
RAID: Regression Analysis–Based
Inductive DNA Microarray for Precise
Read-Across
Yuto Amano, Masayuki Yamane and Hiroshi Honda*

R&D Safety Science Research, Kao Corporation, Tochigi, Japan

Chemical structure-based read-across represents a promising method for chemical
toxicity evaluation without the need for animal testing; however, a chemical structure is
not necessarily related to toxicity. Therefore, in vitro studies were often used for read-
across reliability refinement; however, their external validity has been hindered by the
gap between in vitro and in vivo conditions. Thus, we developed a virtual DNA
microarray, regression analysis–based inductive DNA microarray (RAID), which
quantitatively predicts in vivo gene expression profiles based on the chemical
structure and/or in vitro transcriptome data. For each gene, elastic-net models
were constructed using chemical descriptors and in vitro transcriptome data to
predict in vivo data from in vitro data (in vitro to in vivo extrapolation; IVIVE). In
feature selection, useful genes for assessing the quantitative structure–activity
relationship (QSAR) and IVIVE were identified. Predicted transcriptome data
derived from the RAID system reflected the in vivo gene expression profiles of
characteristic hepatotoxic substances. Moreover, gene ontology and pathway
analysis indicated that nuclear receptor-mediated xenobiotic response and
metabolic activation are related to these gene expressions. The identified IVIVE-
related genes were associated with fatty acid, xenobiotic, and drug metabolisms,
indicating that in vitro studies were effective in evaluating these key events.
Furthermore, validation studies revealed that chemical substances associated with
these key events could be detected as hepatotoxic biosimilar substances. These
results indicated that the RAID system could represent an alternative screening test for
a repeated-dose toxicity test and toxicogenomics analyses. Our technology provides
a critical solution for IVIVE-based read-across by considering the mode of action and
chemical structures.
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INTRODUCTION

Non-animal testing to assess the efficacy and safety of chemical substances is one of the key concepts
in balancing animal welfare and efficient development. Since the marketing ban in the EU in March
2013 [(EC) No. 1223/2009] (EU, 2009) of cosmetic products and ingredients tested on animal
models, safety assessment methodologies independent of animal testing have attracted much
attention. Simultaneously, the utilization of non-animal high-throughput technology for
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optimizing drug discovery processes is becoming highly
important in pharmaceuticals (Loiodice et al., 2017; Rognan,
2017; Amano et al., 2020).

Read-across, a process that estimates substance toxicity based
on the concept that substances with similar chemical structures
have similar biological activities, represents a promising approach
and has already been conceptually accepted as a reliable safety
risk assessment by some regulatory authorities (ECHA, 2017;
European Commission, 2018). Likewise, quantitative
structure–activity relationship (QSAR) has been widely used,
and impurity characterization received regulatory acceptance
(ICH M7). However, since subtle structural differences may
elicit different biological responses, supporting the read-across
robustness by using biological similarities has been considered
important (Ball et al., 2016, 2020; Zhu et al., 2016). Registration,
Evaluation, Authorization, and Restriction of Chemicals
(REACH) mentions that the read-across performed by
registrants often fails to comply with the legal requirements
due to defects in the hypothesis and justification of
toxicological prediction (ECHA, 2020).

There are two approaches to enhance the reliability of read-
across: 1) employment of in vitro data relevant to specific toxicity.
Methodologies to incorporate in vitro data within read-across
(Ball et al., 2016, 2020; ECHA, 2017; Guo et al., 2019) and some
case studies (OECD, 2016a, 2016b, 2018; Nakagawa et al., 2020,
2021) have been reported. However, these approaches can be
applied only to specific toxicity end points and substances with a
known toxicity and mode of action. Such conditions were
previously termed as “local validity” (Patlewicz et al., 2014). 2)
The use of biologically similar substances based on their profiles
obtained from a large number of bioassays. The United States
Environmental Protection Agency’s (US EPA’s) research project,
ToxCast and Tox21, provided hundreds of high-throughput
screening assays, and several groups employed such biological
activity data for toxicological evaluation (Sipes et al., 2013;
Berggren et al., 2015; Richard et al., 2021). Although this
concept could be applied to substances with little information
to elucidate their entire toxicological profiles and find their key
mode of action, it is time-consuming and expensive to conduct
numerous bioassays for a new candidate substance. By contrast,
transcriptome data containing approximately 30,000 gene
expression values can be used to estimate perturbated
mechanisms through enrichment analysis. Wang et al. (2016)
tried to predict drug-induced adverse effects by employing LINCS
L1000 data (Subramanian et al., 2017), whereas Iwata et al. (2019)
developed a computational method to predict missing values
from the LINCS L1000 transcriptomic profiles of various human
cell lines and provided new drug therapeutic indications.
Genomic data have been considered to be usable in read-
across by Health Canada and a research group from the US
FDA (Health Canada, 2019; Liu et al., 2019). However, several
researchers have shown that in vitro gene expression values are
not always highly correlated with in vivo data (Sutherland et al.,
2016; Grinberg et al., 2018; Liu et al., 2018). Thus, interpreting
toxicological meaning from the in vitro–in vivo relationship and
in vitro to in vivo extrapolation (IVIVE) in omics data represents
a big challenge for chemical risk assessment. IVIVE was originally

