (FAS) for its activity [25,26]. Vimentin was characterized

as the first direct target of ExoS ADPRT activity [27]. Shortly

after, Ras and related proteins including Rab3, Rab4, Ral, Rap1A

and Rap2 were identified as been modified by ExoS [28,29]. ADP-

ribosylation of Ras at arginine 41 blocks the interaction of Ras

with its guanine nucleotide exchange factor (GEF), resulting in the

inactivation of the Ras signal transduction pathway in the infected

host cell [30]. Recently, ExoS was shown to ADP-ribosylate

diverse molecules including cyclophilin A and Ezrin/Radixin/

Moesin (ERM) proteins [31,32]. During infection of HeLa and

fibroblast cells, P. aeruginosa translocates ExoS and induces cell

death by apoptosis [33,34].

In this study, we used a novel combined phenotypic and

chemical genomics screen in yeast to identify the first small

molecule inhibitors of P. aeruginosa ExoS. The compound, exosin,

modulates the toxin ADP-ribosyltransferase enzymatic activity in

vitro suggesting the inhibition is direct. Furthermore, we observed a

protective effect with this compound against P. aeruginosa in a well-

established mammalian cell infection assay. Interestingly, although

we designed the yeast phenotypic screen to assay heterologous

proteins, we also observed that yeast Ras2p is directly modified by

ExoS and we biochemicaly characterized this modification. This

result reveals that bacterial toxins can target similar proteins in

both human and yeast and validates our yeast-based approach for

the study of toxin function and for the high-throughput screening

for small molecule inhibitors. These initial lead compounds can be

used as a starting point for new therapeutic treatments or can help

to characterize the cellular functions of bacterial proteins. A

similar strategy could also be applied to facilitate the discovery of

new compounds against a broad range of human pathogens.

Results

Identification of P. aeruginosa Drug Targets Modulating
S. cerevisiae Growth

We developed a yeast-based strategy where S. cerevisiae was

initially used to identify P. aeruginosa PAO1 virulence factors or

essential ORFs that inhibit yeast growth (Figure 1A). These

particular genes were selected because they provide an attractive

starting point to develop antibacterial drugs. Accordingly, we

developed a list of 505 potential drug targets of P. aeruginosa (Table

S1) [35,36,37]. These bacterial ORFs were individually trans-

ferred into the yeast expression vector, pYES-DEST52 where the

GAL1 promoter controlled their expression. Transformed yeast

growing on 2% glucose served as control (i.e., wild type growth)

because in these conditions, the expression of the exogenous

bacterial genes is repressed. Expression of these genes was induced

by growing the yeast on selective solid medium containing 2%

galactose + 2% raffinose (Figure 1B). The experiment was

repeated (four times), and involved inoculating yeast cultures at

different dilutions and spotting variable volumes of culture on agar

plates in an attempt to increase the consistency of this test.

Of the 505 P. aeruginosa ORFs screened, nine strongly or

partially impaired the yeast growth when overexpressed

(Figure 1C). Five of these are essential genes, including; 1) the

ribonuclease III – PA0770, 2) two probable transcription

regulators - PA0906 and PA1520, 3) the transcription termination

factor Rho – PA5239 and 4) a hypothetical protein – PA2702. In

addition, four virulence genes were also detrimental to yeast

growth, ExoA – PA1148, ExoS – PA3841, ExoT – PA0044, ExoY

– PA2191. Interestingly, each of these four toxins are secreted or

translocated by the type II (ExoA) or type III secretion system

(ExoS, ExoT, ExoY) and each act within the infected host cell. By

comparing the phenotype of yeast harboring the empty vector, we

could assess the relative strength of the Pseudomonas gene

overexpression effect and classify them into three groups

(Figure 1C – right panel). Firstly, ExoA, ExoY, PA1520 and

PA2702 strongly inhibited S. cerevisiae growth. Secondly, ExoS,

ExoT, PA0906 and transcription termination factor Rho showed

Author Summary

Microbial resistance to antibiotics is a serious and growing
threat to human health. Here, we used a novel approach
that combines chemical and genetic perturbation of
bakers yeast to find new targets that might be effective
in controlling infections caused by the opportunistic
human pathogen Pseudomonas aeruginosa. P. aeruginosa
is the primary cause of mortality with cystic fibrosis
patients and has demonstrated an alarming ability to resist
antibiotics. In this study, we identified the first small
molecule inhibitors of ExoS, a toxin playing a pivotal role
during P. aeruginosa infections. One of these compounds,
exosin, likely works by modulating the toxin’s enzymatic
activity. We further show that this inhibitor protects
mammalian cells against P. aeruginosa infection. Finally,
we used yeast functional genomics tools to identify several
yeast homologues of the known human ExoS targets as
possible targets for the toxin. Together, these observations
validate our yeast-based approach for uncovering novel
antibiotics. These compounds can be used as starting
point for new therapeutic treatments, and a similar
strategy could be applied to a broad range of human
pathogens like viruses or parasites.

Identification of Small Molecule Inhibitors
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an intermediate growth impairment whereas expression of

ribonuclease III weakly affected yeast fitness.

Yeast Growth Inhibition Is Mediated by Exoa and Exos
ADPRT, and Exoy Adenylate Cyclase Activities

To assess the influence of ExoA, ExoY and ExoS enzymatic

activities on yeast growth, catalytic mutants were assayed.

Residues important for the enzymatic activity of ExoA (E553A),

ExoY (K81M) and ExoS (R146W and E379A+E381A) were

previously reported [21,38,39,40] and served to guide our mutant

construction (Figure 2A).

Compared to the empty vector control, overexpression of active

ExoA-wt and ExoY-wt induced a severe growth defect (Figure 2B

– top and middle panels) whereas expression of the enzymatically

inactive ExoA-ADPRT mutant and ExoY-AC mutant did not.

This observation suggests that ExoA and ExoY toxicity is

conferred by their ADPRT and AC activities, respectively.

