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Abstract
Background: Several models for mortality prediction have been constructed for critically ill
patients with haematological malignancies in recent years. These models have proven to be equally
or more accurate in predicting hospital mortality in patients with haematological malignancies than
ICU severity of illness scores such as the APACHE II or SAPS II [1]. The objective of this study is
to compare the accuracy of predicting hospital mortality in patients with haematological
malignancies admitted to the ICU between models based on multiple logistic regression (MLR) and
support vector machine (SVM) based models.

Methods: 352 patients with haematological malignancies admitted to the ICU between 1997 and
2006 for a life-threatening complication were included. 252 patient records were used for training
of the models and 100 were used for validation. In a first model 12 input variables were included
for comparison between MLR and SVM. In a second more complex model 17 input variables were
used. MLR and SVM analysis were performed independently from each other. Discrimination was
evaluated using the area under the receiver operating characteristic (ROC) curves (± SE).

Results: The area under ROC curve for the MLR and SVM in the validation data set were 0.768
(± 0.04) vs. 0.802 (± 0.04) in the first model (p = 0.19) and 0.781 (± 0.05) vs. 0.808 (± 0.04) in the
second more complex model (p = 0.44). SVM needed only 4 variables to make its prediction in both
models, whereas MLR needed 7 and 8 variables in the first and second model respectively.

Conclusion: The discriminative power of both the MLR and SVM models was good. No
statistically significant differences were found in discriminative power between MLR and SVM for
prediction of hospital mortality in critically ill patients with haematological malignancies.
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Background
Support vector machine (SVM) algorithms have not yet
been studied for prediction of hospital mortality in the
Intensive Care Unit (ICU). The SVM algorithm as a rela-
tively new classification or prediction method, has been
developed by Vapnik et al. in the 1990s [2-4] as a result of
the collaboration between the statistical and the machine
learning research community. The heuristic behind the
SVM algorithm is quite different from that of the com-
monly used logistic regression (LR) modeling for predic-
tion. This latter approach is the current standard for
prognostic modeling in the ICU and is best known by cli-
nicians. The LR algorithm uses a weighted least squares
algorithm, i.e. the prediction is based on construction of a
regression line as the best fit through the data points by
minimizing a weighted sum of the squared distances to
the fitted regression line. SVM, in contrast, tries to model
the input variables by finding the separating boundary –
called hyperplane – to reach classification of the input var-
iables: if no separation is possible within a high number
of input variables, the SVM algorithm still finds a separa-
tion boundary for classification by mathematically trans-
forming the input variables by increasing the

dimensionality of the input variable space. Figure 1 is very
usefull for a thorough comprehension of the basics of this
algorithm. In this figure, one can remark that the input
variables cannot be separated in two dimensions, but very
easily be separated in three dimensions. In the same way,
the SVM algorithm can extrapolate this procedure mathe-
matically to higher dimensions. The general term for a
separating straight line in a high-dimensional space is a
hyperplane. In clinical research, only a handful of articles
have been published as a proof of concept of SVM [5,6],
and none have been published till now for prediction of
hospital mortality. This contrasts with the higher number
of SVM publications in fundamental research such as bio-
informatics [7] and genetics [8]. The main advantage of
the SVM algorithm as a data mining method – which is a
general term for the science of extracting useful informa-
tion from large data sets or databases [9] -, is that it can
more easily overcome the 'high dimensionality problem',
i.e. the problem that arises when there is a high number
of input variables relative to the number of available
observations. Moreover, SVM has consistently shown to
be a good classifier [10]. A nice introduction for the clini-
cian to the basis of the SVM algorithm is the article by
Noble et al. in Nature [11].

Rationale
This study investigates the use of a support vector machine
based classification model for determining the prognosis
of ICU patients with haematological malignancies by
comparing it with a logistic regression based classification
model. The main goal of this article is to be a proof of con-
cept for the use of SVM technology in the ICU, rather than
to develop a predictive or prognostic model. Discrimina-
tion will be studied for both the MLR and the SVM classi-
fication models.

