
ONCOLOGY LETTERS  15:  7168-7174,  20187168

Abstract. Epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR‑TKIs) are efficient in treating patients with 
non-small cell lung cancer (NSCLC) harboring EGFR acti-
vating mutations. Unfortunately, nearly all patients ultimately 
acquire resistance to EGFR-TKI treatment. Liver X recep-
tors (LXRs) can regulate tumor growth in various cancer cell 
lines. The present study indicated that LXR agonist combined 
with gefitinib weakened Akt‑nuclear factor (NF)‑κB activa-
tion and inhibited the expression levels of apoptosis-related 
proteins in vitro. By contrast, LXR ligands alone exhibited no 
significant effect on gefitinib‑resistant lung cells. In conclusion, 
the study provided evidence for the combination treatment of 
acquired TKI resistance in NSCLC.

Introduction

Lung cancer is the leading cause of cancer-related mortality 
worldwide (1), and non-small cell lung cancer (NSCLC) is 
the most common clinicopathological type. Although early 
diagnosis of lung cancer has developed in recent years, most 
patients are initially diagnosed with an advanced stage (2).

The epidermal growth factor receptor (EGFR) is a well 
characterized mutated oncogene in NSCLC with 10-20% cases 
in Western countries and is predominantly associated with 
adenocarcinoma histology. EGFR-mutated tumors are depen-
dent on EGFR signaling for proliferation and survival (3,4). 
EGFR tyrosine kinase inhibitors (EGFR-TKIs) have shown 
dramatic therapeutic effects in patients with NSCLC harboring 

EGFR-activating mutations. Based on the positive results 
of several phase III clinical trials, National Comprehensive 
Cancer Network (NCCN) has recommended EGFR-TKI 
as the standard first-line therapy in NSCLC patients with 
sensitive EGFR mutations (5,6). However, nearly all patients 
eventually developed drug resistance after a median period 
of ~10 months (7). Thus, innovative treatment strategies are 
urgently needed for increasing sensibility to EGFR-TKI and 
improving the survival of patients with NSCLC.

Recently, a number of nuclear receptor superfamily, 
including liver X receptors (LXRs), have been shown to 
mediate tumor proliferation and enhance chemotherapeutic 
efficacy (8-11). LXRs (LXRα/NR1H3 and LXRβ/NR1H2) 
can be activated by natural ligands, including oxysterols and 
synthetic agonists GW3965 (12). High level of LXRα expres-
sion can be found in liver, kidney, intestine, fat tissue and 
macrophages, whereas LXRβ expression is ubiquitous (13). 
Some studies have demonstrated that LXR ligands exhibited 
anti-cancer activities in a variety of cancer cell lines. For 
example, LXR ligands can suppress the proliferation of breast, 
ovarian, prostate, colon and leukemia cancer cells in vitro (14). 
Recently, a study has found that LXR ligands combined with 
gefitinib could suppress cell cycle progression by inhibiting 
cyclinD1 and cyclinB expression in NSCLC cells (15).

Based on these previous reports, the present study aimed 
to investigate the effects of synthetic LXR ligands (GW3965) 
on increasing sensibility of gefitinib‑resistant NSCLC cell to 
EGFR-TKI and explored their potential mechanisms.

Materials and methods

Cell lines and reagents. Human NSCLC H827 cell line 
harboring the EGFR exon 19 deletion (Del E746‑A750) was 
obtained from Shanghai Institutes for Biological Sciences, 
Chinese Academy of Cell Resource Center, and maintained 
in RPMI-1640 supplemented with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) at 37˚C with 
5% CO2 and at humidified atmosphere. Gefitinib (Iressa) was 
purchased from AstraZeneca, and GW3965 was purchased 
from Sigma‑Aldrich (Merck KGaA, Darmstadt, Germany). 
Cells were treated with gefitinib and GW3965 in RPMI‑1640 
supplemented with 5% FBS. Primary antibodies against MET, 
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PTEN, AKT, p‑Akt (Ser473), NF‑κB, p-NF-κB, Bax, Bcl-2 and 
β-actin were obtained from cell signaling technology.

Generation of gefitinib‑resistant H827 cells in vitro. To 
generate a resistant cell line, we exposed H827 cells to 
increasing concentrations of gefitinib according to previously 
described methods (16). The resistant H827 cells were passed 
25 times in the absence of gefitinib and were found to maintain 
their resistance as confirmed by Cell Counting kit‑8 (CCK‑8; 
Dojindo, Kumamoto, Japan) assays. Six individual clones were 
isolated and all were confirmed independently to be resistant to 
gefitinib by CCK‑8 assay. No significant change was observed 
in the sensitivity to gefitinib in parental cells during the period.

