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ABSTRACT

The goal of pathway analysis is to identify the path-
ways that are significantly impacted when a biolog-
ical system is perturbed, e.g. by a disease or drug.
Current methods treat pathways as independent enti-
ties. However, many signals are constantly sent from
one pathway to another, essentially linking all path-
ways into a global, system-wide complex. In this
work, we propose a set of three pathway analysis
methods based on the impact analysis, that performs
a system-level analysis by considering all signals be-
tween pathways, as well as their overlaps. Briefly, the
global system is modeled in two ways: (i) consider-
ing the inter-pathway interaction exchange for each
individual pathways, and (ii) combining all individual
pathways to form a global, system-wide graph. The
third analysis method is a hybrid of these two mod-
els. The new methods were compared with DAVID,
GSEA, GSA, PathNet, Crosstalk and SPIA on 23 GEO
data sets involving 19 tissues investigated in 12 con-
ditions. The results show that both the ranking and
the P-values of the target pathways are substantially
improved when the analysis considers the system-
wide dependencies and interactions between path-
ways.

INTRODUCTION

Gene signaling pathways consist of nodes, representing
genes or gene products and a set of directed edges between
them, representing interactions between genes or gene prod-
ucts. An individual pathway groups genes that work to-
gether to drive a certain biological process. The goal of
pathway analysis is to identify the pathways that are signif-
icantly impacted in a given condition compared to a con-
trol (e.g. disease versus healthy, treated versus not-treated,
drug A versus drug B, etc.). Pathway analysis requires two
types of input: a collection of pathways and a list of genes or
gene products that are found to be differentially expressed

between the phenotypes compared. Currently, there are sev-
eral pathway databases providing such collections of path-
ways for various organisms. Many of these are manually
drawn and curated, and updated regularly. Examples in-
clude KEGG (1), BioCarta/NCI-PID (2), PANTHER (3)
and Reactome (4). The input for pathway analysis is typi-
cally the result of high throughput experiments, such as ex-
pression data from microarrays, RNA-seq or protein abun-
dance data from mass spectrometry. It consists of thou-
sands of genes/proteins and their corresponding differential
expression levels. Depending on the pathway analysis tool
used, one or more pathway database(s), and one or more
types of biological experiment data may be accepted as in-
put. As output, pathway analysis methods report the path-
ways that are significantly impacted based on the input data.

Currently, most of the pathway analysis methods con-
sider biological pathways as independent entities. However,
the genes in an organism work together as a single sys-
tem. A perturbation in one pathway impacts other path-
ways, therefore there are dependencies and interactions be-
tween them. Recently, some methods have been developed
to detect and correct the cross-talk between pathways (5–7).
However, most existing pathway analysis approaches still
analyze pathways independently, ignoring interactions and
signals that go from one pathway to another, which po-
tentially causes a significant loss of information. Here, we
introduce three novel pathway analysis methods that con-
sider all KEGG non-metabolic pathways as a single system,
in which the most perturbed pathways are not only iden-
tified based on the significance of each pathway individu-
ally and independently, but also by considering the impact
of other pathways in the global system. We developed and
tested three analysis methods using signaling pathway im-
pact analysis (SPIA) (8) method as the base of implementa-
tion. These three methods consider the entire system using
all interactions between pathways, as well as the network
topology.

We test and validate our approaches and compare them
with both gene set based methods (9,10) and topology based
methods (11). Gene set based methods consider only the set
of genes contained in the pathways (its nodes), while topol-
ogy based methods use both nodes and edges. Since we are
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using the KEGG pathway database, nodes are genes and
edges represent interactions between genes.

Methods for gene set analysis include: Over-
Representation Analysis (ORA) and Functional Class
Scoring (FCS). Methods in the ORA category calculate
pathway significance by calculating the probability of
observing the number of differentially expressed genes in a
given pathway by chance alone using the hypergeometric
and chi-square statistical tests. Database for annotation,
visualization and integrated discovery (DAVID) (12) is
one of the ORA based pathway analysis approaches that
provides a set of data mining and visualization tools for
understanding of biological data. FCS methods consider
the position of all genes in the ranked list produced by a
selected statistical test for differential expression. Some of
FCS methods are, Gene Set Enrichment Analysis (GSEA)
(13), Gene Set Analysis (GSA) (14) and Pathway Analysis
with Down-weighting of Overlapping Genes (PADOG) (15).
The main difference between the ORA and FCS methods is
that ORA relies on the selection of a subset of differentially
expressed genes, while FCS considers the entire set of genes
measured.