Moreover, whereas ExoS-wt expression reduced yeast growth,

this dominant negative effect was totally abolished when

expression of the ExoS-GAP and ExoS-ADPRT mutants were

simultaneously induced, indicating one or both ExoS enzymatic

activities are causative for the yeast growth defect (Figure 2B –

bottom panel). Because normal growth was observed only for the

ExoS ADPRT domain mutant and not for the GAP mutant, this

suggests that ExoS ADPRT enzymatic activity is responsible for

the yeast toxicity consistent with previous observations [41]. Taken

together, these observations attribute the yeast growth inhibition

to the ExoA-ADPRT, ExoY-AC and ExoS-ADPRT activities and

Figure 1. Overview of the yeast based approach to find inhibitors against the human pathogenic bacteria P. aeruginosa and
phenotypes of the bacterial ORFs causing synthetic lethality in yeast. (A) S. cerevisiae W303-1A was utilized to identify P. aeruginosa PAO-1
virulence factors or essential ORFs that inhibit yeast growth. P. aeruginosa ORFs that inhibited yeast growth when individually overexpressed are
prioritized based on biological relevance. Genes of interest are subsequently screened for inhibitors by overexpressing the bacterial ORFs and
assaying for restoration of yeast growth in the presence of small molecules. Finally, in vitro and in vivo experiments demonstrate that the inhibitor
directly modulates the bacterial protein biological activity. (B) Yeasts harboring the plasmid with the P. aeruginosa ORFs were grown overnight in
liquid media. The cultures were then robotically diluted 10, 100 and 1000 times before their transfer in duplicate on solid media containing either
glucose (Control 100% growth - left panel) or galactose + raffinose (Induction of bacterial gene expression - right panel). Cell growth was compared
to the yeast with the empty vector (negative control – red circle) and to the yeast harboring the vector pRS316 encoding the toxic gene TUB2
(positive control – green circle). Phenotype of yeast with the plasmid pYES-DEST52 coding for a Pseudomonas toxic gene is marked by a blue square.
The plasmid pYES-DEST52 was selected based on its strong promoter GAL1 combined to its high copy number 2 m origin of replication for a maximal
protein expression. (C) Nine P. aeruginosa ORFs inhibiting yeast growth when overexpressed. Yeast were transformed with the pYES-DEST52 yeast
expression vector encoding the nine bacterial ORFs, grown overnight and individually spotted in duplicate as a 10 fold serial dilution on plates
containing either glucose (left panel) or galactose + raffinose (right panel).
doi:10.1371/journal.pgen.1000005.g001
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validate the three toxins as appropriate drug target candidates for

further study. Due to its critical role in the initial steps of chronic

infections of immuno-compromised patients and in the pathogen-

esis of acute P. aeruginosa infections, ExoS was selected for

interrogation using our yeast-cell based inhibitor screen.

Exoenzyme S ADP-Ribosylates Identical Targets in Both
Human and Yeast

To demonstrate that yeast can serve as a model system to

mimic human cells during infection, we asked if these bacterial

toxins modulate the biological activity of conserved eukaryotic

targets. Following binding of P. aeruginosa to human cells, the

bacteria inject ExoS directly into the cytoplasm where it

inhibits the activity of several targets by ADP-ribosylation.

Therefore, overexpressing yeast homologues of ExoS human

targets should restore yeast growth by titrating the toxin’s

enzymatic activity (Figure 3A). To test our hypothesis, forty-six

yeast members of the Ras superfamily and cyclophilins were

individually overexpressed in yeast in the presence of ExoS (Table

S2).

Figure 2. Prevention of S. cerevisiae growth by ExoA-ADPRT, ExoY-adenylate cyclase and ExoS-ADPRT activities. (A) Functional
domains of the Pseudomonas ExoA, ExoY and ExoS and localizations of the point mutations abolishing the different enzymatic activities. (B) S.
cerevisiae W303-1a was transformed with yeast expression vector alone (Empty vector), the yeast expression vector encoding ExoA wild type (ExoA
wt) or ExoA E553A ADPRT mutant (ExoA-ADPRT mutant). Similarly, yeast was transformed with a vector containing ExoY wild-type (ExoY-wt), ExoY
K81M AC mutant (ExoY-AC mutant). Finally, identical vector with ExoS wild type (ExoS-wt), ExoS R146W GAP mutant (ExoS-GAP mutant), ExoS
E379A+E381A ADPRT mutant (ExoS-ADPRT mutant) or ExoS GAP and ADPRT double mutant (ExoS-GAP and ADPRT mutant) was incorporated in
yeast. Toxicity of the different constructs in yeast were determined by spotting serial dilution of overnight cultures onto agar containing glucose
(Control 100% growth - left panel) or galactose + raffinose (right panel).
doi:10.1371/journal.pgen.1000005.g002
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We first verified that individually, the overexpressed yeast

proteins did not impair yeast growth. To accomplish this, cells

were cultivated on galactose + raffinose in absence of copper such

that only the yeast over-expressed candidates, but not ExoS, were

expressed (Figure 3B – top right panel). Yeast genes whose

overexpression was toxic were eliminated from our analysis. In

parallel, cells were grown on galactose + raffinose in presence of

copper to assess the rescuing effect of yeast gene overexpression in

the presence of the toxic ExoS (Figure 3B – bottom right panel).

Comparing yeast growth to the cell harboring the empty vector

and yeast expressing ExoS alone (Figure 3B – bottom left panel),

ten yeast genes were found to rescue ExoS toxicity (Table S3).

Subsequently, only yeast genes demonstrating a strong growth

rescue phenotype (such as RAS2) were analyzed further whereas

genes showing weak rescue (such as YPT1) were not studied further

(Figure 3B). S. cerevisiae possesses two homologues of the human

Ras protein (Ras1p and Ras2p). Interestingly, Ras2p was found

among these ten ORFs, i.e. overexpression of Ras2p but not

Ras1p rescued ExoS-induced toxicity (Figure 3B).

As previously described, ExoS requires Factor Activating

Exoenzyme S (FAS) for its ADPRT activity [26]. FAS is a

member of the 14-3-3 protein family which has two yeast

homologues, the Brain Modulosignalin Homolog (Bmh) 1 and 2.

Accordingly, ExoS toxicity was assessed in the absence of Bmh1p

or Bmh2p. As detected by the increase in yeast growth, ExoS-

induced toxicity was diminished in cells lacking Bmh1p but not in

Figure 3. Ras is a direct target of ExoS both in yeast and human. (A) In mammalian cells, ExoS inactivates several targets. A similar
mechanism could explain the observed growth defect in S. cerevisiae. In that case, overexpression of the yeast homologues of the ExoS human
targets should restore yeast growth by titrating the toxin enzymatic activity. (B) In the presence of ExoS, yeast Ras2p overexpression reverts yeast
growth to a level comparable to the one with the yeast harboring the empty vector. Overnight cultures of the yeast transformed with empty vector,
the vector encoding ExoS alone or exoenzyme S with the yeast ORFs were adjusted to the same cell density (106 cells/ml). The rescuing effect due to
the yeast ORFs expression was estimated by spotting a 10 fold serial dilution of the yeast cultures on agar containing glucose - copper (upper panels)
or galactose + raffinose + copper (lower panels). (C) Bmh1p acts as ExoS cofactor in yeast. The ExoS expression vector was transformed in wild-type,
bmh1D and bmh2D yeast backgrounds. In absence of BMH1, but not BMH2, ExoS did not display any toxicity in yeast (left panel). Additionally, the
vectors encoding ExoS and Bmh1p were cotransformed. Bmh1p overexpression restored ExoS toxicity in a yeast bmh1D background (right panel). (D)
ExoS ADP-ribosylates Ras2p in vitro. Ras2p was incubated with ExoS and [32P]NAD in presence or absence of the yeast activator protein Bmh1. The
samples were separated by SDS-PAGE and incorporation of radioactive ADP-ribose analysed by phosphorimaging. The upper bands are caused by
ExoS auto-ribosylation and served as a positive control. Due to the nature of the ExoS purification, the top band corresponds to the full-length ExoS
and the lower band represents the auto-ribosylation of a truncated form of ExoS.
doi:10.1371/journal.pgen.1000005.g003
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those lacking Bmh2p (Figure 3C – left panel). In a bmh1D yeast

background, the toxic effect of ExoS was again restored when

introducing BMH1 in the presence of the toxin (Figure 3C – right

panel). Together, these data imply that Bmh1p acts as ExoS

cofactor in yeast.