researched in toxicokinetics, such as in hepatic clearance and
metabolites using hepatocytes (Soars et al., 2007; Umehara and
Camenisch, 2012); most recent studies on non-animal testing
have focused on predicting plasma concentrations, which is
relevant for identification of a margin of exposure in risk
assessment (Thomas et al., 2013a; Bell et al., 2018; Li et al.,
2021). However, IVIVE should be considered for both
toxicokinetics and toxicodynamics. Understanding of the
in vitro to in vivo relationship of bioactivity data is also
essential for non-animal testing. As an IVIVE study in omics
data, Liu et al. (2020) developed a useful in silico strategy to
narrow the data gap between in vitro and in vivo conditions. They
modified in vitro data using non-generative matrix factorization
methods to improve the correlation with in vivo data, which
overcame the shortcomings of previous large-scale genomic data
predictions regarding the in vitro–in vivo data gap (Liu et al.,
2020). Although non-generative matrix factorization enables
macroscopic estimation based on a pattern recognition
classifying chemical and biological responses, it does not focus
on estimation of each gene. As an alternative solution,
microscopic estimation of each gene expression was performed
based on tensor-train weighted optimization using machine
learning (Iwata et al., 2019); however, such comprehensive
estimations have not been integrated within an IVIVE study.
Therefore, predicting in vivo transcriptomic profiles from in vitro
data for IVIVE might not only enhance the robustness of read-
across but could also be utilized in other non-animal testing
strategies as weight of evidence, such as in Integrated Approaches
to Testing and Assessment (IATA) and new approach methods
(NAMs) for safety and drug repositioning research.

In this study, we developed a virtual DNA microarray that
quantitatively predicts the in vivo gene expression profiles based
on the chemical structure and/or in vitro transcriptome data. For
each gene, elastic-net models, a regression analysis method that has
been used in toxicity prediction with visualization of feature
importance (e.g., Fujita et al., 2020), were constructed using
chemical descriptors and in vitro transcriptome data. We named
the set of prediction models “regression analysis–based inductive
DNA microarray (RAID),” which inductively analyzes the mode of
action and the key event in adverse effects with reference to the
redundant arrays of inexpensive disks (also represented as RAID), a
data storage virtualization technology that combines multiple
physical disk drive components with the purpose of data
redundancy. As RAID (storage technology) complements data
based on information of multiple components, we hope that
RAID (our microarray) will complement the relationships
between multiple media (in vivo gene expression, in vitro gene
expression, and chemical structure). Our RAID system achieved a
quantitative in vitro to in vivo extrapolation (QIVIVE) by the
integration of a structure-based approach (QSAR) with
transcriptomic data. Whereas general “Q”IVIVE studies predict
dose (or concentration) quantitatively in toxicological or
toxicokinetic effects, our “Q”IVIVE predicts in vivo gene
expression values quantitatively. Finally, the substance similarities
were analyzed by principal component analysis (PCA), which
proved useful in understanding the features of toxic substances
based on their gene expression profile (Watanabe et al., 2012), using
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RAID (the virtual microarray) data, in vivo data, in vitro data, and
chemical structure data to validate the usefulness of read-across.