Topology-based pathway analysis approaches have been
proposed more recently as methods that can integrate both
gene set based analysis and signaling interactions between
genes, based on the network topology. Pathway-Express
(16), SPIA (8), Pathway-Guide (Advaita Bioinformatics,
http://www.advaitabio.com), TopoGSA (17) and Bayesian
Pathway Analysis (BPA) (18) are some of topology-based
pathway analysis approaches. Pathway-Express, SPIA and
Pathway-Guide capture the impact of the propagation of
perturbations from one gene to another, TopoGSA relies
on node centrality measures, and BPA, as its name implies,
employs Bayesian network.

The idea of analyzing more than one pathway at a time
is relatively new and underexplored. Dutta et al. (19) in-
troduced an analysis method named ‘Pathway analysis us-
ing Network information’ (PathNet) that uses the idea of
pooled pathways, or combining of all pathways. They calcu-
late a score for each pathway using a combination of direct
evidence, which captures the association of each gene with
the condition, and indirect evidence, that captures the asso-
ciation of each gene’s neighbors with the condition, based
on connectivity. We have compared the results of (PathNet)
with our proposed methods. The first attempt at capturing
and analyzing pathway interactions, described as pathway
crosstalk, is very recent (5,7). The crosstalk between path-
ways investigated by Donato et al. focuses on the presence of
common genes in different pathways. These common genes
are often associated with independent biological modules,
such as mitochondria, that are important in many different
phenomena described by different pathways (e.g. mitochon-
dria play a central role in energy metabolism, Alzheimer’s
disease, Huntington’s disease, etc.).

To the best of our knowledge, the proposed methods in
this paper are the first attempts to use the direct interactions
between pathways as an integral part of the analysis to iden-
tify the pathways that are significantly impacted in a given
condition.

We compare the results of our methods with one ORA
method (DAVID) (12), two FCS methods (GSEA and

GSA) (13,14), and three topology-based methods – Path-
Net (19), Crosstalk (5,7) and SPIA (8). Results are evalu-
ated based on the performance of each method using public
data sets with specific target pathways. For example, a data
set comparing normal and cancerous colon would have ‘col-
orectal cancer’ as the target pathway since we would like any
pathway analysis method to identify the colorectal pathway
as impacted in this comparison. Similarly, in a study com-
paring Alzheimer’s disease versus healthy samples we would
want the Alzheimer’s disease pathway from KEGG to be re-
ported as significant. Hence, the Alzheimer’s disease path-
way will be considered as the target pathway in this con-
dition, etc. This validation method was previously used by
PADOG (15). We use here the same set of 23 GEO data sets
involving 19 tissues investigated in 12 conditions.

MATERIALS AND METHODS

Map of inter-pathway interactions

At the time of this writing, KEGG included 175 human
non-metabolic pathways (signal transduction, biological
processes and specific disease pathways). To construct a
map of interconnecting KEGG pathways, we used the ‘link
to another map’ and ‘link from another map’ annotations.
In this way, we were able to link one pathway to another
through a single gene, which we refer to as an interface gene.
Interface genes can be found in either source or sink path-
ways, or both. We define a pathway as source if it influ-
ences another pathway using an interface gene, and simi-
larly, a pathway is defined as sink if it receives the influence
of a source pathway via an interface gene. In the work by
Donato et al. (5) the term ‘common gene’ refers to a gene
that is shared between two pathways, while the term ‘inter-
face gene’ is used for those genes that connect two pathways
through biological interactions and signal transduction. We
do not connect two pathways that have no interface genes.
This method is stringent; it does not include pathways in
the full pathway map unless they can be joined using the
specific ‘link to/from another map’ annotation.

Forty-three pathways, shown in Figure 1, were found to
have inter-pathway interactions, and are therefore interde-
pendent. Pathways are shown as rounded rectangles around
pathway names, and green rectangles represent the genes
that interconnect them. The pathways are divided into three
groups, which are color-coded based on their relationships
with other pathways. The colors of pathway borders indi-
cate their type. Pathways with black borders send direct sig-
nals to other pathways but do not receive any such direct
signals (sources). Pathways with red borders only receive
explicit signals (sinks). Pathways with blue borders both
send and receive explicit signals to and from other path-
ways. These are the source and sink pathways, respectively.
Pathways in the blue group are in between sources and sinks
in the map. They receive signals from other pathways, and
send signals to other pathways.

