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Bupivacaine, a common local anesthetic, causes serious nerve injury, especially in diabetic patients, as high glucose has been reported
to enhance bupivacaine-induced neurotoxicity. However, the key regulator for synergism remains unknown. To our surprise, the
expression of repair protein Ku70 is suppressed, while the high-glucose environment induces DNA oxidative damage in neurons.
Here, we aim to investigate whether the inhibition of Ku70 by high-glucose conditions aggrandized bupivacaine-induced DNA
damage. Consistent with previous results, bupivacaine induced reactive oxygen species production and upregulated Ku70 and
cleaved caspase-3 expressions at both transcript and protein levels and ultimately caused nucleic acid damage and apoptosis in
human neuroblastoma (SH-SY5Y) cells. High-glucose treatment inhibited the expression of Ku70 and enhanced bupivacaine-
induced neurotoxicity. In contrast, the overexpression of Ku70 mitigated DNA damage and apoptosis triggered by bupivacaine and
high glucose. In conclusion, our data indicated that local anesthetics may aggravate nerve toxicity in a high-glucose environment.

1. Introduction

Diabetic nerves are more susceptible to the toxicity of local
anesthetics [1]. Clinical and experimental evidence has
suggested that local anesthetics induced oxidative damage,
which leads to neurotoxicity and apoptosis [2-4]. However,
the mechanism of enhanced local anesthetic neurotoxicity
under high-glucose conditions has not yet been fully un-
derstood. Diabetes can promote oxidative stress in some
organs [5]. The reactive oxygen species (ROS) over-
expression under hyperglycemia conditions has involved
multiple pathways. For example, redox imbalances caused
by upregulated aldose reductase activity, altered activity of
protein kinase C, elevated advanced glycation end products,
and prostanoid imbalances may lead to ROS overproduction
under hyperglycemia conditions [6, 7]. ROS overproduction
causes DNA degradation and induces neuronal apoptosis
[8]. The accumulating studies have suggested that damaged

nucleic acids were found in the certain tissues of diabetic rats
[9, 10]. The current study aims to address whether ROS-
mediated DNA damage aggrandized bupivacaine-induced
neurotoxicity under high-glucose conditions.

DNA repair is critical for cell survival and normal cel-
lular functions [11]. Chromosomal double-strand breaks
jeopardize genome integrity as aberrant repair may cause
genome rearrangements [12]. Nonhomologous end joining
is predominantly responsible for double-strand break repair
in mammals [13]. Ku70 plays a key role in the nonho-
mologous end-joining process. The Ku70 protein expresses
ubiquitously in mammalian cells and localizes to both the
cytosol and the nucleus [14]. It can bind to the DNA double-
strand breaks, activate the DNA-activated protein kinase
(DNA-PK), and then initiate the repair process [5].
Therefore, Ku70 is essential for nonhomologous double-
strand break repair [5]. Intriguingly, chronic hyperglycemia
suppresses the nuclear Ku70 expression in pancreatic acinar
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AR42] cells [5], but its impact on the Ku70 expression
following nerve block anesthesia-induced DNA damage still
remains unknown.

In the current study, we overexpressed Ku70 in SH-SY5Y
cells to investigate whether the Ku70 expression inhibited by
hyperglycemia suppressed the DNA damage repair and
increased the damage induced by bupivacaine.

2. Materials and Methods

2.1. Cell Culture and Lentiviral Infection. SH-SY5Y and
HEK293T cells from the Shanghai Institutes for Biological
Sciences were maintained in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, Carlsbad, CA, USA) containing
10% fetal bovine serum (Gibco), 100 IU/ml penicillin, and
100 mg/ml streptomycin (Gibco). The cells were grown in a
humidified incubator (37°C; 5% CO,), with medium renewal
every 2 days. The cells within 10 passages were used for
experiments.

The full-length human Ku70 cDNA was inserted into the
lentiviral vector LV5 (GenePharma Co., Ltd., Shanghai,
China) and confirmed by sequencing. Lentiviral constructs
of the LV5 empty vector or LV5-Ku70 were cotransfected
with viral packaging plasmids (pGag/pol, pRev, and pVSV-
G) into HEK293T cells by RNAi-mate (GenePharma) based
on manufacturers’ instructions. The viral supernatant was
collected 72h following transfection, which was filtered
through a 0.45 ym filter. Ku70-expressing lentivirus (Ku70+)
or control lentivirus (LV5) was transfected into SH-SY5Y
cells with 5pug/ml Polybrene. The Ku70 expression was
confirmed by RT-PCR and western blotting.