Methods
Data collection
The study was approved by the Ethics Committee of the
Ghent University Hospital prior to the start of the data
collection. Informed consent was waived because of the
noninterventional study design. The data for this study
were prospectively collected and consisted of an observa-
tional cohort of 352 patients with haematological malig-
nancies admitted consecutively to the ICU between 1997
and 2006 for life-threatening complications. Patients
admitted for monitoring, patients who received a do not
resuscitate order before admission or patients admitted
after elective or unscheduled surgery were excluded [12].
Of the original database of 372 patients only 20 patients
were excluded because of 1 or more missing values, yield-
ing n = 352 patients for definite analysis. Only the varia-
bles in the database which had shown to have an impact
on hospital mortality in previous research were retained
as well as those which were of potential clinical impor-

Classification by a support vector machine algorithm is per-formed by transforming the input variables data set by means of a mathematical function into a higher dimensional input space in which separation is much easierFigure 1
Classification by a support vector machine algorithm 
is performed by transforming the input variables 
data set by means of a mathematical function into a 
higher dimensional input space in which separation is 
much easier. The basis of this new heuristic is that classifi-
cation of a seemingly chaotic input space is possible by 
increasing the dimensionality of that input space and thereby 
finding a separating boundary i.e. hyperplane. e.g.: (a) A two-
dimensional training with positive examples as black circles 
and negative examples as white circles. The true decision 
boundary, (x1)2 +(x2)2 ≤ 1, is also shown. (b) The same data 
after mapping into a three-dimensional input space ((x1)2, 
(x2)2, √2(x1)(x2)). The circular decision boundary in (a) 
becomes a linear decision boundary in three dimensions (b). 
(copyright permission from Prentice Hall).
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tance as indicated by a panel of experts [1,12]. Of the total
of 352 patient records, 252 were used for training of the
MLR and the SVM models, whereas 100 were used for val-
idation. The 100 patients for the validation data set were
selected so that the hospital mortality in the validation
data set and the training data set was the same. Besides
this criterion, the selection of patients for the training and
validation data set was random. In a first model, 12 varia-
bles were included at the start of the modeling process for
comparison between MLR and SVM (Table 1). In a second
more complex model 17 variables were used (Table 2).
The Acute Physiology and Chronic Health Evaluation II
(APACHE II) score was incorporated in the first model but
not in the second model. Clinically relevant physiological
variables were included in the second model as a substi-
tute for the APACHE II score. In this way, the authors
investigated if a more simple model 1 with an APACHE
score had better discriminative power than a more com-
plex model 2 where the APACHE score was omitted but
physiological patient variables were added. Regarding the
physiological variables, the worst value of the first 24 h of
ICU admission was retained in the data sets. Hospital
mortality was determined as the main outcome variable.
The performance in predicting hospital mortality with the
APACHE II score [13], the Simplified Acute Physiology
score II (SAPS II) and with the cancer specific severity of
illness score (CSSI-score) (developed by Groeger and cow-
orkers [14]) will be mentioned for comparison with the
performance of the developed models. MLR and SVM
analysis were performed independently from each other
by different authors of this study. Statistical differences
between the input variables of the training and the valida-
tion data set were examined with a Chi-square/Fisher's
Exact test for categorical variables and a Mann-Whitney U
test for continuous variables.