For instance, the Notch signaling pathway is a source
pathway, impacting the MAPK signaling pathway through
the Notch interface gene. The MAPK signaling pathway,
in turn, impacts other pathways, such as the p53 signal-
ing pathway, through the p53 interface gene. The Apopto-
sis pathway is a sink, because it doesn’t include an interface
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Figure 1. The system-wide map encompassing all KEGG non-metabolic inter-pathway interactions. Pathways are shown as white rectangles. The colors of
pathway borders indicate their type. Pathways with black borders send direct signals to other pathways but do not receive any such direct signals (sources).
Pathways with red borders only receive explicit signals (sinks). Pathways with blue borders both send and receive explicit signals to and from other pathways.
Interface genes are shown as green rectangles. Interface genes can be from either source or sink pathways. Chemical compounds are shown as a circles with
the compound names in them.

gene allowing it to directly impact any other pathway, even
though the p53 signaling pathway and Cell cycle are among
the pathways shown inside the Apoptosis pathway. However,
the p53 gene appears again as an interface gene connecting
the Cell Cycle pathway to Apoptosis pathway.

There are several KEGG pathways with interactions in
which a gene ‘x’ activates a gene ‘y’, in the same pathway, by
passing through another pathway. KEGG shows these with
a ‘link to another map’ arrow (since all observed cases are
activations), and the signal going from gene ‘x’ to gene ‘y’
through pathway ‘B’. These interactions are not included in
the mathematical model, but are shown in Figure 1 as arch-
ing arrows. For example, in the Adherence Junction pathway,
ErbB1/2 activates ERK by means of the MAPK signaling
pathway.

In addition to interactions between pathways and
genes, KEGG includes some interactions between
genes/pathways and DNA or small molecules. These
are outside of the scope of this study and are not incorpo-
rated in the current analysis, however, they are shown as
small circles in Figure 1.

Method 1: System-level PAThway Impact AnaLysis using
map (SPATIAL)

The first method, System-level PAThway Impact AnaLysis
using the global system map (SPATIAL), combines within-
pathway data with the inter-pathway interaction informa-
tion shown in Figure 1.

For a given pathway Pi, equation 1 expresses a straight-
forward way of integrating inter-pathway interactions with

the results of a topology-based pathway analysis method
such as the impact analysis (20). The equation sums the
score of each pathway with the score(s) coming from up-
stream pathways.

Pathway Impact Score (Pi)

= Impact Score f rom topology of (Pi)

+Impact Score(s) f rom upstream pathways (1)

For the first term in Equation 1, any topology-based tech-
nique, such as those discussed in the introduction, can be
applied, as long as a score is calculated for each individual
pathway. We chose to use SPIA (8), a popular implementa-
tion of the impact analysis approach, previously published
by our group.

The impact analysis relies on a statistical formulation that
combines two probabilities, one from a gene set technique,
such as any of those discussed in the introduction section,
and another one that accounts for the amount of perturba-
tion on the individual pathway network as a whole, based
on the topology of the pathway (20).

For the first probability, we use ORA based on a hyperge-
ometric model. The second probability is calculated based
on a perturbation factor (PF) for each gene in the pathway,
defined by Equation 2.

PF(gi) = �E(gi) +
n∑

j=1

βij ∗ PF(gj)
Nds(gj)

(2)
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The perturbation factor, PF, for a gene gi is the expression
change (e.g. fold change) of gi, given by �E(gi), added to
the sum of the n (weighted and normalized) perturbation
factors from upstream genes, gj. PF(gj) is normalized by the
number of genes downstream of gj, given by Nds(gj). Thus,
the impact of gj is equally divided between the genes that
are directly downstream of it. The �s are weights assigned
according to the type and intensity of the reaction. More
detail can be found in (8,20).

We modify Equation 1 to incorporate the map of inter-
pathway interactions, resulting in Equation 3. The first term
in Equation 3 gives the score of a pathway using the topol-
ogy of that pathway alone; the second term captures the sum
of normalized scores of all the upstream pathways. Normal-
ization here means that if a pathway has n downstream path-
ways, NDS, its impact is divided equally among them. For a
specific pathway, the numerator in the first part of Equation
3 sums the absolute values of all of the PFs for all of the
genes in that pathway, and the denominator is the normal-
ization factor which adjusts the numerator for technology
effects and pathway size. A detailed explanation of the first
part of Equation 3 can be found in (20).

Acc(Pi) =
∑

g∈Pi
|PF(g)|

|�E| ∗ Nde(Pi)
+

∑

j∈U

Acc(Pj)
NDSj

(3)

As mentioned earlier, Figure 1 represents all of the inter-
pathway interactions that exist in KEGG (1), and includes
all of the directed edges between pathways, ignoring the
undirected edges as well as pathways with common genes
only. The impact of these interactions between pathways is
captured by the second term of Equation 3 normalized by
the NDS pathways that are downstream from those path-
ways.

Method 2: Signaling Pathway Impact Analysis - Global Per-
turbation Factor (SPIA-GPF)

The second method that we propose in this paper is SPIA-
GPF, so named because it is inspired originally from SPIA.
Whereas SPIA scores pathways as independent entities,
here it is adapted to work with a global graph of all the
pathways. The PF, explained in the previous section, is cal-
culated in the global graph for all of the genes in the unified
network.