2.2. MTT Assay. The MTT assay was conducted to evaluate
the cell viability. The cells were grown in 96-well plates
(1.0 x 10*/well). After a 24-hour starvation with the serum-
free DMEM medium, the cells were subjected to bupivacaine
hydrochloride treatment (0.5, 1.0, 1.5, 2.0, and 2.5mM;
Sigma Aldrich, St. Louis, MO, USA) for another 24 h, fol-
lowed by the incubation with MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide; Beyotime, China) at
37°C for 4 hours. Upon MTT removal, 150 ul DMSO was
applied to each well, after which the resulting purple for-
mazan was determined by the spectrophotometer (Power-
Wave™, Bio-Tek, Vermont, USA). All experimental groups
were calculated as percentage of the control group with no
treatments.

2.3. Quantitative RT-PCR (qRT-PCR). Total RNA extraction
was conducted using TRIzol (Invitrogen, Carlsbad, CA,
USA) based on manufacturers’ specifications. Using the
M-MLV RT kit (Promega, Madison, WI, USA), 2 ug RNA
was reverse-transcribed into cDNA. The PCR reaction using
resultant cDNA was conducted using the following primers:
Ku70: 5'-GTGGTCACACACGAGCTTATT-3' (sense) and
5'-CAAATGTCTGATGTTGGTGAACC-3' (antisense) and
B-actin:  5'-TGGATCAGCAAGCAGGAGTA-3’ (sense)
and 5'-TCGGCCACATTGTGAACTTT-3' (antisense). The
thermal cycle for PCR was set as follows: 95°C for 2 min, 30
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cycles of 94°C for 30, 56°C for 455, and 72°C for 455, with a
final extension at 72°C for 7 min on a Lightcycler 480 system
(Applied Biosystems, Foster City, CA, USA) using the SYBR
Green Master Mixes (Takara, Japan). The Ku70 expression
level was normalized to f-actin followed by the quantifi-
cation through the 27#4“' method [15].

2.4. Western Blotting. SH-SY5Y cells were lysed in the RIPA
buffer as previously described [16]. After centrifugation
(12,000g; 5 min), the supernatant was collected, mixed with
the Laemmli buffer, and boiled for 10 min. Based on the
protein concentration measured by the bicinchoninic acid
(BCA) protein assay, 20 ug protein was separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
and electrotransferred to polyvinylidene fluoride mem-
branes. After blocking with 5% nonfat milk, primary an-
tibodies, polyclonal anti-Ku70 (1 :1,000; Novus Biologicals,
Littleton, CO), anti-cleaved caspase-3 (1:1,000; Cell Sig-
naling Technology, Danvers, MA, USA), and anti-actin
antibody (1 :1,000; Cell Signaling Technology) were applied
for overnight incubation at 4°C. After that, horseradish
peroxidase-conjugated anti-rabbit immunoglobulin (1:
1,000; Bioteke, Beijing, China) was applied to the mem-
brane for a 1-hour incubation. The membrane was then
developed using enhanced chemiluminescence (ECL;
Takara Bio, Japan). The expression of the Ku70 protein or
cleaved caspase-3 protein was quantified through mea-
suring the band density using NIH Image ] software
(National Institutes of Health, Bethesda, MD, USA) and
normalized to S-actin.

2.5. Experimental Grouping. Neuroblasts were divided
into six groups which varied with or without receiving
sequential treatments of 50 mM glucose (Sigma Aldrich)
for 7d (HG), infection with control lentivirus (LV5) or
Ku70-expressing lentivirus (Ku70+), and then 1.0 mM
bupivacaine for 24h (Bup): Group a (control), serum-
free DMEM medium; Group b (HG); Group c (Bup);
Group d (HG+Bup); Group e (LV+HG +Bup); and
Group f (LV-Ku70 + HG + Bup). An equal amount of the
serum-free DMEM medium was added when there was
no glucose or bupivacaine treatment.