Development of the logistic regression models for 
prediction of hospital mortality
Two MLR models were developed consecutively. The MLR
model building processes were carried out in SPSS 16.0
(SPSS Inc., Chicago, Il, USA). In model one, 8 categorical
variables and 4 continuous variables were included at the
beginning of the analysis (Table 1). In model two, 6 cate-
gorical and 11 continuous variables were included at the
beginning of the analysis (Table 2). To assess the relation-
ship between a continuous variable and the outcome and
to subsequently analyze whether transformation or cate-
gorization of continuous variables was needed, a scatter-
plot smoother and a method of quartiles was used for
each variable. Forward and backward stepwise selection
procedures were used. A p-value of 0.05 or less was con-
sidered to be significant for inclusion into the multivaria-
ble model. From the initial 12 (Table 1) and 17 variables
(Table 2) in the univariate analysis in model 1 and 2
respectively, only 7 variables for model 1 and 8 variables
for model 2 were significantly associated with the out-
come in the multivariable analysis (Table 3 and 4, MLR
model 1 and 2). The continuous variable 'platelets' in
model 2 was dichotomized after scatterplot analysis (cut-
off value for platelets at 50.000/mm3). In the same way,
the variable 'urea' in model 2 was divided into 3 groups
after scatterplot analysis (urea<0.5 g/l = reference cate-
gory, 0.5 g ≤ urea<1 g/l and urea ≥ 1 g/l, respectively). The
variables 'arterial oxygen pressure/fractional inspiratory
oxygen (PaO2/FiO2) ratio' and the 'prothrombin time
(%)' in model 2 were included as continuous variables
since they had a linear relationship with hospital mortal-
ity. A correlation and a multicollinearity analysis were
performed prior to the goodness of fit analysis. Clinically
relevant interaction terms were added to the main effect
model (e.g. gender*age), but none had statistically signif-
icant regression coefficients and hence none were retained

Table 1: Initial 12 input variables for model 1 before start of MLR and SVM modeling process and their descriptive statistics for the 
training and validation data sets.

Input variable Training Validation

gender, % male 58 65
age, yrs 55 (± 18) 58 (± 15)
% high-grade malignancy 61 54
% active disease of relapse 34 39
% allogeneic bone marrow transplant./stem cell transplant. 13 10
weeks since BMT, median (IQR)* 15 (54) 8 (102)
% chemotherapy<3 we since ICU admission 41 52
days of hospitalisation before ICU admission, median (IQR) 4(16) 6(16)
% bacterial infection 44 43
APACHE II score 24.5 (± 7.4) 25 (± 7.4)
% ventilated on day 1 49 46
% vasopressor need on day 1 41 49

training n = 252, validation n = 100; mean (± SD), except when indicated otherwise, *within subgroup with bone marrow transplantation.
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in the final regression model. Table 3 and 4 show the final
regression model on the training data set for model 1 and
2 respectively. The original parameter estimates from the
training data set were then applied to the validation data
set.

Development of the support vector machine based models 
for prediction of hospital mortality
Two SVM models were developed consecutively. The SVM
based model building processes were carried out with a
modified Java version of the libSVM 2.82 software pack-
age available at http://www.csie.ntu.edu.tw/~cjlin/lib
svm. For both models the model construction process
consisted consecutively of: (i) selection of the input varia-
bles (out of the 12 and 17 variables at the beginning of the
modeling), (ii) selection of the training parameters (C
and γ), (iii) construction of the model, (iv) performance
evaluation and finally (v) validation of the model. The
method of input variable selection was based on the

approach in [15] which was itself based on the recursive
feature elimination method as proposed in [16]. The com-
mon part in these approaches is that the input variables
are ranked by iteratively eliminating the least important
input variable in each step. In the approach used in this
study, a second ranking is constructed by iteratively add-
ing the most important input variable to the model. The
libSVM training algorithm is a stochastic process, mean-
ing that two consecutive runs do not necessary result in
identical results. Therefore the rankings were repeated 160
times, after which the median ranking of each input vari-
able was calculated. The last step in the input variable
selection process, is to determine the exact number of
input variables. In order to fix this number, the perform-
ance of the prediction model is estimated for an increas-
ing number of input variables. This results in an initially
increasing performance estimation, which after reaching a
peak will decrease again. The number of input variables at
peak estimated performance determines how much input

Table 2: Initial 17 input variables for model 2 before start of MLR and SVM modeling process and their descriptive statistics for the 
training and validation data sets.