MATERIALS AND METHODS

Gene Expression and Chemical Structure
Data
No animal experiment was performed in this study. The
transcriptome data from DNA microarrays (Affymetrix Rat
Genome 230 2.0 chips; Santa Clara, CA, United States) were
extracted from the Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation system (TG-GATEs). TG-GATEs contains
in vitro and in vivo transcriptome data for rat single- and
repeated-dose toxicity tests of 170 compounds (Igarashi et al.,
2015). The transcriptome data obtained from the livers of rats
treated with high doses for 28 days and primary rat hepatocytes
treated with high doses for 24 h were downloaded and preprocessed
using MAS5 (Gautier et al., 2004). In this study, chemical substances
tested in vitro and in vivo those fulfilled a maximum sample number
(n = 2 for in vitro and n = 3 for in vivo) and had no incalculable
chemical descriptors (described below) were analyzed. Thus,
115 compounds were examined in this study (Table 1).

For the chemical structure data, the alvaDesc chemical descriptors
(Mauri, 2020) were calculated using alvaDesc v1.0 software
(Alvascience Srl, Lecco, Italy). AlvaDesc can calculate 3,885 2D-
descriptors and 1,420 3D-descriptors. However, only 2D-descriptors
were used, excluding those with a high pair correlation (>0.95),

constant for all substances, and at least one missing value.
Consequently, 854 descriptors were calculated. Each descriptor was
normalized using the bestNormalize package (ver. 1.8.0) in R (ver.
4.1.1) (https://cran.r-project.org/). This package estimates the optimal
normalizing transformation from the Yeo–Johnson transformation,
the Box Cox transformation, the log10 transformation, the square root
transformation, and the arcsine transformation.

Construction of the Regression
Analysis–Based Inductive DNA Microarray
System (Virtual Microarray)
To extrapolate in vitro transcriptome data to in vivo conditions, we
developed predictive models for each gene. The predictive models
predicting in vivo transcriptome data from chemical descriptors and
in vitro data were developed using the elastic net regression method.
The value of each cell in the matrix was the fold change on a base
2 logarithmic scale. The set of those predictive models was named a
virtual microarray “RAID” (as mentioned in the Introduction
section) (Figure 1). To suppress overlearning, the
hyperparameters (α and λ) of each model were optimized with a
5-fold cross-validation. We removed the genes that were associated
with less than 10 chemical substances inducing differential
expression (<1.5-fold change) since it would be difficult to run
machine learning scripts on such rare genes. Consequently, RAID
was composed of 1,601 prediction models for each gene.

To construct RAID that correctly predicts the bioactivities of
chemical substances, the quality of training data sets was extremely

TABLE 1 | List of chemical substances used in the present study and their toxicological classes.

Toxicological classa Name

Toxic Allyl alcohol (AA), 2-acetamidofluorene (AAF), α-naphthyl isothiocyanate (ANIT), Acetaminophen (APAP), Aspirin (ASA),
Benzbromarone (BBr), Bromobenzene (BBZ), Bucetin (BCT), Bendazac (BDZ), Benziodarone (BZD), Carboplatin (CBP),
Coumarin (CMA), Chlormezanone (CMN), Chloramphenicol (CMP), Colchicine (COL), Cyclophosphamide monohydrate
(CPA), Clomipramine hydrochloride (CPM), Chlorpropamide (CPP), Cyclosporine A (CPA), Diltiazem hydrochloride (DIL),
Disopyramide (DIS), Disulfiram (DSF), Dantrolene sodium hemiheptahydrate (DTL), Diazepam (DZP), Ethambutol
dihydrochloride (EBU), 17-α-Ethinylestradiol (EE), DL-Ethionine (ET), Fenofibrate (FFB), Flutamide (FT), Gemfibrozil (GFZ),
Hexachlorobenzene (HCB), Lomustine (LS), Mexiletine hydrochloride (MEX), Methapyrilene hydrochloride (MP),
Methyltestosterone (MTS), Methimazole (MTZ), Nimesulide (NIM), Phenacetin (PCT), Promethazine hydrochloride (PMZ),
Propylthiouracil (PTU), Sulfasalazine (SS), Simvastatin (SST), Sulindac (SUL), Thioacetamide (TAA), Terbinafine
hydrochloride (TBF), Ticlopidine hydrochloride (TCP), Trimethadione (TMD), Vitamin A (VA), WY-14643 (WY)