Cell proliferation assay. Cancer cells were seeded in 96-well 
plates and exposed to different doses of gefitinib alone, GW3965 
alone, and both drugs for 96 h. Each combination of cell line and 
drug concentration was set up in 5 replicate wells and repeated 
at least thrice. Cell proliferation was measured by the CCK-8 
assay. IC50 values were determined by interpolation from the 
dose‑response curves. Among the six gefitinib‑resistant clones, 
we selected the most sensitive to LXR ligands for further study.

Sequencing of the EGFR gene. To determine the EGFR 
sequence of cells, DNA was extracted from each cell line using 
a QIA‑amp DNA mini kit (Qiagen, Tokyo, Japan), and the exons 
encoding the intracellular domain (exons 18‑21) were amplified 
by PCR. Primer sequences are shown in Table I (17). Sequencing 
was conducted using an ABI 3500 sequencer (ABI).

Colony formation assay. Clonogenic survival assays were 
prepared according to literature (18). Briefly, H827-7-2 and 
H827-7-4 cells were seeded at a density of 600 cells/well in 
flat‑bottomed 6‑well plates. According to pre‑experimental 
results, cells were treated with 2 ml of gefitinib (1 µM) alone, 
LXR ligands (GW3965, 1 µM) alone, and both drugs diluted 
with the medium to appropriate concentrations after 24 h of 
incubation. Then, cells were cultured for an additional 15 days, 
and subsequently stained with Giemsa. Experiments were 
performed forthrice.

Cell apoptosis analysis. H827-7-2 and H827-7-4 cells were 
seeded in 6-well plates (2x104 cells/well) for 12 h and treated with 
gefitinib (5 µM) alone, LXR ligands (GW3965, 5 µM) alone, and 
both drugs for another 96 h, and then cells were harvested and 
washed twice with ice‑cold PBS. Annexin V‑FITC/PI staining 
was used to detect apoptotic cells. Three individual experiments 
were conducted.

Quantitative PCR (qPCR) analysis. Total RNA was isolated from 
H827-7-2 and H827-7-4 cells treated with GW3965 at different 
concentrations using TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's instructions and 
cDNA was synthesized with PrimeScript RT Master Mix and 
premix EX Taq™ Probe qPCR Mix (Takara Bio, Dalian, China) 
on a 7300 Real‑Time PCR system (Applied Biosystems; Thermo 
Fisher Scientific, Inc.) according to the manufacturer's instruc-
tions. Quantitative PCR was performed using SYBR Green 
PCR Mix (Roche, Mannheim, Germany). β-actin was used as 
an internal control to normalize the amount of total RNA in 

each sample. Primer sequences were summarized in Table I. 
The relative levels of gene expression were determined using 
the ΔΔCt method relative to internal control gene β‑actin. All 
reactions were repeated thrice for each sample.

Moreover, qPCR was performed using premix EX Taq™ 
Probe qPCR Mix on a 7300 real-time PCR system. The copy 
number ratio of MET to GAPDH, a housekeeping gene, was 
calculated using a genomic DNA sample. The sequences of 
the Taqman probe and primers for MET and GAPDH were 
previously described (19). Quantification was based on standard 
curves from a serial dilution of normal human genomic DNA. 
All specimens were analyzed intriplicates.

Western blot analysis. Cells were lysed in RIPA buffer 
(Beyotime Institute of Biotechnology, Haimen, China). Proteins 
were separated on 10% Bis-Tris Mini gels and transferred to 
a PVDF membrane. The primary antibodies used were AKT, 
p‑Akt (Ser473), NF‑κB, p-NF-κB, Bax, Bcl-2, MET, PTEN 
(1:1,000; Cell Signaling Technology, Inc., Danvers, MA, 
USA), and β‑actin (1:1,000; Sigma‑Aldrich). Proteins were 
detected with secondary antibodies (1:5,000; Immunology 
Consultanta Laboratory, Portland, OR, USA) and enhanced 
chemiluminescence solution (ECL; Beyotime Institute of 
Biotechnology).

Statistical analysis. Data were expressed as means ± SD. 
Statistical analysis was conducted using one‑way ANOVA and 
Student's t-test with Graphpad 5.0 and SPSS 13.0. P<0.05 was 
considered statistically significant.