Input variable Training Validation

age, yrs 55 (± 18) 58 (± 15)
% high-grade malignancy 61 54
% active disease of relapse 34 39
% allogeneic bone marrow transplant./stem cell transplant. 13 10
days of hospitalisation before ICU admission, median (IQR) 4 (16) 6 (16)
% bacterial infection 44 43
pulse (/min) 123 (± 28) 118 (± 33)
mean blood pressure (MAP), mmHg 73 (± 27) 69 (± 22)
respiration frequency (/min) 32 (± 10) 33 (± 13)
Pa02/Fi02 (p/f) 198 (± 130) 194 (± 126)
platelets (1000/mm3) 125 (± 700) 90 (± 114)
urea<24 h (g/l) 0.86 (± 59) 0.82 (± 55)
creatinine<24 h (mg/dl) 1.6 (± 1.08) 1.7 (± 1.7)
albumin<24 h (g/dl) 2.6 (± 1.97) 2.4 (± 0.70)
prothrombin time (%)<24 h 56 (± 20.7) 57 (± 19.4)
% ventilated on day 1 49 46
% vasopressor need on day 1 41 49

training n = 252, validation n = 100; mean (± SD), except when indicated otherwise.

Table 3: MLR model 1: variables retained for final MLR analysis after variable selection process, coefficients, standard errors of the 
coefficients, odds ratios, 95% confidence intervals (CI) for the odds ratios for the model variables (x), and p-value.

Variable Coefficient SE Odds Ratio 95% CI p-value

gender* -.636 .305 .530 .292–.962 0.037
high-grade malignancy .689 .304 1.992 1.099–3.613 0.023
active disease .797 .321 2.218 1.181–4.165 0.013
bone marrow transplant. .914 .443 2.495 1.048–5.941 0.039
bacterial infection -.739 .316 .478 .257–.887 0.019
APACHE II (per point) .084 .024 1.088 1.037–1.140 0.001
ventilation < 24 h 1.221 .323 3.391 1.800–6.388 <0.001
Constant -2.006 .707 .135 0.005

*female gender
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variables are used in the final model. After the input vari-
ables for model construction are known, the model train-
ing parameters can be tuned. The SVM with a Gaussian
kernel function has two such training parameters: C
which controls overfitting of the model, and gamma (γ)
which controls the degree of nonlinearity of the model.
Gamma is inversely related to sigma which is a degree for
spread around a mean in statistics: the higher the value of
gamma, the lower the value of sigma, thus the less spread
or the more nonlinear the behavior of the kernel. The val-
ues of these training parameters C and gamma are deter-
mined by grid search and cross validation: the model with
the highest estimated performance determines the
selected training parameters. Then, the performance of the
constructed model is estimated by using 5-fold cross vali-
dation on the training data. Finally, the constructed
model is validated by predicting the validation data and
comparing these predictions with the real observations by
means of ROC curves.

Comparison between models
Comparison of MLR and SVM discrimination for both
models was performed using SPSS 16.0 (SPSS Inc., Chi-
cago, Il, USA) and SAS version 9.1.3 (macro %roc) (SAS
Institute, Cary, NC, USA). Results are reported as percent-

ages, means, minimums and maximums, ranges, and SDs
(as appropriate). Accuracy (ACC), Sensitivity (SN), specif-
icity (SP), positive and negative predictive values (PPV/
NPV) for both models were calculated with 'R' free soft-
ware version 2.6.1 (R Foundation for Statistical Comput-
ing) (Table 5). The cut-off value for calculation of these
values was set by default at 0.5 (R-software 2.6.1 ROCR
package). In the MLR analysis, the odds ratios were com-
puted by taking ex, with x the value of the variable's coef-
ficient in each of the two models (cf. Table 3 and 4). To
test the ability of each model to distinguish patients who
die from patients who live (discrimination), the area
under the receiver operating characteristic curve (AUC)
was calculated. Values above 0.80 indicate good discrimi-
nation [17]. To test the degree of correspondence between
observed and predicted mortality over the entire range of
risk (calibration), the Hosmer-Lemeshow (HL) goodness
of fit statistic was calculated for the MLR models. To eval-
uate the statistical difference between the discrimination
predicted by the MLR and SVM, a nonparametric test was
used [18] with SAS version 9.1.3 (macro %roc).

Results
Hospital mortality in the training data set was 54.4% and
54.0% in the validation set.