Non-toxic Acarbose (ACA), Acetazolamide (ACZ), Adapin (ADP), Ajmaline (AJM), Amiodarone hydrochloride (AM), Amitriptyline hydrochloride
(AMT), Allopurinol (APL), 2-Bromoethylamine hydrobromide (BEA), Caffeine (CAF), Captopril (CAP), Carbamazepine (CBZ),
Clofibrate (CFB), Chlorpheniramine maleate (CHL), Cimetidine (CIM), Chlormadinone acetate (CLM), Cephalothin sodium (CLT),
Ciprofloxacin hydrochloride (CPX), Chlorpromazine hydrochloride (CPZ), Diclofenac sodium (DFNa), Danazol (DNZ), Erythromycin
ethylsuccinate (EME), Enalaprilmaleate (ENA), Ethanol (ETN), Etoposide (ETP), Famotidine (FAM), Fluphenazine dihydrochloride (FP),
Furosemide (FUR), Glibenclamide (GBC), Griseofulvin (GF), Gentamicin sulfate (GMC), Haloperidol (HPL), Hydroxyzine
dihydrochloride (HYZ), Ibuprofen (IBU), Imipramine hydrochloride (IMI), Isoniazid (INAH), Iproniazid phosphate (IPA), Ketoconazole
(KC), Methyldopa (MDP), Mefenamic acid (MEF), Metformin hydrochloride (MFM), Moxisylyte hydrochloride (MXS), Nitrofurantoin
(NFT), Nitrofurazone (NFZ), Nicotinic acid (NIC), Nifedipine (NIF), Omeprazole (OPZ), Papaverine hydrochloride (PAP), Phenobarbital
sodium (PB), D-penicillamine (PEN), Perhexiline maleate (PH), Phenylbutazone (PhB), Phenytoin (PHE), Pemoline (PML), Quinidine
sulfate (QND), Ranitidine hydrochloride (RAN), Rifampicin (RIF), Sulpiride (SLP), Tannic acid (TAN), Tetracycline hydrochloride (TC),
Tiopronin (TIO), Tolbutamide (TLB), Tamoxifen citrate (TMX), Triamterene (TRI), Thioridazine hydrochloride (TRZ), Triazolam (TZM),
Sodium valproate (VPA)

aThe toxicological classes of chemical substances were referred to in a previous report (Low et al., 2011). The authors classified these substances into histopathological and serum
chemistry classes. Substances with hepatotoxic histopathological findings and other histopathological findings with biochemical marker changes in serum chemistry were defined as toxic
substances in this study.
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important, and differentially expressed genes should be determined
strictly considering data noise. Hence, we addressed this issue by data
processing (feature engineering) and model justification. First, after
calculating the fold change values (sample treated groups/solvent
control group), the gene differentiation values with low reliability
were adjusted. Briefly, the fold change value increments were changed
to half (e.g., 1.5 decreased to 1.25) in the sample with the number of
flag A (low reliability) ≥2 out of 3 for in vivo and the number of flag
A ≥1 out of 2 for in vitro, or in the sample with p-values ranging
between 0.05 and 0.1. The fold change values were changed to one-
fourth (e.g., 1.4 decreased to 1.1) in the sample with p-value over
0.1 and were treated as 1 (no differentiation) in the sample with flags
all A in both in vivo and in vitro. Second, the weight parameters were
used in model building. The weight of samples with ≥1.5-fold change
was set to 1.5 and ≥4-fold change was set to 2.

Interpretation of Biological Meaning of
Regression Analysis–Based Inductive DNA
Microarray Analysis
Considering the application of RAID to read-across, the gene
expression data were visualized by PCA using prcomp function
from stats package (ver. 4.1.1), and the probability ellipse frames of
toxic and nontoxic substances were drawn using the ggfortify
package (ver. 0.4.12) in R to compare in vivo, in vitro, and

chemical descriptor data. The toxic class of chemical substances
was determined based on previously reported histopathological and
serum chemistry findings (Table 1) (Low et al., 2011). Since PCAdid
not use the toxicity label for classification, partial least squares
discriminant analysis (PLS-DA) using the hepatotoxicity label was
also conducted to confirm predictive performance (see
Supplementary Material). As a reference data point, the
biological meaning of genes that contributed to the PCA plot of
in vivo data was analyzed using pathway analysis. The loading value
of genes in the PCA was defined as length of loadings calculated
using the Pythagorean theorem:

length �
����������������������������������
(loading of PC1)2 + (loading of PC2)2

√
,

and genes with the top 30 loading values in the first and fourth
quadrant were analyzed.