2.6. ROS Measurement. The cells were stained with 20 uM
DCFH-DA (2',7'-dichlorofluorescein diacetate; Molecular
Probes, Eugene, OR, USA) at 37°C for 20 min. During this
process, ROS oxidized DCFH-DA and produced highly
fluorescent dichlorofluorescein (DCF). The fluorescence
signals within the cells were read by an FAC Sort analyzer
(Becton Dickinson, San Jose, CA, USA) and analyzed by Cell
Quest software (Becton Dickinson).

2.7. Comet Assay. Single-cell gel electrophoresis (SCGE) was
conducted to evaluate nucleic acid damages following
treatment as previously described [17-19]. In brief, the cells
were resuspended in 75ul of 0.5% low-melting agarose in
PBS, immediately spread over agarose-coated slides, covered
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with a cover slip, and kept at 4°C for 10 min. The cover slip
was removed after the solidification process. The cells were
lysed by placing the slide into cold lysis solution (2.5M
NaCl, 100 mM Na,EDTA, 10mM Tris, and 1% sodium
sarcosinate, pH 10.0) with 1% Triton X-100 and 10% DMSO
added before use. The lysis process was performed at least
one hour at 4°C. Then, the slides were placed into the fresh
electrophoresis buffer (1mM Na,EDTA and 300 mM
NaOH, pH 13.0) for 40 min for DNA unwinding and alkali-
labile damage expression. The samples were subjected to
electrophoresis (1.6 V cm™; 300 mA; 20 min), followed by
washings with the neutralizing buffer (0.4 M Tris, pH 7.5)
three times. After that, the slides were stained with ethidium
bromide (20 yg/ml) for 10 min, and the comets were ana-
lyzed using inverted microscopy (Nikon Eclipse TE300,
Japan) at 200x magnification. The CoolSNAP CCD camera
(Photometrics, Tucson, AZ) was used to acquire images.
Fifty cells per slide were scored in triplicate using CASP
(Comet Assay Software Project) 6.0 software (University of
Wroclaw, Poland). DNA damage is shown as the Olive tail
moment given by

Olive tail moment = (optical density barycenter in the tail
— optical density barycenter in the head)
x percent tail DNA.
(1)

2.8. Cell Apoptosis Analysis. The cells were plated in 24-well
plates (5 x 10° cells/well; 500 ul) and stimulated as described.
After rinsing with PBS, the cells were collected and resus-
pended in the binding buffer, with annexin V-FITC (1 :100;
KeyGEN, Nanjing, China) and propidium iodide (PI; 1:100;
KeyGEN) applied for staining. Following 10 min incubation,
the cells were examined via flow cytometry, with early ap-
optotic cells being annexin V-FITC-positive and PI-
negative.

2.9. TUNEL Assay. Following the fixation by 4% formal-
dehyde at 4°C for 25 min, the cells were rinsed with PBS and
then incubated with 0.2% Triton X-100 at room temperature
for 5min. After equilibration, the TdT labeling reaction
mixture was applied to the section for a 60 min incubation at
37°C. The apoptotic ratio was calculated by counting 100
cells in 3 randomly selected fields via fluorescent microscopy
(AX-80, Olympus, Tokyo, Japan) by two independent
researchers.

2.10. Statistical Analysis. Data were shown as mean
+standard deviation (SD). IBM SPSS Statistics Software
Version 20 (IBM, San Francisco, CA, USA) was used to
obtain statistics. Two-tailed, unpaired Student’s t-test was
conducted for comparisons between two groups, while one-
way analysis of variance (ANOVA) followed by an LSD post
hoc test was employed for comparisons among three or
more groups. A P value less than 0.05 was set as statistically
significant.

3. Results

3.1. Bupivacaine-Induced Cytotoxicity. To evaluate the
bupivacaine-induced cytotoxicity in SH-SY5Y cells, the
MTT assay was conducted after a 24h exposure to various
doses of bupivacaine (0.5-2.5mM) according to previous
references [3, 20-22]. We found that cell viability was
dramatically decreased in a dose-dependent fashion
(Figure 1). More than 60% reduction was observed with
2.0 and 2.5mM bupivacaine. To better understand the
mechanism underlying bupivacaine-induced neurotoxic-
ity and identify the key contributors to this process, the
concentrations of 0.5, 1.0, and 1.5 mM were used in the
following experiments.