To better understand the mechanism of this toxicity, we

demonstrated that yeast Ras2p was a direct target of ExoS and

that Bmh1p was the ExoS cofactor in yeast, using a biochemical

assay. To that end, an ADP-ribosyltransferase enzymatic assay was

performed using the radioactive substrate [32P]-NAD+, purified P.

aeruginosa ExoS, yeast Ras2p and Bmh1p. Autoradiographic

analysis showed that radioactive ADP-ribose was incorporated

by Ras2p (Figure 3D). Moreover, in absence of Bmh1p, no ADP-

ribosylation was observed. These data reveal that in vitro, Ras2p is

directly ADP-ribosylated by ExoS with Bmh1p as a cofactor.

Taken together, these results allow us to conclude the following;

(i) in yeast, the growth inhibitory effect observed in the presence of

the P. aeruginosa ExoS is mediated by its ADPRT activity, (ii) this

growth inhibition is due, at least in part, to the inactivation of the

yeast protein Ras2p by ADP-ribosylation, (iii) ExoS ADPRT

activity is activated by the yeast cofactor Bmh1p. Most

significantly, conservation of several toxin targets from yeast to

human, such as Ras2p, Rsr1p, Ypt52p and Cpr6p, suggests that P.

aeruginosa ExoS acts in a related manner in both organisms.

E216-5303 Modulates Exoenzyme S ADPRT Activity
through Competitive Inhibition

The sensitivity and specificity of our yeast-based assay allowed

us to use S. cerevisiae to detect potential inhibitors of the three

selected P. aeruginosa drug targets. Because ExoS-wt inhibited yeast

growth when overexpressed, we reasoned that any molecule that

inhibits this enzyme should restore yeast growth (Figure 1A).

Because we were unable to find any inhibitors when the bacterial

toxin was expressed using the strong promoter GAL1, we

exchanged the GAL1 promoter with the copper inducible

promoter CUP1 which allows a titrable expression of the toxins.

Expression from this promoter decreases the toxin level in yeast

and renders the conditions of the yeast screen less stringent. Over

56,000 compounds, primarily synthetic small molecules, were

tested against ExoS. Effect of the compounds was compared to the

yeast growth in absence of compound (as control for inhibition)

and to the cells dividing in absence of toxin (as a control for

growth). With this strategy, we uncovered six potential inhibitors,

Diosmin, Everninic acid, Flavokawain B, 0469-0796, 4296-1011

and E216-5303 based on their ability to restore yeast growth

(Figure 4A).

To determine if the observed yeast growth recovery was due to

a direct modulation of the compounds on ExoS ADPRT activity,

an in vitro fluorescent ADPRT enzymatic assay was performed.

Diosmin, 4296-1011, Everninic acid and E216-5303 modulated

ExoS ADPRT activity and their IC50 values were determined as 3,

6, 21 and 23 mM respectively (Figure 4A). Due to their intrinsic

fluorescence, Flavokawain B and 0469-0706 effects could not be

tested in our enzymatic assay. Because, only exosin protected

CHO cells from lysis during P. aeruginosa infection in cell culture

(data not shown) it was therefore selected for additional studies.

Exosin acts as competitive inhibitor against the NAD+ substrate of

ExoS as the Vmax values were largely unaffected, whereas the KM

values increased from 9 to 30 mM (Figure 4C). The Ki value

(dissociation constant for a competitive inhibitor) was 33.0 6

3.0 mM for exosin (Figure 3D), which agrees favourably with the

IC50 value for this compound (Figure 4B). Thus, the drug-like

compound exosin directly modulates ExoS ADPRT activity in vitro

via competitive inhibition. Therefore, exosin seems to restore

ExoS dependant yeast growth defect by directly inhibiting ExoS

ADPRT activity.

Exosin Protects Exoenzyme S Induced Cytotoxicity in
CHO Cells

To determine if the small molecule inhibitor, exosin, could

modulate the viability of CHO cells during P. aeruginosa infection,

apoptotic CHO cells and living CHO cells were distinguished

using the exclusion dye 7-AAD. Here, CHO cells were exposed to

P. aeruginosa with or without the small molecule inhibitor for

2 hours, and the fraction of apoptotic cells was measured by 7-

AAD staining and flow cytometry.

The mean fluorescent intensities of 7–AAD were plotted as a

histogram (Figure S1). When compared to the mean fluorescent

intensity from the red peak (background fluorescent intensity -

7.42; n = 3) and from the blue peak (control for P. aeruginosa

infection - 18.2; n = 3), the green (20 mM), orange (40 mM), and

light blue (80 mM) peaks gave mean fluorescent intensities of 13.4,

11.3, and 10.3, respectively, indicating that exosin exerted its effect

in a dose-dependent manner. Therefore, a higher inhibitor dose

reduced the number of cells undergoing apoptosis, reflecting a

better protective effect. Similar observations were made in dot

plots (Figure 5A). In the presence of 80 mM exosin, a significant

increase in the percentage of living cells (79.35%; n = 3) was

observed with the serious reduction of dead cells (20.31%; n = 3),

compared to the infected CHO cells without inhibitor, 0 mM

(49.72% and 50.28%, respectively). However, the protective effect

of exosin at a concentration of 80 mM was not observed when

CHO cells were infected by the P. aeruginosa PA14 strain, a strain

expressing ExoT, ExoY and the phospholipase exoenzyme U

(ExoU) but not ExoS, indicating the specificity of the compound

exosin against ExoS only (Figure 5A – lower panels).

In the CHO cell infection assay, the protective effect of exosin

was monitored during an early stage of infection by detecting the

number of dying and dead CHO cells using flow cytometry.