Unlike the map shown in the Figure 1, the global graph
is the union of all nodes and edges in the KEGG non-
metabolic pathways. The ROntoTools package (21) was
used to perform the union of the adjacency matrices for all
of them, resulting in a single global adjacency matrix. In
order to score the pathways independently, the PFs are ex-
tracted from the global graph. PFG(g) represents the PF of a
gene g considering all of its interactions with all other genes
in all KEGG non-metabolic pathways.

Acc(Pi) =
∑

g∈Pi
|PFG(g)|

|�E| ∗ Nde(Pi)
(4)

To normalize, the sum of perturbation factors is divided by
the absolute mean of expression changes, to remove the im-
pact of technology, and divided by the number of differen-

tially expressed genes, Nde, to remove the bias due to the
pathway size.

Method 3: System-level PAThway Impact AnaLysis - Global
Perturbation Factor (SPATIAL-GPF)

In this section, we present the third method, SPATIAL-
GPF, which is a combination of the other two methods. All
genes are present in a same physiological system, so while it
is relevant to integrate all pathways as a global network, dif-
ferent pathways cross interact, either activating or inhibit-
ing each other. Therefore, it is useful to consider the impact
between pathways as well as the global interaction network.

SPATIAL-GPF is designed to capture the information
from both methods previously mentioned. First, the PFs of
all the genes are calculated using the global graph, then the
impact of upstream pathways is applied, using the map of
inter-pathway interactions.

Acc(Pi) =
∑

g∈Pi
|PFG(g)|

|�E| ∗ Nde(Pi)
+

∑

j∈U

Acc(Pj)
NDSj

(5)

Similar to the methods proposed above, we normalize to
remove the effect of technology, pathway size and the num-
ber of pathways which are downstream of upstream path-
ways.

RESULTS

To date there is no universally accepted technique for the
validation of the results of pathway analysis methods. The
assessment of the results of different pathway analysis meth-
ods usually involves the selection of a few data sets, and then
the interpretation of the results either with the help of a life
scientist, or by searching the published literature. This ap-
proach is very limited because it can only be applied to a
small number of data sets. Furthermore, it is subjective, and
may lead to biased results since most of the time the expert
who performs the assessment is also a co-author of the pa-
per. Finally, the biological phenomena are so complex that
with enough literature search, a large number of pathways
can be implicated directly or indirectly in almost any condi-
tion. In this work, we follow the validation approach intro-
duced in (15). We use this evaluation approach because it
is objective, reproducible, based on multiple data sets, and
it does not require an unavoidably biased ‘expert’ human
evaluation of the results (15). This approach requires test-
ing on a large number (at least 10 but preferably more) of
different data sets coming from a variety of different con-
ditions, tissues and laboratories. Any number of data sets
from any conditions can be used. The only requirement in
selecting these data sets is that the condition studied is mod-
eled by a specific pathway in the target database used. For
each data set, the pathway corresponding to the phenotype
is considered to be the target pathway (e.g. the colorectal
cancer pathway will be the target pathway in a colorectal
cancer data set). The evaluation focuses on the ability of
each method to identify these true positive pathways as sig-
nificant, and rank them as high as possible.

In this paper, we validated the proposed method using
23 gene expression data sets involving 12 conditions and 19



5038 Nucleic Acids Research, 2016, Vol. 44, No. 11

D
A
V
ID

G
S
E
A

G
S
A

P
at
hN

et

C
ro
ss
ta
lk

S
P
IA

S
PA
T
IA
L

S
P
IA
−
G
P
F

S
PA
T
IA
L−
G
P
F

0

20

40

60

80

100

Figure 2. Comparing the ranks of the target pathways obtained with DAVID, GSEA, GSA, PathNet, Crosstalk, SPIA, SPATIAL, SPIA-GPF and
SPATIAL-GPF on their respective data sets (15). The vertical axis shows the normalized ranks of the target pathways on a scale from 0 to 100. Lower
values are better.

tissues (see Table 1). We assess the results considering both
the rankings and P-values of the target pathways associated
with the given conditions. Figures 2 and 3 show box plots
of normalized ranks and P-values of target pathways for
all 9 methods tested (the 6 existing methods and the 3 pro-
posed here), using the 23 data sets. The values in Figure 2
are normalized ranks in the range of 0 to 100; here lower
values are better. The values in Figure 3 are expressed as
−log(P-value), with higher values representing more signif-
icant pathways.