To analyze the biological consistency with in vivo data,
commonality of principal component–related genes (top and
bottom 30 rotations in each PC1 and PC2 of PCA) were
visualized using the VennDiagram package (ver. 1.6.20) in R,
and enrichment analyses of each categorized gene were
conducted using Gene Ontology—biological process and
Reactome pathway by Metascape (Zhou et al., 2019). Four
categorized genes related to in vivo data (in vivo only, in vivo
and RAID, in vivo and in vitro, and all three data) were analyzed

FIGURE 1 |Development and implementation of a virtual microarray (RAID) for read-across. GE: gene expression. f(x): predictivemodels (formula). (A)RAID system
development. The predictive model for in vivo transcriptome data for each gene was individually constructed by elastic net regression employing chemical descriptors
and in vitro data. The models constructed were defined as a RAID system (a virtual microarray). (B) Workflow of safety evaluation using the RAID system. Chemical
descriptors and in vitro gene expression data were inputted to the RAID system and in vivo gene expression data were outputted. The predicted results were
analyzed by PCA and enrichment analysis for read-across. This procedure would replace toxicogenomics analysis in in vivo repeated dose study.
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to characterize which biological process could be covered by
RAID and in vitro data. Furthermore, to characterize genes whose
predictive models in RAID used in vitro data, enrichment analysis
of the top 20 genes with the highest importance (contribution) for
in vitro data in the model was conducted. In the analysis, the
Affymetrix probe ID was converted to gene symbol using the
biomaRt package (ver. 2.50.2) in R.

Quantitative In Vitro to In Vivo Extrapolation
Effects in Regression Analysis–Based
Inductive DNA Microarray System
For performance evaluation against the quantitative IVIVE, root-
mean-square errors (RMSEs) of RAIDpredicted values to in vivo data
were calculated and compared to those of in vitro data. To exclude the
differences in gene expression value distribution of each data source,
the fold change values were normalized before the RMSEs were
calculated. The RMSEs were calculated both for all genes and genes
for which in vitro data had importance in the model.

Read-Across Application Using External
Data
To validate the usefulness of RAID for functional read-across–based
analysis of both predicted gene expression profiles and chemical
structures, substances that did not contain training data sets for
model building (Table 1) were further explored using Ingenuity
Pathway Analysis (IPA) (QIAGEN Inc., https://www.
qiagenbioinformatics.com/products/ingenuitypathway-analysis).
Specifically, substances that may promote the expression of genes
(having a known relationship with the gene) that were identified by
the PCA and pathway analysis of in vivo data (see the Interpretation
of Biological Meaning of Regression Analysis–Based Inductive DNA
Microarray Analysis section) were explored using IPA. Chemical
descriptors of each substance were analyzed using the alvaDesc v1.
0 software (Alvascience Srl, Lecco, Italy), and the gene expression
profiles were fulfilled using median values of training data sets.
Finally, RAID analyses using constructed predictivemodels for those
substances and reanalyzed PCA data were used to evaluate
similarities based on the predicted biological responses.

RESULTS

Biological Analysis of Regression
Analysis–Based Inductive DNA Microarray
Compared to That of In Vivo and In Vitro
Microarray Data
RAID (predicted transcriptome) data were visualized using PCA
(Figure 2). From a higher perspective, two directions mainly
composed of toxic substances were identified, and many toxic
substances were separated from non-toxic substances via RAID and
in vivo data, whereas they could not be separated based on in vitro and
chemical descriptor data. Moreover, two common toxic substances
groups [e.g., first group (TAA, MP, and HCB) and second group
(WY, FFB, BBr, and GFZ) placed in the first and fourth quadrants)

were distanced from non-toxic substances along PC1 and PC2 in both
RAID and in vivodata, nonetheless the PC1 andPC2were replaced. The
loading plot showed that Cyp1a1 (cytochrome P450, family 1, subfamily
A, polypeptide 1),Gpx2 (glutathione peroxidase 2), andGsta3 (glutathione
S-transferase A3) gene expressions were commonly observed in RAID
and in in vivo data and enabled the discrimination of TAA, MP, and
HCB. Furthermore,Acot1 (acyl-CoA thioesterase 1),Vnn1 (vanin 1), and
Cyp4a11 (cytochrome P450, family 4, subfamily A, polypeptide 11)
contributed to discriminating WY, FFB, BBr, and GFZ.