3.2. Expression of Ku70 and Cleaved Capsase-3 upon Bupi-
vacaine Treatment. To determine the effect of bupivacaine
on the expression of Ku70 and cleaved caspase-3, their
protein levels were detected in SH-SY5Y cells after a 24-hour
stimulation by increasing doses of bupivacaine (0.5, 1.0, and
1.5mM) by western blotting. The elevation in their ex-
pression was also dose-dependent, which paralleled the
bupivacaine-induced cell damage result. These results in-
dicated that the Ku70 expression and cell apoptosis were
enhanced in response to bupivacaine exposure (Figure 2).
The concentration of 1.0mM had a similar effect on Ku70
protein levels as that of 1.5mM. Thus, we chose a level of
1.0 mM for the following studies.

3.3. Expression of Ku70 Is Inhibited by Long-Term High-
Glucose Treatment. To determine the effect of high glucose
on the Ku70 expression, Ku70 mRNA levels were detected in
SH-SY5Y cells stimulated by various concentrations of
glucose for 2 or 7 days. As previously described, 25 mM of
glucose represents normal plasma glucose [7, 23]. Here, 25,
50, and 100 mM of glucose were used. Our results have
shown a significant elevation in the Ku70 mRNA expression
after 2d of high-glucose exposure (50 and 100 mM)
(Figure 3(a)). Nevertheless, the cells exhibited lower Ku70
mRNA expression after the treatment with higher con-
centrations of glucose (50 or 100 mM) for 7 d (Figure 3(b)).
There was no significant difference between the cells ex-
posed to 50 and 100 mM of glucose. Thus, 50 mM was
chosen for the following experiments. We also investi-
gated the protein levels of Ku70 in the cells stimulated
with 50 mM glucose for 2, 4, or 7 days and found that the
Ku70 level was elevated after 2 days but decreased after 4
and 7 days (Figure 3(c)). The cleaved caspase-3 levels were
increased by 50 mM glucose in a time-dependent fashion
(Figure 3(d)). In conclusion, high glucose (50 mM) sup-
pressed the Ku70 expression, which may cause insufficient
repair of DNA damage and ultimately cell apoptosis.

3.4. Protein Levels of Ku70 and Cleaved Capsase-3 in response to
Bupivacaine Exposure under a High-Glucose Environment.
We then tried to determine the effects of bupivacaine-
combined high-glucose treatment on the protein levels of
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F1GURE 1: Cell viability declined in a bupivacaine concentration-dependent manner. After serum starvation in the DMEM/F12 medium for
24 h, the cells were exposed to 0.5, 1.0, 1.5, 2.0, and 2.5 mM bupivacaine for 24 h. Values are the mean + SEM of n=3. * P < 0.05 compared
with the untreated control.

Ku70 weess s ol @D 70kDa Cleaved caspase-3 == w—— e ey 17kDa
B-Actin em— — S @—_ {2kD: P-Actin e > <> emmp <D
1.5 4 1.0 -
8 w#
g
o 0.8 4
E . £ )
S 10+ * ¢
2 0.6
= 2
; 7
N =
=@ o 0.4 -
- S T
]
* 2 024
<
2
O
0.0 T : . 0.0 T T
Con 0.5 1.0 15 Con 0.5
mM
(a) (b)

FIGURE 2: Repair protein Ku70 expression was elevated by bupivacaine. (a) Western blotting bands and data of the repair protein Ku70
expression. (b) Western blotting bands and data of the cleaved caspase-3 expression. SH-SY5Y cells’ serum starved for 24 h followed by
incubation with 0.5, 1.0, or 1.5 mM bupivacaine for 24 h. Values are the mean + SEM of n = 3. * P < 0.05 compared with the untreated control
#p<0.05 compared with the group incubated with 1.0 mM bupivacaine.
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FIGURE 3: Long-term high-glucose conditions inhibited the Ku70 expression and induced more severe apoptosis. (a) Ku70 mRNA levels in
SH-SY5Y cells’ serum starved for 24 h followed by incubation with increasing glucose concentrations (25, 50, or 100 mM) for 2 days. (b)
Ku70 mRNA levels in SH-SY5Y cells’” serum starved for 24 h followed by incubation with increasing glucose concentrations (25, 50, or
100 mM) for 7 days. (c) Western blotting bands and data of the Ku70 expression in SH-SY5Y cells” serum starved for 24 h and were then
incubated with 50 mM glucose for 2, 4, or 7 days. (d) Western blotting bands and data of the cleaved caspase-3 expression in SH-SY5Y cells’
serum starved for 24 h and were then incubated with 50 mM glucose for 2, 4, or 7 days. Values are the mean + SEM of n=3. *P <0.05
compared with the untreated control. * P <0.05 compared with the group incubated with 50 mM glucose for 4 days.