The published methods used for comparison include
three gene set-based methods: DAVID (12), (GSEA) (13),
(GSA) (14), and three topology-based method – PathNet
(19), Crosstalk (5,7) and SPIA (8). Figure 3 shows that GSA
was not able to find the target pathway as significant at ei-
ther 1% or 5% in any of the 23 data sets analyzed. The low-
est P-value for the target pathways using GSA was 6.95e-02.
GSEA was able to report the target pathway as significant
in only one case at 1% and three cases at 5%, out of the 23
data sets analyzed. Similarly, DAVID reported five cases at
1% and 8 cases at 5%. PathNet also reported 6 cases at 1%
and 7 cases at 5%. Crosstalk was not able to detect any of
the target pathways in neither of the threshold levels. SPIA
was better, reporting the target as significant in 10 out of the
23 cases at both 1% and 5%. In contrast, all methods per-
forming the analysis at the system-level (SPATIAl, SPIA-
GPF, SPATIAL-GPF) yielded better to substantially better
results with both SPIA-GPF and SPATIAL-GPF, identify-
ing the targets as significant in 19 out of the 23 cases at the

1% level and in 21 out of the 23 cases at the 5% level of sig-
nificance.

The results presented so far indicate a clear superiority
of the new methods with respect to the gene set methods
(GSA and GSEA), but a more limited improvement with
respect to the existing SPIA, which is a topological analysis
method. Since all three approaches proposed here also use
pathway topology, we wanted to investigate further whether
the improvements of the novel methods are due mainly to
the fact that they use the pathway topology, or to the fact
that the new approaches consider the system-level interac-
tions between pathways. In order to do this, we pursued a
more detailed comparison between the three novel methods
and SPIA in particular.

In addition, SPIA is more appropriate for comparison,
because both SPIA as well as all three proposed methods
use the impact analysis (20). Thus, if there is an improve-
ment in the results, this can only be attributed to the system-
level analysis introduced here, rather than to differences be-
tween the underlying analysis approach.

We introduce an improvement score that can be used to
combine the change in rankings with the change in the P-
values. To compare the performance of a pair of methods
for a given data set, we first consider the rank of the tar-
get pathway. If the rank of the target pathway improves
in one of the methods, we also consider its P-values for
each method. Assuming a significance threshold of 1%, we
assign a score of +1 if the target pathway changes from
non-significant to significant from the reference to the new
method, and a score of −1 if the P-value of the target path-
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Figure 3. Comparing -log10(P-value) of the target pathways obtained using DAVID, GSEA, GSA, PathNet, Crosstalk, SPIA, SPATIAL, SPIA-GPF and
SPATIAL-GPF on their respective data sets (15). The vertical axis shows the -log10(P-values) of the target pathways. Higher values show more significance.
The red and blue lines represent the 5% and 1% significance levels, respectively.

Table 1. Data sets used for assessing the proposed methods

Target pathway KEGG ID GEO ID Ref. Tissue

1 Alzheimer’s disease hsa05010 GSE1297 (22) Hippocampal CA1
2 Alzheimer’s disease hsa05010 GSE5281 (23) Brain, Entorhinal

cortex
3 Alzheimer’s disease hsa05010 GSE5281 (23) Brain, hippocampus
4 Alzheimer’s disease hsa05010 GSE5281 (23) Brain, Primary

visual cortex
5 Parkinson’s disease hsa05012 GSE20291 (24) Postmortem brain

putamen
6 Huntington’s disease hsa05016 GSE8762 (25) Lymphocytes

(blood)
7 Colorectal cancer hsa05210 GSE4107 (26) Mucosa
8 Colorectal cancer hsa05210 GSE8671 (27) Colon
9 Colorectal cancer hsa05210 GSE9348 (28) Colon
10 Renal cancer hsa05211 GSE14762 (29) Kidney
11 Renal cancer hsa05211 GSE781 (30) Kidney
12 Pancreatic cancer hsa05212 GSE15471 (31) Pancreas
13 Pancreatic cancer hsa05212 GSE16515 (32) Pancreas
14 Glioma hsa05214 GSE19728 - Brain
15 Glioma hsa05214 GSE21354 - Brain, Spine
16 Prostate cancer hsa05215 GSE6956 (33) Prostate
17 Prostate cancer hsa05215 GSE6956 (33) Prostate
18 Thyroid cancer hsa05216 GSE3467 (34) Thyroid
19 Thyroid cancer hsa05216 GSE3678 - Thyroid
20 Acute myeloid leukemia hsa05221 GSE9476 (35) Blood, Bone

marrow
21 Non-Small Cell Lung Cancer hsa05223 GSE18842 (36) Lung
22 Non-Small Cell Lung Cancer hsa05223 GSE19188 (37) Lung
23 Dilated cardiomyopathy hsa05414 GSE3585 (38) Heart

The 23 data sets used to assess the proposed methods. Each data set comes from a tissue that was affected by a disease/cancer, and the KEGG pathway
describing that disease/cancer is assigned for that data set as a target pathway.
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way changes from significant to non-significant. If the rank
improves, but does not crosses the significance threshold,
we assign a score of +0.5, and if the rank worsens with-
out crossing the significance threshold, we assign a score of
−0.5. The improvement score between a pair of methods is
calculated as the sum over all tested data sets.