Pathway analysis indicated that the first group–related genes
would be associated with a xenobiotic response, such as Cyp1a
induction via aryl hydrocarbon receptor (AHR) and carcinogenesis
(Figure 3A), and the second group–related genes would be associated
with peroxisome proliferative activity characterized by Cyp4a
induction via peroxisome proliferator–activated receptor-alpha
(PPARa) activation (Figure 3B). To clarify the biological functions
that RAID covers, the commonalities between the related genes and
principal components were explored (Figure 4 and Table 2). As
expected from Figure 2, RAID shared more genes (36; Table 2) with
the in vivo data than with the in vitro data (9). Enrichment analysis
revealed that the biological processes related to metabolism and
detoxification and pathways associated with peroxisomal protein
transport were enriched in both in vivo and RAID data, indicating
that RAID could cover these functions, and ultimately indicate key
functions through pathway analysis (Figure 3). Conversely, although
several metabolic processes were enriched within the in vitro data,
those biological functions were covered by RAID as well (Figure 4).
These results suggest that RAID data allow the detection of more in
vivo key toxic events than in vitro transcriptome data.

For performance confirmation of discriminative analysis for
hepatotoxicity, PLS-DA using RAID data allowed us to separate
toxic chemicals with high accuracy (Supplementary Table S1).
The accuracy using RAID data was better than that without
RAID, when calibration and test data set were prepared.

Importance of In Vitro Data in the
Regression Analysis–Based Inductive DNA
Microarray System
Enrichment analysis of genes whose predictive model used highly
relevant in vitro data (top 20 genes for which in vitro data had
high importance in all predictive models; Table 3) indicated that
in vitro data contributed to estimating the gene expression values
associated with metabolic processes of fatty acids, xenobiotics,
and drugs and peroxisome proliferative activity (pathway on
peroxisome protein import and biological processes associated
with the regulation of peroxisome size; Figure 5).

Quantitative In Vitro to In Vivo Extrapolation
Performance in the Regression
Analysis–Based Inductive DNA Microarray
System
To evaluate RAID performance in terms of gene expression
values, the RMSEs were calculated for all genes and the genes
for which in vitro data had importance in predictive models.
Considering RAID would be used in read-across, we compared
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FIGURE 2 |PCA score plots for chemical substances and the gene loading in the transcriptome data of (A) in vivo, (B) virtual microarray (RAID), and (C) in vitro data.
PCA score plot with (D) chemical descriptor data. Uppercase letters in PCA score plots: abbreviations of chemical substances are described in Table 1. Blue: nontoxic
substances. Red: hepatotoxic substances. Gene symbols are presented on the arrowhead (loading).
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the RMSEs of RAID data with those of in vitro data, from
conventional non-animal test approaches (Figure 6). The
RMSEs were lower in RAID, indicating a better performance
than what could be obtained using in vitro data.

Validation of Prediction Models Using
External Data
In PCA with in vivo and RAID data, as well as the pathway
analysis of PC-related genes (Figures 2, 3), the genes related to

peroxisome proliferative activity and xenobiotic metabolism
activity possibly leading to liver cancer, which were
respectively characterized by Cyp1a induction via AHR and
Cyp4 induction via PPARa, were identified as key features.
Thus, potential Cyp1a and Cyp4a inducers were explored
using the knowledge-based approach using the IPA software.
Moreover, using the top 30 genes identified using PCA (described
in the Interpretation of Biological Meaning of Regression
Analysis–Based Inductive DNA Microarray Analysis section),
upstream regulator analysis focusing on chemical substances

FIGURE 3 | List of genes that have high loading values in the (A) fourth quadrant and (B) first quadrant in the PCA plot of in vivo data, where the first group (TAA,MP,
and HCB) and the second group (WY, FFB, BBr, and GFZ) plotted, and their pathway map. The loading value was defined as the loading length in the first or fourth
quadrant calculated using the Pythagorean theorem. The pathway map was drawn by upstream regulator analysis using IPA.
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was performed, and 20 chemicals were identified. Finally, a total
of 21 chemicals (potentialCyp1a inducers: 10 chemicals; potential
Cyp4a inducers: 11 chemicals) were selected as candidates for
external validation and were subjected to RAID analyses
(Table 4). Substances already present in the TG-GATE
(training sets) or had uncalculated chemical descriptors data
were excluded.