Ku70 and cleaved caspase-3. Our results have shown that
Ku70 protein levels were significantly elevated by bupiva-
caine treatment in SH-SY5Y cells, which were remarkably
decreased by pretreatment with high glucose for 7 days
(Figure 4(a)). Moreover, infection of the Ku70-expressing
virus significantly increased the Ku70 expression compared
to control virus infection under normal conditions
(Figures S1A and S1B) or high-glucose conditions following
bupivacaine exposure (Figure 4(b)). The cleaved caspase-3
expression was elevated in the cells pretreated with high
glucose for 7 days and then exposed to bupivacaine for 24 h
in comparison with those exposed to bupivacaine only.
Infection of the Ku70-expressing virus significantly sup-
pressed the levels of cleaved caspase-3 both under normal
conditions (Figure S1C) and in high-glucose- and bupiva-
caine-treated cells (Figure 4(b)).

3.5. High Glucose Enhances the Effects of Bupivacaine on ROS
Production. The cells exhibited elevated intracellular ROS
with 50mM glucose or 1mM bupivacaine stimulation
(Figure 5). Pretreatment with glucose induced even signit-
icantly higher ROS levels, implying that high glucose en-
hanced the induction effects of bupivacaine on intracellular
ROS production. No significant difference was found in ROS
production between the Ku70 virus infection group and the
control virus infection group.

3.6. Synergistic Effect of High Glucose and Bupivacaine on
DNA Damage and Cell Apoptosis. We further quantified
DNA damage by employing the comet assay as previously
described [18]. Olive tail moment values were increased by
bupivacaine, which was synergistic with the high-glucose
condition. The ectopic expression of Ku70 significantly

reduced Olive tail moment values in the cells stimulated by
high glucose and bupivacaine (Figure 6(a)).

We then evaluated cell apoptosis by annexin V/PI
staining and TUNEL assay. There was an increase in annexin
V-FITC-positive and PI-negative cells upon 50 mM glucose
treatment, indicating 50 mM glucose promoted bupiva-
caine-induced apoptosis (Figure 6(b)). The overexpression
of Ku70 reduced bupivacaine-induced apoptosis in a high-
glucose environment. This was further supported by the
results of TUNEL staining (Figure 6(c)).

4. Discussion

Neuroblastoma SH-SY5Y cell line, as the only available cell
line with the features of healthy spinal dorsal root ganglion
cells [24], has been commonly used to establish in vitro
models for studying cellular functions of neuronal cells [21],
including our study here.

Regional anesthesia may increase the risk of neurological
injury in diabetic neuropathy patients [25, 26]. Diabetes
mellitus is characterized by hyperglycemia, resulting in
excess mitochondrial ROS generation [27]. Dosing of li-
docaine in diabetic animals induced ROS generation, which
was suggested to trigger oxidative stress and apoptosis [1].
Understanding the underlying mechanisms of neurotoxicity
will shed light on the clinical nerve blockade in patients with
hyperglycemia and may offer potential pharmacological
interventions. This study proved a high degree of ROS
generation in SH-SY5Y cells stimulated by high glucose and
bupivacaine.