In addition to the proposed improvement score we have
used statistical tests including Wilcoxon test and t-tests pair-
wise between all the methods. In Table 2 we have presented
a performance comparison of all the methods using their
reported ranks on target pathways. Similarly, we have pre-
sented pairwise performance comparison of the P-values of
the target pathways reported by those methods in Table 3.
In both tables, we have highlighted the cells if they are sig-
nificant at the 5% threshold.

Table 4 shows the comparison between SPIA and the first
of our proposed methods, SPATIAL, which considers only
inter-pathway interactions. Seventeen of the 23 data sets
were better classified using SPATIAL as opposed to SPIA.
The result was an overall improvement of 6 for SPATIAL
over SPIA, or 26%.

Table 5 shows the comparison between SPIA and the sec-
ond of our proposed methods, SPIA-GPF, which considers
only interactions in the global pathway. A total of 21 out
of the 23 data sets were better classified using SPIA-GPF
as opposed to SPIA, and just 2 were classified worse. Given
the improvement scoring scheme, the result was an overall
improvement of 13.5 for SPIA-GPF over SPIA, or 59%.

Table 6 shows the comparison between SPIA and the
third of our proposed methods, SPATIAL-GPF, which con-
siders interactions in the global pathway as well as inter-
pathway interactions. A total of 22 out of the 23 target
pathways were better classified using SPATIAL-GPF as op-
posed to SPIA, and only 1 was classified worse. The result
was an overall improvement score of 15 for SPATIAL over
SPIA, equivalent to 65%.

As mentioned earlier, pathways in the KEGG are defined
and manually curated by human experts using the exist-
ing knowledge resulting from studying biological samples.
Some of the interactions that are present in the pathways
can be later shown to be wrong (e.g. resulting from errors
in experimental measurements) or tissue-specific (e.g. not
occurring for all tissues), and are removed in the future
releases of the database. New releases of the database in-
cludes updates to cover all the new findings. Here, to show
that the pathway impact analysis is robust with regard to
a small change in the network of pathways, we have modi-
fied the input pathways by randomly changing five percent
of the nodes and edges present in that pathway. Then, we
ran the impact analysis on the new sets of pathways using
the same data sets with target pathways. We have compared
those results with the previous results by using a t-test with
the alternative hypothesis of the true difference in means
not being equal to zero. The P-values of the ranks of target
pathways between the original and randomly changed path-
ways were 0.96, 0.99 and 0.98 for SPATIAL, SPIA-GPF and
SPATIAL-GPF, respectively. Similarly, the P-values of the
target pathways P-values for the comparisons are 0.95, 0.99
and 0.99 for SPATIAL, SPIA-GPF and SPATIAL-GPF, re-
spectively. Based on the results, we cannot reject the null hy-
pothesis. This means that there are no significant changes

between the results obtained with the perturbed and orig-
inal pathways. In other words, the methods proposed are
robust with regard to small changes in pathway definitions.

DISCUSSION

Any newly proposed pathway analysis method must be
compared to existing methods using real data sets in order
to determine its usefulness. In this paper, we compare our
three novel methods with six well known analysis methods,
three topology-based and three gene set-based.

Traditional validation, using a-posteriori literature-based
assessment, is inherently biased since it is performed by a
human ‘expert’, usually a co-author, selecting specific liter-
ature as supporting evidence. Furthermore, this type of ‘val-
idation’ is usually performed on a very small number of data
sets. A better assessment approach would eliminate any hu-
man bias, could be performed on a large number of data sets
and conditions, and could be automated. Such an approach
can involve validation using data sets associated with a con-
dition for which there is a specific pathway. For example,
if a study compares gene expression from colorectal tumor
tissue to normal tissue, the Colorectal Cancer Pathway will
be the target pathway. Such a pathway is referred to as the
‘target’ pathway for that data set (15). Any good pathway
analysis method should identify this pathway as significant
in such a data set.

The target pathway technique has advantages includ-
ing objectivity, speed of validation and reproducibility. The
only disadvantage is that this type of testing focuses on only
one pathway for each data set, whereas the behavior of a bi-
ological system may be governed by more than one pathway
in a given condition. As mentioned, many of these may be
relevant to the condition, but for the sake of objectivity, we
consider these neither as true positives nor as false negatives
addressed because we do not have a priori knowledge of all
of the true negatives.