For the PCA, approximately half of the substances were
plotted with positive PC scores, which was consistent with the
direction expected from the training data set for both potential
Cyp1a and Cyp4a inducers (Figure 7). Lastly,
pentachlorobiphenyl, polychlorinated biphenyls, and
pentachlorodibenzofuran were isolated as Cyp1a inducers,
whereas nafenopin, ciprofibrate, and di(2-ethylhexyl)phthalate
were isolated as Cyp4a inducers.

DISCUSSION

The transcriptome data signatures derived from the RAID (the
virtual microarray) system were in good agreement with those of
in vivo data, and the technology provided an understanding of the
features of hepatotoxic substances based on the toxicological
mechanism interpretation. The mechanism of action of the
two characteristic toxic substances separated using PCA
analysis was shown to be achieved through Cyp1a induction
via AHR and Cyp4a induction via PPARa (pathway and gene
ontology analysis). The AHR-induced drugs raise safety concerns

during developmental periods (Qin et al., 2019), and PPARa-
induced drug toxicity requires species differentiation
considerations (Ito et al., 2006). Therefore, predicting the
involvement of these nuclear receptors and induction of
metabolic enzymes is critical for understanding the molecular
initiating events and the key events associated with adverse
outcome pathway. RAID enables the prediction of gene
expression levels, thus exhibiting properties required for the
next-generation risk assessment methods.

The first substance group (TAA, MP, and HCB), representing
toxic substances commonly differentiated from non-toxic
substances using PCA on in vivo and RAID data, has been
reported to have carcinogenicity with metabolic activation
(Uehara et al., 2008; Hajovsky et al., 2012; US HSS, 2015).
Furthermore, these substances have been shown to activate
xenobiotic-related receptors, such as AHR inducing Cyp1a
(Ushel et al., 2002; Yamashita et al., 2014; Clara et al., 2015).
Moreover, in vivo transcriptome data in this study showed that
TAA, MP, and HCB induce Cyp1a activation. AHR is known for
mediating the toxicity and tumor promoting properties despite
the mechanism through which AHR activates carcinogenesis
needing to be elucidated (Safe et al., 2013; Murray et al., 2014).

The second substance group (WY, FFB, BBr, and GFZ)
includes fibrates which are recognized as PPARa agonists
(Schoonjans et al., 1996), implying that induction of Cyp4a via
PPARa and perturbation of lipid-related genes are involved as a
series of key events. Although another fibrate included in training
data—clofibrate (CFB)—was classified as a non-toxic substance

FIGURE 4 |Commonalities of principal component–related genes and their biological functions analyzed by gene ontology and pathway analyses. Venn diagram of
genes related to the first and second principal components of in vivo, a virtual microarray (RAID), and in vitro data.
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TABLE 2 | Principal components relating common genes in a virtual microarray (RAID) and in vivo data.