Results

Effect of combined treatment of GW3965 and gefitinib. After 
establishing six monoclonal gefitinib-resistant H827 cell 
lines, we characterized their drug resistance indices through 

Table I. Sequence of EGFR (at exons 18-21), β-actin, LXRα, 
LXRβ.

Primer name Primer sequence 5' to 3'

EGFR18‑F AGCATGGTGAGGGCTGAGGTGAC
EGFR18‑R ATATACAGCTTGCAAGGACTCTGG
EGFR19‑F CCAGATCACTGGGCAGCATGTGGCACC
EGFR19‑R AGCAGGGTCTAGAGCAGAGCAGCTGCC
EGFR20‑F GATCGCATTCATGCGTCTTCACC
EGFR20‑R TTGCTATCCCAGGAGCGCAGACC
EGFR21‑F TCAGAGCCTGGCATGAACATGACCCTG
EGFR21‑R GGTCCCTGGTGTCAGGAAAATGCTGG
β‑actin‑F GATGAGATTGGCATGGCTTT
β‑actin‑R CACCTTCACCGTTCCAGTTT
LXRα‑F TCTGGAGACATCTCGGAGGTA
LXRα‑R GGCCCTGGAGAACTCGAAG
LXRβ‑F AGAAGATTCGGAAACAACAGCA
LXRβ‑R GCTGGATCATTAGTTCTTGAGCC

EGFR, epidermal growth factor receptor; F, forward; R, reverse; 
LXR, liver X receptor.
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cell proliferation assays. As illustrated in Table II, ~300-fold 
increase was observed in IC50 for each monoclonal cell line 
compared with those of parental H827 cells (Fig. 1A).

We found that 5 µM GW3965 had no inhibitory effects 
on the growth of TKI-resistant lung cancer cell lines and 
its monoclonal cell lines (Fig. 1B). Therefore, we continued 
using this concentration for further analysis. The amount of 
gefitinib (5 µM), which was less than 50% of the inhibitory 
concentration (IC50) had no significant effect on all mono-
clonal cells (Fig. 1A). Then, we explored the combinational 
therapeutic potential of GW3965 and gefitinib, in monoclonal 
cell lines. Combined treatment showed significant growth 
inhibitory proliferation compared with each drug alone in 
H827-7-2 and H827-7-4 cells (Fig. 1C). These data suggested 
that GW3965 may increase the sensitivity of NSCLC to 
EGFR-TKI. To exclude the mechanisms of acquired resis-
tance, we conducted the DNA sequencing of EGFR at exons 
18-21 and examined genetic alterations, including the levels 
of MET (20) and PTEN (21) and the well-known T790M 
mutation in these two monoclonal cells (Table I). T790M 
mutation at exon 20 was not observed in the H827-7-2 and 
H827-7-4 cells (Fig. 2A). The expression of PTEN was 
similar in both monoclonal cells, whereas MET was higher 

in H827-7-2 and H827-7-4 cells than in parental H827 cells 
(Fig. 2B and C).

LXR ligands increase gefitinib‑induced apoptosis in H827‑7‑2 
and H827‑7‑4 cells. We then analyzed the induction of apoptosis 
in the two monoclonal cells treated with GW3965 alone, gefitinib 
alone, or in combination. As shown in Fig. 3, flow cytometric 
analysis revealed that the percentage of apoptosis induced by gefi-
tinib in H827-7-2 cells was 6.802%. When GW3965 was added 
together with gefitinib, the percentage of apoptosis dramatically 
increased to 20.69%. Similarly, the percentage of apoptosis 
induced by gefitinib increased from 8.88 to 22.06% after treat-
ment with GW3965 in H827-7-4 cells (Fig. 3). Colony-forming 
assays revealed that GW3965 alone did not enhance the apoptosis 
of H827-7-2 and H827-7-4 cells, but the combination therapy 
significantly augmented apoptosis (Fig. 4A).

Furthermore, we examined the effect of GW3965 on 
apoptotic proteins. Cells were treated with gefitinib (5 µM) 
alone, LXR ligand (GW3965, 5 µM) alone, or both drugs for 
96 h. Western blot analysis showed that gefitinib enhanced 
Bcl-2 expression and decreased Bax expression compared 
with that of the control. GW3965 treatment with gefitinib 
weakened the effect of cell apoptotic proteins compared with 
gefitinib alone (Fig. 4B). Overall, these in vitro data suggest 
that gefitinib resistant cells have a stress response to gefitinib, 
but GW3965 can reduce this stress response to gefitinib in the 
H827-7-2 and H827-7-4 cells. The combination of GW3965 
with gefitinib resensitized the resistant cells to TKIs. Reduced 
stress response may be one of the important mechanisms 
underlying the synergistic effects of LXR ligands on gefitinib.