CONCLUSION

In this work, we show that pathway analysis can be sig-
nificantly improved when inter-pathway interactions are
included in the model. This can only be achieved using
topology-based methods, allowing the propagation of sig-
nal between pathways. We propose three novel approaches:
SPATIAL, which considers the effect of signals from
another pathways through ‘interface genes’, SPIA-GPF,
which models perturbation through all non-metabolic path-
way over an interconnected global map, and SPATIAL-
GPF, which combines the first two.

Using 23 data sets, we compare our approach to three
gene set based pathway analysis techniques, and three
topology based techniques – among them SPIA is the one
which was incorporated in our methods. All three of our
approaches significantly outperform two of the gene set
based methods, GSEA and GSA. DAVID outperforms
SPATIAL, but SPIA-GPF and SPATIAL-GPF outperform
DAVID.
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Table 2. Performance comparison between proposed methods and previously published methods using t-test on the ranks of target pathways

Table 3. Performance comparison between proposed methods and previously published methods using t-test on the P-values of target pathways

Table 4. SPIA versus SPATIAL results on target pathways

Target pathway (TP) TP Rank TP Rank P-value P-value Improvement
SPIA SPATIAL SPIA SPATIAL

1 Alzheimer’s disease 0.75 0.59 5.918e-18 6.218e-19 0.5
2 Alzheimer’s disease 1.45 1.19 1.846e-06 4.814e-07 0.5
3 Alzheimer’s disease 2.23 1.78 1.963e-16 3.301e-17 0.5
4 Alzheimer’s disease 1.51 1.19 2.994e-07 2.826e-07 0.5
5 Parkinson’s disease 63.80 10.11 5.613e-01 6.558e-04 1
6 Huntington’s disease 96.61 32.73 6.233e-01 7.077e-02 0.5
7 Colorectal cancer 17.64 16.45 1.637e-02 8.085e-03 1
8 Colorectal cancer 51.47 51.78 2.898e-01 3.297e-01 -0.5
9 Colorectal cancer 38.68 45.23 3.369e-01 4.694e-01 -0.5
10 Renal cancer 17.51 60.71 2.623e-04 2.957e-01 -1
11 Renal cancer 53.73 52.35 7.167e-01 5.919e-01 0.5
12 Pancreatic cancer 22.79 21.21 1.434e-04 1.321e-04 0.5
13 Pancreatic cancer 20.00 18.45 9.075e-04 3.330e-04 0.5
14 Glioma 21.89 15.47 1.427e-03 7.504e-04 0.5
15 Glioma 5.88 2.97 2.834e-05 3.999e-05 0.5
16 Prostate cancer 7.35 23.80 4.458e-02 3.461e-02 -0.5
17 Prostate cancer 10.74 12.50 2.197e-01 8.698e-02 -0.5
18 Thyroid cancer 40.00 35.11 1.118e-01 6.712e-02 0.5
19 Thyroid cancer 42.53 36.30 7.781e-03 4.781e-02 0.5
20 Acute myeloid leukemia 1.57 4.76 1.518e-02 6.765e-03 -0.5
21 Non-Small Cell Lung Cancer 43.06 37.02 2.052e-02 2.038e-02 0.5
22 Non-Small Cell Lung Cancer 88.32 74.40 5.970e-01 4.130e-01 0.5
23 Dilated cardiomyopathy 40.86 26.19 4.631e-01 1.981e-01 0.5

Sum of improvement scores 6

The normalized ranks and P-values produced by SPATIAL and SPIA for the target pathways (TP) in 23 data sets involving 12 conditions. Rankings are
normalized on the scale of 1 to 100, and P-values are FDR corrected. The scores shows an improvement of 26% (6/23) in SPATIAL compared to the
SPIA.
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Table 5. SPIA versus SPIA-GPF results on target pathways

Target pathway (TP) TP Rank TP Rank P-value P-value Improvement
SPIA SPIA-GPF SPIA SPIA-GPF