Moreover, the effect of the inhibitor at the late stage of infection

was assessed by the quantification of lactate dehydrogenase (LDH)

released from the population of lysed CHO cells. Four hours after

P. aeruginosa PAK infection (Figure 5C) revealed a 6.93% decrease

in lysis upon addition of 20 mM exosin, a 13.92% lysis reduction in

the presence of 40 mM final of inhibitor and a 12.90% reduction at

80 mM. However, the protective effect of exosin at a concentration

of 80 mM was not observed when CHO cells were infected by the

P. aeruginosa PA14 strain that translocates ExoU instead of ExoS

(Figure 5C). Together, these data strongly support the conclusion

that the inhibitor exosin is specific for ExoS and is able to reduce

ExoS cytotoxicity against mammalian cells.

P. aeruginosa PAK viability was tested by measuring optical

density of cultures in the presence of 20, 40 and 80 mM of

inhibitor over a period of 10 hours. Addition of exosin did not

affect Pseudomonas growth, further confirming the specificity of

exosin for ExoS in CHO cells (Figure S2).

Pre-Selection of Exosin Analogues in S. cerevisiae
Given the specificity of exosin, we screened 50 structural

analogues of this compound in yeast to find molecules with

increased potency against ExoS ADPRT activity. Seven analogues

with an improved effect were found (Figure 4E – exosin-5138,

exosin-5316 and the compounds marked by an asterisk).

According to the flow cytometry results, all of these compounds

protected CHO cells when infected with P. aeruginosa in cell culture

(data not shown). However, only exosin-5138 and exosin-5316

showed a protective effect when monitored with the LDH assay.

Therefore, only these two compounds were used for further

Identification of Small Molecule Inhibitors

PLoS Genetics | www.plosgenetics.org 6 2008 | Volume 4 | Issue 2 | e1000005



Identification of Small Molecule Inhibitors

PLoS Genetics | www.plosgenetics.org 7 2008 | Volume 4 | Issue 2 | e1000005



investigation. Exosin-5340 had no protective effect in yeast or in

the CHO cell infection assay and served as a negative control.

Importantly, results obtained from the yeast studies revealed the

importance of the para position of the nitrobenzyl ring for the

inhibitory activity of the compounds (Figure 4G). The three

different analogues, exosin-5138, exosin-5316 and exosin-5340,

were then selected for quantification of the yeast growth recovery

and for IC50 determination. Exosin-5138 showed 36.8% recovery,

Figure 4. Exosin inhibits ExoS ADPRT activity. (A) List of ExoS potential inhibitors isolated during the yeast chemical screen. In yeast, the
growth inhibition caused by ExoS expression was used to screen for novel inhibitors of this bacterial protein by selecting those compounds that can
restore growth to the yeast expressing the toxin. Structures of the six identified hits are displayed. Diosmin, Everninic acid, 4296-1011 and E216-5303
directly modulate ExoS ADPRT enzymatic activity. IC50 for each molecule is defined by the compound concentration required to decrease ExoS
ADPRT activity by 50%. ExoS, its cofactor FAS and human Ras were purified and used in the fluorescence-based ADPRT assay. The inhibitor IC50 was
determined by non-linear regression curve fitting. Flavokawain B and 0469-0706 possessed intrinsic fluorescence that interfered with the fluorescent
ADPRT enzymatic assay, therefore the IC50 for these compounds could not be determined. (B) Dose-response curve for E216-5303 on the ADPRT
activity of ExoS. Various aliquots of a stock solution of E216-5303 prepared in DMSO were pre-incubated with 20 mM human Ras, 1 mM of FAS and
20 mM of e-NAD+ in 100 mM NaCl, 2 mM MgCl2, 200 mM sodium acetate, pH 6.0. The reaction was initiated with the addition of 50 nM ExoS and the
transferase reaction was monitored by recording the time-dependent change in fluorescence intensity. The fluorescence excitation was at 305 nm
with fluorescence emission at 405 nm. The inhibitor IC50 was determined by non-linear regression curve fitting. (C) Lineweaver-Burk plot of the
inhibition of ExoS ADPRT activity at 0(#), 20(&), 30(m) and 40(P) mM of E216-5303. (D) Plot of the slope from (c) (KM/Vmax) against E216-5303
concentration (see Material and Methods for details). (E) Percentage of yeast growth induced by exosin analogues. Growth of yeast expressing ExoS
was calculated for each of the 50 exosin analogues and compared to the cell expressing ExoS in the presence of exosin (100% growth control) and
yeast with ExoS alone (no inhibitor – background growth control). (F) Structures, percentage of yeast growth recovery and IC50 for the small
molecule inhibitor exosin and its analogues. Yeast growth recovery was calculated as the difference of growth of yeast expressing ExoS in the
presence of the inhibitor compare to yeast harboring the empty vector (100% growth control) and yeast with ExoS alone (no inhibitor – background
growth control). Exosin and analogues directly modulate ExoS ADPRT enzymatic activity. The IC50 values for exosin and analogues were determined
as previously described. (G) Structure of the core molecule for exosin and analogues. An arrow indicates the para position of the benzyl ring, a
position important for activity.
doi:10.1371/journal.pgen.1000005.g004

Figure 5. Inhibitors reduce P. aeruginosa cytotoxic effect during CHO cell infection. CHO cells were seeded at a concentration of
1.256105 cells/well 12 hours prior P. aeruginosa PAK infection (MOI 10). (A) During the early stage of infection (2 hours), CHO cells were harvested by
trypsination and resuspended in HBSS + 1% BSA. Induced cell death was measured by flow cytometry after 7-AAD (10 mg/ml) staining, using a
Beckman-Coulter EPICS Elite flow cytometer. Dot plots shows the percentage of dead and living cells for different compound concentrations. The
lower right quadrant shows living CHO cells that are positive in size (FSC-H) and negative by 7-AAD staining. In the upper left quadrant, the 7-AAD
positive location indicates the number of dead or dying CHO cells after P.aeruginosa infection. These results are representative of 3 independent
experiments. (B) The bar graph shows the percentage of dead/dying cells measured by flow cytometry. The error bars represent the SD with n = 3.
The protective effect was compared to the number of dying/dead CHO cells in absence of both bacteria and compound as the 0% of cell lysis
(background control) and to the number of dying/dead CHO cells in the presence of P. aeruginosa but in absence of any compound as the 100% lysis.
(C) During the late stage of infection (4 hours), CHO cell supernatants were submitted to LDH release quantification using the Cytotoxicity Detection
Kit (Roche). The error bars represent the SD with n = 3. The percentage of LDH release for each compound concentrations was compared to the LDH
release of CHO cells in absence of both bacteria and compound (spontaneous lysis) and to the LDH release of CHO cells in the presence of P.
aeruginosa PAK in absence of inhibitor (100% lysis).
doi:10.1371/journal.pgen.1000005.g005
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almost double the protective effect of exosin whereas exosin-5340

conferred no protection (Figure 4F). The last analogue exosin-

5316 (with 27.4% recovery) demonstrated a protective effect

almost equal to the original compound (20.5% recovery). The

fluorescent ADPRT enzymatic assay revealed that the three

analogues directly modulate ExoS ADPRT activity in vitro

(Figure 4F). The IC50 for each compound was calculated and

these values paralleled the effect of the small molecules in yeast,

most strongly for exosin-5138 and exosin-5340, and to a lesser

extent for exosin-5316.