Effect of GW3965 on the transcriptional level of nuclear 
receptor LXR. As GW3965 activates LXR receptors, we then 
applied Quantitative PCR assay to confirm whether GW3965 
affects the level of LXRs receptors (LXRα and LXRβ) in 

Table II. Lung cancer inhibitory concentration 50 values (IC50) 
for treatment with gefitinib.

Human lung cancer cells Gefitinib (IC50
48 h)

H827 0.0401±0.042 µM
H827‑7‑2 >20 µM
H827‑7‑4 >20 µM

IC50, half maximal inhibitory concentration.

Figure 1. H827‑7‑2 and H827‑7‑4 cells resistant to gefitinib. (A and B) Cell lines were treated with the indicated doses of GW3965 or gefitinib for 96 h. The 
viability of cells was determined using the CCK‑8 assay. (C) H827‑7‑2 and H827‑7‑4 cells were treated with gefitinib alone or combined with LXR ligands for 
96 h. **P<0.001 compared with control; #P<0.01, ##P<0.001 between one treatment alone. CCK-8, cell counting kit-8; LXR, liver X receptor.
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the cell nucleus. As shown in Fig. 5A, with the treatment 
of GW3965 in H827-7-2 and H827-7-4 cells, the expression 
level of LXRα did not exhibit any differences, However, 
GW3965 increased the expression level of LXRβ distinctly at 
a higher dose (5 and 10 µM), whereas it had no effect at low 
dose (1 µM).

GW3965 treatment with gefitinib influences the activation of 
AKT‑NF‑κB. To further investigate the underlying mechanism 
of apoptosis introduced by GW3965 combined with gefitinib in 
H827‑7‑2 and H827‑7‑4 cells, these two cells were first treated 
with GW3965 (5 µM) separately at various periods (0‑96 h). 
The phosphorylation of AKT and NF‑κB was decreased after 
treatment with T0901317 for 96 h (Fig. 5B). Therefore, we 
analyzed the expression of EGFR and its downstream genes 
in two cells treated with gefitinib (5 µM) alone, LXR ligands 

(GW3965, 5 µM) alone or both drugs for 96 h. As shown 
in Fig. 5C, the phosphorylation levels of AKT and NF‑κB 
when combined with GW3965 were downregulated compared 
with that of gefitinib alone.

Discussion

LXR is a ligand-dependent nuclear receptor. Previous study 
demonstrated that LXR had antiproliferative effects on cancer 
cells (22). Our results demonstrated that GW3965 exhibited 
no cytotoxicity in H827-7-2 and H827-7-4 cells. However, the 
proliferation rates of the two cells being treated with GW3965 
combined with gefitinib were obviously inhibited when 
compared with that of gefitinib alone.

We found that GW3965 sensitized gefitinib in the two 
cells by inducing apoptosis and inhibiting colony formation. 

Figure 3. GW3965 (5 µM) in combination with gefitinib (5 µM) enhanced apoptosis of H827‑7‑2 and H827‑7‑4 cells. **P<0.001 and ***P<0.0001 vs. gefitinib 
treatment alone.

Figure 2. (A) T790M mutation was not observed in H827‑7‑2 and H827‑7‑4 cells by direct sequencing. (B) Western blot analysis was performed on H827: 
H827‑7‑2 and H827‑7‑4 cells to detect the expression levels of MET and PTEN. (C) The copy number ratio of MET to GAPDH, was calculated using a genomic 
DNA sample. ***P<0.0001 vs. H827.
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To further investigate whether GW3965 could affect cells 
apoptotic proteins, we detected the protein expression of 
Bcl‑2 and Bax. Western blot analysis showed that gefitinib 
increased the expression level of Bcl-2 and decreased the 
expression level of Bax compared with that in the control. 
These results further illustrated that lung cancer cells had 
been resistant to gefitinib (23). As expected, GW3965 
alone did not change the expression level of cell apoptotic 
proteins compared with that in the control. Meanwhile, when 
GW3965 was combined with gefitinib, the expression levels 
of Bcl-2 decreased while Bax increased compared with that 
in gefitinib alone.