1 Alzheimer’s disease 0.75 0.59 5.918e-18 3.503e-31 0.5
2 Alzheimer’s disease 1.45 0.59 1.846e-06 4.760e-08 0.5
3 Alzheimer’s disease 2.23 1.78 1.963e-16 3.396e-25 0.5
4 Alzheimer’s disease 1.51 0.59 2.994e-07 1.998e-10 0.5
5 Parkinson’s disease 63.80 39.28 5.613e-01 1.408e-03 1
6 Huntington’s disease 96.61 60.11 6.233e-01 3.725e-02 0.5
7 Colorectal cancer 17.64 20.23 1.637e-02 5.322e-04 -0.5
8 Colorectal cancer 51.47 9.52 2.898e-01 6.873e-03 1
9 Colorectal cancer 38.68 33.33 3.369e-01 2.958e-01 0.5
10 Renal cancer 17.51 35.11 2.623e-04 1.051e-03 -0.5
11 Renal cancer 53.73 23.80 7.167e-01 4.215e-02 0.5
12 Pancreatic cancer 22.79 12.50 1.434e-04 3.856e-08 0.5
13 Pancreatic cancer 20.00 8.33 9.075e-04 1.668e-07 0.5
14 Glioma 21.89 16.66 1.427e-03 1.919e-05 0.5
15 Glioma 5.88 4.16 2.834e-05 2.512e-08 0.5
16 Prostate cancer 7.35 5.95 4.458e-02 1.555e-01 0.5
17 Prostate cancer 10.74 5.35 2.197e-01 2.049e-03 1
18 Thyroid cancer 40.00 25.59 1.118e-01 1.369e-03 1
19 Thyroid cancer 42.53 12.50 7.781e-03 2.663e-03 0.5
20 Acute myeloid leukemia 1.57 0.59 1.518e-02 7.838e-07 1
21 Non-Small Cell Lung Cancer 43.06 25.00 2.052e-02 3.388e-03 1
22 Non-Small Cell Lung Cancer 88.32 49.40 5.970e-01 1.728e-03 1
23 Dilated cardiomyopathy 40.86 16.66 4.631e-01 1.341e-04 1

Sum of improvement scores 13.5

The normalized ranks and P-values produced by SPIA-GPF and SPIA for the target pathways (TP) in 23 data sets involving 12 conditions. Rankings are
normalized on a scale of 1 to 100, and P-values are FDR corrected. The scores shows an improvement of 59% (13.5/23) in SPIA-GPF compared to SPIA.

Table 6. SPIA versus SPATIAL-GPF results on target pathways

Target pathway (TP) TP Rank TP Rank P-value P-value Improvement
SPIA SPATIAL-GPF SPIA SPATIAL-GPF

1 Alzheimer’s disease 0.75 0.59 5.918e-18 7.803e-31 0.5
2 Alzheimer’s disease 1.45 0.59 1.846e-06 2.171e-08 0.5
3 Alzheimer’s disease 2.23 1.78 1.963e-16 2.594e-25 0.5
4 Alzheimer’s disease 1.51 0.59 2.994e-07 1.804e-10 0.5
5 Parkinson’s disease 63.80 44.04 5.613e-01 2.378e-03 1
6 Huntington’s disease 96.61 56.54 6.233e-01 4.926e-02 0.5
7 Colorectal cancer 17.64 16.04 1.637e-02 5.449e-04 1
8 Colorectal cancer 51.47 9.52 2.898e-01 6.873e-03 1
9 Colorectal cancer 38.68 32.73 3.369e-01 3.702e-01 0.5
10 Renal cancer 17.51 58.33 2.623e-04 1.260e-03 -0.5
11 Renal cancer 53.73 26.78 7.167e-01 5.177e-02 0.5
12 Pancreatic cancer 22.79 12.50 1.434e-04 3.856e-08 0.5
13 Pancreatic cancer 20.00 7.73 9.075e-04 1.980e-07 0.5
14 Glioma 21.89 16.66 1.427e-03 2.068e-05 0.5
15 Glioma 5.88 4.76 2.834e-05 2.755e-08 0.5
16 Prostate cancer 7.35 6.54 4.458e-02 1.373e-01 0.5
17 Prostate cancer 10.74 7.14 2.197e-01 2.747e-03 1
18 Thyroid cancer 40.00 22.61 1.118e-01 1.172e-03 1
19 Thyroid cancer 42.53 13.09 7.781e-03 2.602e-03 0.5
20 Acute myeloid leukemia 1.57 0.59 1.518e-02 7.838e-07 1
21 Non-Small Cell Lung Cancer 43.06 26.78 2.052e-02 4.594e-03 1
22 Non-Small Cell Lung Cancer 88.32 59.52 5.970e-01 1.757e-03 1
23 Dilated cardiomyopathy 40.86 11.90 4.631e-01 6.758e-05 1

Sum of improvement scores 15

The normalized ranks and P-values produced by SPATIAL-GPF and SPIA for the target pathways (TP) in 23 data sets involving 12 conditions. Rankings
are normalized to the scale of 1 to 100, and P-values are FDR corrected. The scores shows an improvement of 65% (15/23) in SPATIAL-GPF compared
to SPIA.
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20. Drăghici,S., Khatri,P., Tarca,A.L., Amin,K., Done,A., Voichiţa,C.,
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