Table 4: MLR model 2: variables retained for final MLR analysis after variable selection, coefficients, standard errors of the coefficients, 
odds ratios, 95% confidence intervals for the odds ratios for the model variables (x), and p-value

Variable Coefficient SE Odds Ratio 95% CI p-value

High-grade malignancy .670 .324 1.954 1.034–3.690 0.039
active disease .850 .328 2.340 1.229–4.456 0.010
bacterial infection -781 .324 .458 .243–.863 0.016
thrombocytopenia (<50.000/mm3) .867 .314 2.379 1.287–4.399 0.006
ventilation < 24 h 1.414 .327 4.111 2.167–7.798 <0.001
prothrombin time (%) -0.016 .008 .984 .970–1.000 0.045
PaO2/FiO2 (p/f) -.003 .001 .997 .995–1.000 0.025
urea < 0.5 g/l (reference) 0.011
urea 0.5–1 g/l 0.583 .415 1.791 .876–.3.663 0.033
urea > 1 g/l 1.249 .387 3.486 1.545–7.866 0.085
Constant -0.457 .716 0.633 0.021

Table 5: Accuracy (ACC), sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV) for model 
1 and 2 for prediction of hospital mortality (95%CI)

MLR model1 SVM model1 MLR model2 SVM model2

ACC 0.730
(0.632–0.814)

0.680
(0.579–0.770)

0.740
(0.643–0.823)

0.680
(0.579–0.770)

SN 0.740
(0.603–0.850)

0.630
(0.487–0.760)

0.722
(0.583–0.835)

0.630
(0.487–0.757)

SP 0.717
(0.565–0.840)

0.740
(0.589–0.857)

0.761
(0.612–0.874)

0.739
(0.589–0.857)

PPV 0.755
(0.617–0.862)

0.740
(0.589–0.857)

0.780
(0.640–0.885)

0.739
(0.589–0.857)

NPV 0.702
(0.551–0.827)

0.630
(0.487–0.757)

0.700
(0.554–0.821)

0.630
(0.487–0.757)
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Table 1 and 2 show a descriptive analysis of the initial
input variables of the training and validation data set of
model 1 (Table 1) and model 2 (Table 2). No statistically
significant differences were found between the training
and validation data sets. The AUC's for the training data
set of model 1 were 0.791 (± 0.03) and 0.743 (± 0.04) for
the MLR and SVM algorithm respectively, and 0.768 (±
0.04) and 0.802 (± 0.04) (p = 0.19) (Fig. 2) for the valida-
tion data set. The AUC's for the training data set of model
2 were 0.810 (± 0.03) and 0.723 (± 0.04) for the MLR and
SVM algorithm respectively, and 0.781 (± 0.05) and 0.808
(± 0.04) for the validation data set (p = 0.44) (Fig. 3). The
HL goodness of fit measures for the MLR training models
had p-values of 0,932 (Chi-square 3.044; df 8) and 0.591
(Chi-square 6.504; df 8) in model 1 and 2 respectively.
The HL goodness of fit measures for the SVM training
models had p-values of <.001 (Chi-square 33.885; df 8)
and <.001 (Chi-square 61.982; df 8) in model 1 and 2
respectively. In the MLR model 1 and 2, 7 and 8 variables
were retained (Table 3 and 4). In contrast, in the SVM
model 1 and 2, only 4 variables were retained: in model 1
these were 'ventilation < 24 h:Y/N', 'bone marrow trans-
plantation:Y/N', 'bacterial infection:Y/N' and 'APACHE II-
score', in model 2 these were 'ventilation < 24 h:Y/N',
'bone marrow transplantation:Y/N', 'bacterial infection:Y/
N' and 'pulse'. The AUC's in the validation data set for the
APACHE II score, the SAPS II score and the CSSI-score
were 0,620 (± 0,06), 0.631 (± 0.06) and 0.727 (± 0.05)
respectively. The accuracy, the sensitivity and specificity as
well as the PPV and NPV of model 1 and 2 (corresponding
to the optimal cut-off) for both the MLR and SVM models
are mentioned in Table 5.