In addition, synthetic agonists including TO-901317 and 
GW3965, were biphasic activators of LXRα and LXRβ (24). 
Compared with endogenous ligands, synthetic agonists could 
activate LXR more effectively and generate stronger effect on 
the transcription of downstream target genes (25,26). Colon 
cancer cell apoptosis could be induced by the LXRβ‑dependent 
pathway (27). However, LXR could be synergistic in human 
carcinomas owning to signaling interactions mediated through 

LXRα (28). In this study, the expression level of LXRβ 
increased with higher dose of GW3965, prompting that LXRβ 
may be the primary subtype expressed in our experimental 
models.

Human NSCLCs with activating EGFR mutations showed 
an excellent response to treatment with EGFR-TKIs, including 
gefitinib and erlotinib. However, most patients with prolonged 
exposure to the drug developed relapse of cancer with drug 
resistance (29). Two principal mechanisms accounting for 
~50% of acquired resistance were secondary mutations of 
threonine-to-methionine substitution at amino acid posi-
tion 790 (T790M) of EGFR and amplification of the N‑methy
l-N0-nitro-N-nitroso-guanidine (MNNG) HOS-transforming 
gene (MET) oncogene (30-32). In this study, T790M mutation 
at exon 20 was not observed in the cells, but we found that the 
expression level of MET was higher in H827-7-2 and H827-7-4 
cells than that in parental H827 cells, whereas PTEN had 
similar expression between two cell lines.

Various molecular mechanisms of acquired resistance 
to EGFR-TKIs in lung cancer were reactivation of EGFR 

Figure 4. (A) Colony formation assays in H827‑7‑2 and H827‑7‑4 cells. ***P<0.0001 vs. untreated group; ##P<0.001 and ###P<0.0001 between one treatment 
alone. (B) Western blot analysis was performed to detect the expression levels of Bcl-2 and Bax with different treatments.
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downstream signaling pathways, especially Akt‑NF‑κB 
signal pathway (33). MET amplification could lead 
to gefitinib resistance in lung cancer by activating 
ERBB3‑phosphoinositide 3‑kinase (PI3K)/Akt (34). NF-κB 
was known to have a role in survival signaling and could 
promote the transcription of anti-apoptotic genes. Previous 
study found that inhibition of NF-κB enhanced apoptosis 
in EGFR-mutant lung cancer models (35). Furthermore, 
the inhibition of NF-κB could enhance EGFR TKI-induced 
apoptosis (36). Previous studies demonstrated that the LXR 
agonist could inhibit activation of the EGFR‑AKT‑NF‑κB 
pathway and also had a potential synergistic effect with 
EGFR-TKI treatment (37,38). The phosphorylation of Akt 
and NF-κB reduced time dependently with GW3965 treat-
ment in the two cells in our study. Thus, we hypothesized 
that the Akt‑NF‑κB signaling pathway could be suppressed 
by the LXR agonist, so that it could sensitize gefitinib‑resis-
tant non‑small cell lung cancer cells to gefitinib treatment. 
Our results proved this hypothesis and confirmed the inhibi-
tory effect of the LXR agonist on the Akt‑NF‑κB signaling 
pathway. The combination of gefitinib with GW3965 

suppressed Akt‑NF‑κB signaling pathway, which promoted 
cell apoptotsis and inhibited cell proliferation.

In conclusion, our results demonstrated that the LXR 
agonist GW3965 could effectively enhanced gefitinib‑resistant 
cell sensitivity to gefitinib. In addition, the results suggested 
that the resensitization of H827-7-2 and H827-7-4 was achieved 
by the inhibited activation of Akt‑NF‑κB pathway, which 
mediated by the LXRβ expression. Overall, these findings 
provided evidence for the combination treatment of acquired 
TKI resistance NSCLC.
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Figure 5. GW3965 sensitizes gefitinib by inhibiting Akt‑NF‑κB activation: (A) H827‑7‑2 and H827‑7‑4 cells were treated with increasing concentrations of 
LXR ligands. mRNA expression levels of LXRα and LXRβ were measured using the qPCR assay. (*P<0.01 and #P<0.001 compared with control). (B) H827-7-2 
and H827‑7‑4 cells were treated with GW3965 for different hour. The expression of AKT/p‑AKT and NF‑κB/p-NF-κB were detected by western blot analysis. 
(C) H827‑7‑2 and H827‑7‑4 cells were treated with gefitinib alone or combined with LXR ligands for 96 h. Western blot analysis was performed to detect the 
expressions of AKT, p‑AKT, NF‑κB and p-NF-κB. LXR, liver X receptor.
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