We extended our studies of these analogs in mammalian cells.

For this purpose, protection provided by exosin-5138 and exosin-

5316 was assessed in the CHO cell toxicity assay. Using the flow

cytometry as described earlier, a strong protective effect of exosin-

5138 was observed (Figure 5A – left panel). Dot plots of exosin-

5138 showed a large reduction in dead cells at a compound

concentration of 80 mM (Figure 5A – right panel). Exosin-5138

showed decreases of 25.20, 44.05 and 60.83% in the number of

dead/dying CHO cells in the presence of 20, 40 and 80 mM of

inhibitor, respectively (Figure 5B). In the LDH assay, exosin-5138

reduced cell lysis by 9.34, 18.61 and 24.64% in presence of the

compound at 20, 40 and 80 mM inhibitor, respectively (Figure 5C)

demonstrating an improved efficacy of exosin-5138 against ExoS

cytotoxicity versus the original hit.

In addition, as shown by flow cytometry, exosin-5316 exerted a

protective effect (Figure 5A). The number of dead/dying CHO

cells was detectably lower upon addition of the analogue exosin-

5316; however, this reduction was not statistically significant

compared to the original hit (p.0.05). In contrast, the LDH assay

revealed a 7.94, 12.84 and 15.81% reduction in cell lysis at 20, 40

and 80 mM final concentration respectively (p,0.05). The

analogue exosin-5316 showed similar protective effect compared

the original hit (p,0.05) (Figure 5C).

The data show a correlation between the protective effect of

exosin and its analogues in yeast and for the results obtained in the

CHO cell infection assay. Moreover, these observations establish

yeast as a powerful assay system to estimate the effect of analogues

of an original hit and to prioritize lead compounds before tedious

subsequent experiments in a more complicated model of infection

are undertaken.

Discussion

In this report, we used the P. aeruginosa virulence factor, ExoS, to

demonstrate the utility of the baker yeast S. cerevisiae as a tool to

isolate inhibitors against human pathogens. We succeeded in

identifying the first known inhibitor of ExoS, exosin, and

demonstrated that this assay can be used to uncover structural

analogs with improved potency. Therefore, yeast can substitute for

traditional human models of infection, and be used to effectively

prioritize compounds.

Expression of P. aeruginosa Genes Affecting Yeast
Growth

In our report, S. cerevisiae produced a binary readout that

allowed us to test 505 P. aeruginosa genes for their inhibitory effect

in yeast. Expression of nine bacterial genes, five essential and four

virulence genes, reproducibly prevented S. cerevisiae growth.

Among the isolated essential genes, the Rho termination factor

from E. coli was demonstrated to induce yeast RNA polymerase II

release at all pause sites of the mRNA in vitro [42]. Thus,

transcription deregulation could explain the yeast growth arrest in

the presence of the transcription termination factor Rho. Members

of the ribonuclease III superfamily are RNA-specific endonucle-

ases involved in RNA maturation, RNA degradation and gene

silencing [43]. We hypothesize that the observed yeast growth

defect induced by expression of the P. aeruginosa ribonuclease III

was caused by deregulated RNA degradation. Since no clear

biological function is associated with the two probable transcrip-

tional regulators – PA0906 and PA1520, nor for the hypothetical

protein – PA2702, we cannot speculate on the mechanism of

action of these proteins in yeast.

During infection, P. aeruginosa manipulates host cellular function

through the action of the toxins ExoA, ExoS, ExoT and ExoY

using the type II and III secretion systems [44]. Since these toxins

inactivate key molecules directly within the infected cells and

because several basic molecular functions are conserved among

eukaryotes, it seemed likely that the toxins could act similarly on

targets conserved in both yeast and human. Therefore, inactiva-

tion of yeast homologues of the toxin human targets is an attractive

and simple scenario to explain the growth inhibition effect

conferred by the ExoA, ExoS, ExoT and ExoY expression in

yeast. There are many possible reasons to account for the limited

number of bacterial genes affecting yeast growth including; (i) a

proper expression of the bacterial gene (e.g. high CG content in

the Pseudomonas DNA sequence [45]), (ii) the presence of the target

and/or appropriate co-factor and (iii) required post-translational

modifications.

Conservation of ExoS Biological Activity in Both Human
and Yeast

High conservation of basic molecular and cellular mechanisms

between yeast and human cells highlights S. cerevisiae as an ideal

model organism to study mammalian diseases and their underlying

pathways [46,47]. Indeed, several reports have shown that this

conservation can be used to decipher bacterial toxins mode of

action [6,7,48]. Here, the toxicity caused by ExoA, ExoY and

ExoS overexpression in yeast is mediated by their enzymatic

activity (Figure 2B). Interestingly, ExoS ADPRT activity alone is

sufficient to induce yeast cell growth arrest. This last observation

inspired us to study ExoS yeast toxicity into more detail.

Once translocated in human host cells via P. aeruginosa type III

secretion system, ExoS inhibits several cellular targets. Its GTPase

activating protein activity reorganizes the actin cytoskeleton

through RhoA, Rac1 and Cdc42 inactivation. In contrast, ExoS

ADPRT activity inactivates a wide range of proteins such as

several members of the Ras family and related proteins,

cyclophilin A and the Ezrin/Radixin/Moesin (ERM) proteins.

Since ExoS inactivates all its protein targets, overexpression of the

yeast homologues of the known human targets should restore yeast

growth by titrating ExoS enzymatic activity. The ERM proteins

play a role during cell polarity establishment of multi-cellular

organisms and no homologues were found in yeast. Therefore,

only yeast members on the Ras superfamily and cyclophilin family

were induced in our overexpression study. Globally, no yeast

homologue of the human RhoA, Rac1 or Cdc42 rescued ExoS-

induced toxicity indicating that, together with the results obtained

in the ExoS mutagenesis experiments, the ExoS GAP activity does

not play a role in ExoS yeast growth inhibition. Four homologues

of the human ExoS targets Ras, Rap1b, hRab and CyclophilinA

were identified as the yeast Ras2p, Rsr1p, Ypt52p and Cpr6p,

respectively. Arf1p, a member of the Sar/Arf family and

homologue of the human Arf1 protein, rescued yeast expressing

ExoS. Arf1p is involved in the retrograde transport of vesicles from

the trans Golgi to the plasma membrane. Biological relevance of

Arf1p as a direct target of ExoS is questionable since, during P.

aeruginosa infection, ExoS trafficking occurs from the plasma

membrane to the perinuclear region [49]. In our system, ExoS is
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encoded by a plasmid, thus deregulation of the retrograde

transport could prevent ExoS reaching its plasma membrane

targets (e.g. Ras2) and explain why Arf1p overexpression allowed

yeast to divide in the presence of ExoS. No homologues of Cin4p

(Sar/Arf family), Cns1p, Cpr7p, Cpr8p exist in human confound-

ing the interpretation of these results.