Discussion
The equal distribution of survivors and nonsurvivors in
the training and validation data sets makes logistic regres-
sion modeling ideal for comparison with other algo-
rithms such as SVM [19]. Both the MLR an SVM models
perform well in this study and the small differences
between the MLR and SVM results in these data sets were
statistically not significant. This is the first study to explore
the future clinical use of SVM algorithms for mortality pre-
diction in the critically ill, although an SVM based appli-
cation has already been described by the authors in an
ICU setting for prediction of the tacrolimus blood concen-
tration in post liver transplantation patients [5]. SVM
acknowledged fewer variables as significant to make its
prediction of hospital mortality: it used only 4 variables
for both models. In most ICU databases, there is a high
percentage of missing values, making modeling of these
data more difficult. If a prediction model uses less varia-
bles, the chance of having a high percentage of missing
values will be lower with, possibly, a more accurate pre-
diction as a result. For example, in this study, the SVM
model 2 only needed 4 input variables namely ventilation
< 24 h, bone marrow transplantation, bacterial infection
and pulse. From these four variables, three of them are
readily available. From this, it can be argued to consider
variables for model development which are usually avail-
able in most patients, thereby reducing the number of
missing values. The use of fewer variables in a SVM predic-
tion model in comparison with a MLR model, was also
demonstrated in prior SVM research by the authors [5].
Table 5 demonstrates that the PPV of the MLR and SVM
algorithm have similar values, although the NPV for the
SVM algorithm is lower than in the MLR model. Worth-

Area under the ROC curve (AUC) for comparison of the MLR and SVM in model 1Figure 2
Area under the ROC curve (AUC) for comparison of 
the MLR and SVM in model 1.

Area under the ROC curve (AUC) for comparison of the MLR and SVM in model 2Figure 3
Area under the ROC curve (AUC) for comparison of 
the MLR and SVM in model 2.
Page 6 of 8
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2008, 8:56 http://www.biomedcentral.com/1472-6947/8/56
while mentioning is the fact that both the CSSI-score
developed by Groeger and co-workers [14,20] and the
more general APACHE II score and SAPS II score, pre-
dicted hospital mortality less accurate than the studied
MLR and SVM models and this in both the training and
validation data sets. This could be expected due to the fact
that the tested models in this study were validated on
patient data of the same ICU. Indeed, a truly independent
validation of the findings of this study should be per-
formed on separate data sets in different ICU's. A frequent
problem with risk prediction models, especially prognos-
tic models that have not been recently developed, is the
weakening calibration of the model [21]. This problem
can be dealt with by implementing a locally developed
risk prediction model that can be updated over time, ide-
ally in an automated way, e.g. by retraining the SVM algo-
rithm or other artificial intelligence learning algorithms
such as artificial neural networks by excluding one month
of data at the start of the time series analysis and adding
the last month's data [22]. The conclusion of equivalence
in discrimination performance between the MLR and
SVM results did not change when validating these meth-
ods with a 10-fold cross validation, in addition to the
train and validation cohort methodology that was
reported in the manuscript. The authors only reported the
results obtained by a train and validation cohort method-
ology due to the overall acceptance of this methodology
in medical community. In practice, SVM technology could
be incorporated – after thorough validation – as an intel-
ligent agent into the intensive care information systems
and hence give decision support to the ICU clinician. This
implementation of SVM technology in the ICU will be the
subject of future research by this study group. While no
discriminative model is capable of predicting the outcome
of any individual patient and although some studies show
the equivalence of the prognostic capacities of ICU clini-
cians [21] in comparison with the accuracies of risk pre-
diction models, these locally developed models can, when
well validated, give the ICU clinicians a perspective from
which the care for the individual critically ill patient can
only benefit.

Conclusion
The discriminative power of both the MLR and SVM mod-
els was good. No statistically significant differences were
found in discriminative power between MLR and SVM for
prediction of hospital mortality in critically ill patients
with haematological malignancies.

Key messages
• Logistic regression is still the current standard in ICU
prognostic modeling.

• New artificial intelligence methods are emerging for
classification or prediction purposes in the ICU.

• The Support Vector Machine (SVM) algorithm has been
proven to be a good classifier and prediction method in
diverse scientific research areas.

• The accuracy for predicting hospital mortality by SVM is
comparable to that of logistic regression prediction.

• SVM has the possibility – after further validation – to
improve patient care in the near future by facilitating data
modeling in the ICU.
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