Oxidative stress is characterized by overwhelming ROS-
induced DNA damage [28]. Double-strand breaks as the
most serious DNA damage are identified and fixed by
conserved repair pathways to preserve genomic integrity
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treatment with 1.0 mM bupivacaine for 24 h; LV5 + HG + Bup: SH-SY5Y cells transfected vector (LV5) incubated with 50 mM glucose for 7
days before treatment with 1.0 mM bupivacaine for 24 h; LV5-Ku70 + HG + Bup: SH-SY5Y cells transfected overexpression lentivirus (LV5-
Ku70) incubated with 50 mM glucose for 7 days before treatment with 1.0 mM bupivacaine for 24 h. Values are the mean + SEM of n=3.
*P <0.05 compared with Con. #P <0.05 compared with HG and Bup. &p <0.05 compared with HG + Bup and LV5+HG + Bup.

[29]. Improper DNA repair may cause damage accumula-
tion, eventually leading to cell apoptosis or diseases. After
the failure of repair, ROS production triggered neuronal cell
apoptosis via releasing cytochrome ¢ from mitochondria and
cleaved caspase-3 [30].

Despite the importance of homologous recombination,
nonhomologous end joining is predominantly responsible
for repairing double-strand breaks in mammals [31]. The
main proteins involved in the classic nonhomologous end
joining include Ku70/Ku80 heterodimer, DNA-activated
protein kinase catalytic subunit (DNA-PKcs), Artemis, and
XRCC4 [32]. The nonhomologous end-joining process
usually takes three steps: recognition of the DNA breaks,
removal of the broken ends, and ligation of the DNA ter-
minals. Ku70 has been reported to play a key role during
nonhomologous end joining as a 5'-deoxyribose-5-phos-
phate/apurinic site lyase (5'-dRP/AP lyase). Specifically,
DNA repair starts from the premise that the abasic and
apurinic sites are excised by Ku70. It not only prevents the
activation of endonucleases but also protects the broken
DNA ends [33].

Ku70 binds to the broken DNA ends and initiates the
nonhomologous end-joining process through a two-step
mechanism, where Ku70 identifies DNA ends, translocates
to internal positions, recruits DNA-PKcs, and forms DNA-
PK holoenzyme [34, 35]. Ku70 regulates the DNA-PK
activity either by recruiting DNA-PKcs to DNA at low
DNA end concentration or by direct protein-protein in-
teractions [36]. Ku70 may involve in the oxidative stress-
induced cell death. Moreover, Ku70 reduction has been
shown to contribute to cell apoptosis. Specifically, the
blockage of the Ku70 expression induces the apoptosis of

human promyelocytic leukemia HL-60 cells and activates
human peripheral blood lymphocytes [37]. Here, bupiva-
caine caused double-strand breaks in SH-SY5Y cells, which
induces the expression of Ku70, an efficient DNA repair
machinery to cope with DNA damages.

High glucose may downregulate the synthesis of DNA
repair protein Ku70 through inhibition of its translation
and/or posttranslational protein modification [38]. Here, the
high-glucose environment aggravated the effects of bupi-
vacaine on DNA damage and cell apoptosis, which was
mitigated by the overexpression of Ku70. These data sug-
gested that Ku70 was a key regulator in bupivacaine-induced
double-strand breaks and cell apoptosis in a high-glucose
environment. In this study, a high level of ROS was detected
in SH-SY5Y cells induced by bupivacaine in a high-glucose
environment, which was not affected by the Ku70 over-
expression, indicating Ku70 may not involve in the high-
glucose- and bupivacaine-induced ROS generation.

In the current study, most experiments were performed
with 0.5, 1.0, and 1.5mM bupivacaine. The concentration
was chosen according to previous studies [4-7] and MTT
assays (Figure 1). After epidural or spinal administration
with 0.5% bupivacaine, the serum concentration of bupiva-
caine in patients [39, 40] and experimental animals [41] was
about 1.25~1.6 yg/ml, which equaled 3.65~4.67x 107> mM
and was much lower than that in in vitro experiments.
Therefore, to verify the function of Ku70 in vivo, experiments
using animal models treated with clinical concentrations of
bupivacaine will be performed in the future.

In summary, our study with SH-SY5Y cells indicated the
synergistic effect of high glucose and bupivacaine on in-
tracellular ROS and the aggravated effect on apoptosis,



BioMed Research International

which proceeded via Ku70 suppression and caspase-3 ac-
tivation. Thus, the present data provide a possible mecha-
nistic basis for aggravated effects of local anesthetics on
high-glucose-induced nerve toxicity.
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