ExoS overexpression in the absence of Bmh1p, the yeast

homologue of the ExoS cofactor FAS, was not toxic to yeast

(Figure 3C). In vitro enzymatic assay demonstrated that ExoS ADP-

ribosylated Ras2p with Bmh1p as a cofactor (Figure 3B).

Interestingly, substitution of the yeast Ras2p by the constitutively

active Ras2-G19V mutation did not prevent ExoS toxicity (data

not shown). Additionally, previous results showed that a deletion

mutant of ExoS (lacking aa 51–72 membrane localization

domain), which cannot ADP-ribosylate Rasp in vivo, is nevertheless

as cytotoxic as wild type ExoS in CHO cells, indicating that Ras

ADP-ribosylation is dispensable for ExoS virulence [50]. These

observations suggest that, in yeast, the observed growth inhibition

may be due to the cumulative inhibitory effects of ExoS on already

known targets and/or due to the additional inactivation of an

unknown key protein(s).

Yeast as a Tool for Drug Screening and Prioritization
ExoS plays a pivotal role in the establishment of P. aeruginosa

chronic infections and during acute P. aeruginosa pathogenesis. For

that reason, this toxin was selected in our yeast phenotypic system

to find inhibitors capable of modulating its enzymatic activity.

Here, we report the isolation of exosin, the first inhibitor of ExoS

ADPRT activity using a yeast cell-based screen. Six compounds

were isolated from a library of 56,000 compounds and all rescued

ExoS induced toxicity in yeast (Figure 4A). This relatively small

number of hits is likely due to several reasons; both chemical and

biological. The compound library, though selected for its diversity,

nonetheless samples a limited range of chemical space. Further-

more, of 6,000 compounds that were randomly picked from the

library and tested against ExoS and ExoY in two different yeast

genetic backgrounds (the wild-type and the pdr1D+pdr3D strains),

no difference in potency was observed, suggesting that the yeast

genotype did not substantially influence the number of hits

obtained in our screen.

In the enzymatic and the CHO cells infection assays, only

exosin modulated ExoS biological activity. The apparent inactivity

of the five other small molecules can likely be explained by two

arguments. First, the five inhibitors could exert their effect on

molecules or pathways modulated by ExoS without directly

inhibiting ExoS ADPRT activity. Furthermore, because these five

compounds exerted no protective effect in the CHO cell infection

assay we predict they act on yeast specific pathways. A second

explanation could be that the effect observed in yeast requires

metabolism of the compound and is not an effect of the original

compound itself.

Our results revealed that compounds derived from natural

products were more bioactive on yeast (3 primary hits out of 580

natural products). However, the only hit conferring protection

during infection of CHO cells by P. aeruginosa belongs to the class

of the drug-like synthetic compounds (3 primary hits out of 53,000

compounds). Thus, there is certainly much more chemical space

that can be probed using both natural and synthetic compounds.

E216-5303 Mode of Action
Exosin was shown to directly interact with ExoS in vitro as a

competitive inhibitor against the NAD+ substrate of ExoS ADPRT

activity with comparable IC50 and Ki values indicating that exosin

likely binds to the NAD+-pocket within the ADPRT domain of

ExoS. This was substantiated by our observation of a similar

inhibitory effect of exosin on the ADPRT activity of ExoA (IC50

= 17 mM; data not shown). Unfortunately, no high-resolution

structure has been determined for the ADPRT domain of ExoS;

however, ExoA is a well-characterized ADPRT enzyme for which

there is a crystal structure of the ADPRT catalytic domain in

complex with substrates and inhibitors [51,52,53]. By analogy with

the recent X-ray co-crystal structure of ExoA with PJ34 [51], the

benzylmorpholine ring of exosin might be expected to intercalate

into the nicotinamide pocket within ExoS. In this scenario, the

inhibitor amide should form an H-bond with enzyme. Presently,

the site of contact within the ExoS active site for the alkyl group on

the exosin nitrobenzyl moiety (shown by an arrow in Figure 4G) is

not known; however, a single ring is required for in vivo activity and

an ethyl is preferred over a methyl at the alkylation site. In

summary, although we lack atomic resolution, it appears likely that

the in vivo inhibitory activity of exosin against ExoS toxicity is due

to a direct interaction of the inhibitor with the ADPRT domain of

the toxin.

Conclusion
Using a yeast cell-based screen, the first known inhibitor of the

P. aeruginosa ExoS, called exosin, was isolated and several

analogues of the original hit were characterized. This work was

facilitated by the partial conservation of the proteins inactivated by

ExoS in both human and yeast. Thus, S. cerevisiae is a powerful tool

to study bacterial toxins and to identify their corresponding

inhibitors. Future studies could extend a similar approach to a

broad range of human pathogens such as viruses and bacteria.

Materials and Methods

Strains. S.cerevisiae W303-1A (MATa his3 ade2 leu2 trp1 ura3 can1)

and 14328-pdr1+pdr3 (Mata his3 met15 ura3 pdr1::Nat pdr3::KanMX)

were propagated at 30uC on yeast–peptone–dextrose (YPD) or

synthetic dextrose (SD) minimal medium missing the appropriate

amino-acid. P. aeruginosa strains PAK [54] and PA14 [55] were

routinely grown at 37uC in Luria-Bertani broth.

Constructs. The 505 ORFs coding the Pseudomonas aeruginosa

PAO1 drug targets, contained in the entry vector pDONR201

[56], were individually subcloned in the yeast expression vector

pYES-DEST52 (Invitrogen) by LR reaction according to the

manufacturer’s instruction (Invitrogen). Proper integration of the

ORFs in pYES-DEST52 was checked by PCR using the forward

primer pDONR201-F (59-TCGCGTTAACGCTAGCATGG

ATCTC-39) and reverse primer pDONR201-R (59-GTAACAT

CAGAGATTTTGAGACAC-39).

ExoA-E553D enzymatic mutant was PCR amplified from

Pseudomonas aeruginosa genomic DNA using the primers pYES-

DEST52-top (59- ACAAGTTTGTACAAAAAAGCAGGCTCC

GAAGGAGATACCATGCACCTGACACCCCATTGGATCC-

39) with ExoA-E553D-Bot (59-GGCCAGCCGAGAATGG

TGTCCAGGCGCCCGCCTTCC-39) and ExoA-E553D-Top

(59-GGAAGGCGGGCGCCTGGACACCATTCTCGGCTGG

CC-39) with pYES-DEST52-Bot (59-ACATGATGCGGCCCTC

TAGGATCAGCGGGTTTAAACTCAATGGTGATGGTGAT

GATGACCGG-39). The different PCR products were subse-

quently recombinationally cloned into pYES-DEST52 (Invitro-

gen).

ExoS-R146K enzymatic mutant was PCR amplified from

Pseudomonas aeruginosa genomic DNA using the primers ExoS-top-

ivrec (59- TCGGATCCACTAGTAACGGCCGCCAGTGTGC

TGGAATTATGCATATTCAATCGCTTCAGC-39) with ExoS-
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R146K-Bot (59-CCAAGGCGGTGCTCAGCGACTTCAGCGC

CCCATCTCCGCTGG-39) and ExoS-R146K-Top (59- CCAGC

GGAGATGGGGCGCTGAAGTCGCTGAGCACCGCCTTGG-

39) with ExoS-bot-ivrec (59- ATTACATGATGCGGCCCTCTA-

GATGCATGCTCGAGCGGCCTCAGGCCAGATCAAGGCC-

39). The different PCR products were subsequently recombina-

tionally cloned into pYES2 (Invitrogen).

ExoS-E379A+E381A enzymatic mutant was PCR amplified

from Pseudomonas aeruginosa genomic DNA using the primers ExoS-

top-ivrec (59- TCGGATCCACTAGTAACGGCCGCCAGTGT

GCTGGAATTATGCATATTCAATCGCTTCAGC-39) with

ExoS-E379A+E381A-Bot (59- CGGTCTCTTTGTTATAGAGA

ATCTCTTTTTCATTCTTGTAGTTCGATATCCCGC -39)

and ExoS-E379A+E381A-Top (59- GCGGGATATCGAACTAC

AAGAATGAAAAAGAGATTCTCTATAACAAAGAGACCG-39)

with ExoS-bot-ivrec (59- ATTACATGATGCGGCCCTCTA

GATGCATGCTCGAGCGGCCTCAGGCCAGATCAAGGCC-

39). The different PCR products were subsequently recombina-

tionally cloned into pYES2 (Invitrogen).

ExoS-R146+E379A+E381A double mutant was PCR amplified

from Pseudomonas aeruginosa genomic DNA using the primers

ExoS-top-ivrec (59- TCGGATCCACTAGTAACGGCCGCCA

GTGTGCTGGAATTATGCATATTCAATCGCTTCAGC-39)

with ExoS-R146K-Bot (59-CCAAGGCGGTGCTCAGCGA

CTTCAGCGCCCCATCTCCGCTGG-39), ExoS-R146K-Top

(59- CCAGCGGAGATGGGGCGCTGAAGTCGCTGAGCAC

CGCCTTGG-39) with ExoS-E379A+E381A-Bot (59- CGGTCT

CTTTGTTATAGAGAATCTCTTTTTCATTCTTGTAGTT

CGATATCCCGC -39) and ExoS-E379A+E381A-Top (59-

GCTAACAAAGAGACCG-39) with ExoS-bot-ivrec (59- ATTA

CATGATGCGGCCCTCTAGATGCATGCTCGAGCGGCC

TGGGATATCGAACTACAAGAATGAAAAAGAGATTCTC

TACAGGCCAGATCAAGGCC-39). The different PCR prod-

ucts were subsequently recombinationally cloned into pYES2

(Invitrogen).

ExoY-K81M enzymatic mutant was PCR amplified from

Pseudomonas aeruginosa genomic DNA using the primers ExoY-

topivrec (59-TCGGATCCACTAGTAACGGCCGCCAGTGT

GCTGGAATTATGCGTATCGACGGTCATCGTC-39) with

ExoY-K81M-Bot (59-CCCCTTCACCGAGAAGCCCATGGT

CGGGAAACCC-39) and ExoY-K81M-top (59-GGGTTTCC

CGACCATGGGCTTCTCGGTGAAGGGG-39). The different

PCR products were subsequently recombinationally cloned into

pYES2 (Invitrogen).

ExoA, ExoS and ExoY was PCR amplified from Pseudomonas

aeruginosa genomic DNA and recombinationally cloned into

pDH105 using the oligonucleotides PA1148-pDH105ivrec-Top

(59-AGGCAAGATAAACGAAGGCAAAGGACGGTTCTAGA

GCTGACATGCACCTGACACCCCATTGGATCC-39) and

Pa1148-pDH105ivrec-Bot (59- CACACAGGAAACAGCTATG

ACCATGATTACGCCAAGCTTCTGCAGTTACTTCAGGT

CCTCGCGCGGCGG-39) for ExoA, ExoS-pDH105ivrec-Top

(59AGGCAAGATAAACGAAGGCAAAGGACGGTTCTAGA

GCTGAC ATGCATATTCAATCGCTTCAGCAGAG-39) and

ExoS-pDH105ivrec-Bot (CACACAGGAAACAGCTATGAC-

CATGATTACGCCAAGCTTCTGCAGTCAGGCCAGATCA

AGGCCGCG) for ExoS,ExoY-pDH105ivrec-Top (59- AGGC

AAGATAAACGAAGGCAAAGGACGGTTCTAGAGCTGAC

ATGCGTATCGACGGTCATCGTCAG-39) and ExoY-

pDH105ivrec-Bot (59- CACACAGGAAACAGCTATGACCAT

GATTACGCCAAGCTTCTGCAGTCAGACCTTACGTTGG

AAAAAGTCGAG-39) for ExoY.

The plasmids pEGH [57] for yeast ORFs overexpression were

kindly provided by R. Sopko.

Pseudomonas aeruginosa ORF Screening
S. cerevisiae strain W303-1A harboring the plasmid pYES-

DEST52 coding each of the 505 Pseudomonas aeruginosa PAO1 drug

targets was grown overnight in SD–Ura to maintain selection of

the plasmid. Yeast culture was directly submitted to 3 steps of a ten

fold dilution using the liquid handling robot Q-Bot (Genetix). The

non-diluted and diluted cultures were then immediately inoculated

in duplicate on solid medium containing either glucose-Ura

(repressing conditions) or galactose+raffinose-Ura (inducing con-

ditions). Plates were incubated at 30uC and monitored for yeast

growth defect after 2 and 3 days. Growth was compare to the

fitness of yeast harboring the empty vector and to the yeast

harboring the toxic pRS316-TUB2 vector [58].

Compound Screening
The LOPAC library (1,280 compounds, Sigma-Aldrich), the

SPECTRUM library (2,000 compounds, MicroSource Discovery

Inc.) and a ChemDiv library (53,000 compounds) were screened at

a final concentration of 50 mM. S. cerevisiae strain 14328-

pdr1+pdr3 harboring the plasmid pDH105-exoA, pDH105-exoS

or pDH105-exoY was grown overnight in SD -Leu to maintain

selection of the plasmid and were diluted to a cell density of

56103 cells/ml. Addition of 0.9 mM (ExoA and ExoY) or

1.5 mM (ExoA) of CuSO4 induced the expression of the toxin

in yeast, the cultures were then aliquoted into wells of 96-well

plates and compounds were added. Plates were incubated at 30uC
and inspected for yeast growth recovery after 24 and 48 hours. As

a control, cells containing the empty vector pDH105 were

similarly grown, diluted and inoculated with copper and 0.5%

DMSO. The effect of the hits on yeast growth recovery was

quantified as a percentage of growth as described elsewhere [10].

CHO Cells Toxicity Assay
Chinese hamster ovary (CHO) cells toxicity assay was per-

formed as previously described with minor modifications [59].

CHO cells were routinely grown in F-12 medium supplemented

with 10% fetal bovine serum (FBS) and 2 mM glutamine. Prior to

infection, confluent CHO cells were washed and incubated with F-

12 containing 1% FBS and 2 mM glutamine. P. aeruginosa was

grown overnight in LB, subcultured into fresh LB, and grown to

mid-log phase. 2.56105 CHO cells per well were infected with P.

aeruginosa at an initial multiplicity of infection (MOI) of 10 in

duplicate. After 2 hours infection, CHO cells were harvested by

trypsination and resuspended in Hank’s Balanced Salt Solution +
1% bovine serum albumin. Induced cell death was measured by

flow cytometry after 7-AminoActinomycin D (10 mg/ml) staining,

using a Beckman-Coulter EPICS Elite flow cytometer. Culture

supernatants from a second duplicate of CHO cells were collected

after 4 hours of infection and centrifuged for 10 min at 3,2206g to

sediment bacteria and CHO cells. Lactose dehydrogenase (LDH)

in the supernatant was measured with a Roche LDH kit in

accordance with the manufacturer’s instructions. Percent LDH

release was calculated relative to that of the uninfected control,

which was set at 0% LDH release, and that of cells lysed in

absence of inhibitor, which was set at 100% LDH release.

Protein Purifications
Recombinant yeast FAS, human Ras, yeast Ras2p, yeast

Bmh1p and Bmh2p were cloned into pEGX (GE Healthcare),

transformed in E. coli BL21 and purified according to manufac-

turer’s instructions. Recombinant ExoS was purified by gel

filtration and ion exchange chromatography as previously

described [60].
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In vitro ADPRT Enzymatic Assay
To monitor incorporation of ADP-ribose into yeast Ras2,

50 nM of purified ExoS was added to a 20 ml reaction mixtures

containing 1 mM of Bmh1, 20 mM of yeast Ras2, 2 mM of MgCl2
and 200 mM of sodium acetate (pH 6.0). The reaction was

initiated by adding 2 Ci of ExoS radioactive substrate, nicotin-

amide adenine [adenylate-32P] dinucleotide (32P-NAD) (1000 Ci/

mmol, GE Healthcare). Reaction mixes were incubated for 0 to

30 min at 30uC. The reaction was terminated with 26 Laemmli

sample buffer, resolved by a 15% SDS-PAGE, and analyzed by

autoradiography using a Typhoon Trio Workstation (GE

Healthcare). The auto-ADP-ribosylation of ExoS served as a

positive control in each reaction and reaction missing FAS served

as a negative control.

Kinetic Analysis of ExoS ADPRT Activity
The NAD+-dependent ADPRT assay of ExoS was performed at

30uC with ExoS at 50 nM in the presence of 1 mM of FAS and

20 mM human Ras in 100 mM NaCl, 2 mM MgCl2, 200 mM

sodium acetate, pH 6.0 while the concentration of e-NAD+ varied

between 0 and 75 mM. The reaction was initiated with the

addition of 50 nM (final conc.) ExoS in an Ultravette (Brand

Scientific) 70 mL cuvette and the transferase reaction was

monitored by recording the time-dependent change in fluores-

cence intensity with a PTI AlphaScan-2 fluorimeter (PTI Inc.,

New Jersey) with 305 nm and 405 nm excitation and emission,

respectively. The data were analyzed by nonlinear curve fitting

using the Michaelis-Menten equation (OriginLab v6.1; North-

ampton, MA) and also by linear regression analysis of both the

Hanes-Woolf and the Lineweaver-Burk (LB) plots. The Ki values

were determined for various inhibitor compounds (1.4% DMSO,

final conc.) using Dixon plots, as well as from secondary plots of

the slope of the LB plots versus inhibitor concentration. IC50

values, the concentration of the inhibitor that reduces the activity

of the enzyme by 50%, were determined by non-linear regression

curve fitting using Origin 6.1 [51].

Supporting Information

Figure S1 Inhibitors reduce P. aeruginosa cytotoxic effect

during CHO cell infection. CHO cells were infected by P.

aeruginosa PAK or PA14 (MOI 10) as described in Figure 5A.

Mean fluorescence of the total CHO cells was calculated for the

inhibitors as represented in the histograms.

Found at: doi:10.1371/journal.pgen.1000005.s001 (101.02 MB

TIF)

Figure S2 Exosin does not affect P. aeruginosa PAK viabili-

ty. P. aeruginosa PAK overnight culture was inoculated at a cell

density of 2.56104 or 2.56105 cells/ml, and grown in the

presence of 20, 40 and 80 mM of inhibitor exosin. Growth curves

were calculated for bacteria dividing in the presence of DMSO

(control for growth), of the antibiotics Penicillin/Streptomycin

(control for growth inhibition) or exosin over a period of 10 hours.

These results are representative of 3 independent experiments.

Found at: doi:10.1371/journal.pgen.1000005.s002 (101.02 MB

TIF)

Table S1 List of the tested P. aeruginosa essential genes (PA

number) and tested P. aeruginosa virulence genes (PA number)

Found at: doi:10.1371/journal.pgen.1000005.s003 (0.07 MB

XLS)

Table S2 RAS superfamily and Cyclophilins

Found at: doi:10.1371/journal.pgen.1000005.s004 (0.04 MB

XLS)

Table S3 Yeast genes

Found at: doi:10.1371/journal.pgen.1000005.s005 (0.03 MB

XLS)
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