Probe ID Symbol Description

1398250_at Acot1 Acyl-CoA thioesterase 1
1370269_at Cyp1a1 Cytochrome P450, family 1, subfamily a, polypeptide 1
1387022_at Aldh1a1 Aldehyde dehydrogenase 1, family member A1
1368934_at Cyp4a1 Cytochrome P450, family 4, subfamily a, polypeptide 1
1388211_s_at Acot1 Acyl-CoA thioesterase 1
1374070_at Gpx2 Glutathione peroxidase 2
1367811_at Phgdh Phosphoglycerate dehydrogenase
1389253_at Vnn1 Vanin 1
1388210_at Acot2 Acyl-CoA thioesterase 2
1371089_at Gsta3 Glutathione S-transferase alpha 3
1370491_a_at Hdc Histidine decarboxylase
1379275_at Snx10 Sorting nexin 10
1370902_at Akr1b8 Aldo-keto reductase, family 1, member B8
1367733_at Car2 Carbonic anhydrase
1386889_at Scd2 Stearoyl-Coenzyme A desaturase 2
1386901_at LOC103690020 Platelet glycoprotein 4-like
1391187_at Ppl Periplakin
1384225_at Dab1 DAB adaptor protein 1
1384274_at AABR07037307 similar to Spindlin-like protein 2
1395403_at Stac3 SH3 and cysteine-rich domain 3
1375845_at Aig1 Androgen induced 1
1368283_at Ehhadh Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase
1387740_at Pex11a Peroxisomal biogenesis factor 11 alpha
1370067_at Me1 Malic enzyme 1
1370870_at Me1 Malic enzyme 1
1371886_at Crat Carnitine O-acetyltransferase
1379361_at Pex11a Peroxisomal biogenesis factor 11 alpha
1386885_at Ech1 Enoyl-CoA hydratase 1
1367659_s_at Eci1 Enoyl-CoA delta isomerase 1
1378169_at Acot3 Acyl-CoA thioesterase 3
1374475_at Abhd1 Abhydrolase domain containing 1
1387783_a_at Acaa1a Acetyl-Coenzyme A acyltransferase 1A
1390591_at Slc17a3 Solute carrier, family 17, member 3
1368607_at Cyp4a8 Cytochrome P450, family 4, subfamily a, polypeptide 8
1370698_at Ugt2b10 UDP-glucuronosyltransferase, family 2, member B10
1370387_at Cyp3a9 Cytochrome P450, family 3, subfamily a, polypeptide 9

TABLE 3 | List of top 20 genes with high importance in vitro data in the predictive models in RAID.

Probe ID Symbol Description Importance
of in vitro data

1398250_at Acot1 Acyl-CoA thioesterase 1 0.550
1368934_at Cyp4a1 Cytochrome P450, family 4, subfamily a, polypeptide 1 0.412
1367659_s_at Eci1 Enoyl-CoA delta isomerase 1 0.360
1368283_at Ehhadh Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase 0.348
1387740_at Pex11a Peroxisomal biogenesis factor 11 alpha 0.314
1370269_at Cyp1a1 Cytochrome P450, family 1, subfamily a, polypeptide 1 0.284
1386885_at Ech1 Enoyl-CoA hydratase 1 0.252
1389253_at Vnn1 Vanin 1 0.244
1387783_a_at Acaa1a Acetyl-Coenzyme A acyltransferase 1A 0.238
1371076_at Cyp2b1 Cytochrome P450, family 2, subfamily a, polypeptide 1 0.220
1375845_at Aig1 Androgen induced 1 0.166
1388211_s_at Acot1 Acyl-CoA thioesterase 1 0.127
1379361_at Pex11a Peroxisomal biogenesis factor 11 alpha 0.125
1386901_at LOC103690020 Platelet glycoprotein 4-like 0.115
1370397_at Cyp4a3 Cytochrome P450, family 4, subfamily a, polypeptide 3 0.114
1386880_at Acaa2 Acetyl-CoA acyltransferase 2 0.096
1384244_at Hsdl2 Hydroxysteroid dehydrogenase like 2 0.074
1370698_at Ugt2b10 UDP glucuronosyltransferase, family 2, member B10 0.073
1397468_at Hsdl2 Hydroxysteroid dehydrogenase like 2 0.071
1367777_at Decr1 2,4-dienoyl-CoA reductase 1 0.070
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according to no serum chemistry findings from a previous study,
CFB was shown to act as a PPARa agonist inducing peroxisomal
proliferation on hepatocytes (Low et al., 2011) and was plotted
around the second group in the PCA. Sustained activation of
PPARa signaling and induction of enzymes, such as CYP4A, to
increased fatty acid oxidation contributes to sustained oxidative
stress in the liver. These changes lead to liver cell damage as
hypertrophy and proliferation which contribute to the
development of hepatocellular carcinoma (Parimal et al., 2013).

From the perspective of capturing individual gene responses,
RAID could detect gene expressions related to major drug
metabolism responses in in vivo more broadly (more common
principal component–related gene number; Figure 4) and
quantitatively (lower RMSE values; Figure 6) than in vitro.
The 36 genes that were commonly related to the principal
components of in vivo and RAID data contained genes that
were known to be involved in drug metabolism and
hepatotoxicity. In addition to the genes described above
(Cyp1a and Cyp4a), Acot1 acts as an auxiliary enzyme in the
oxidation process of various lipids in peroxisomes (Hunt et al.,
2012). Furthermore, Vnn1 is expressed by the centrilobular
hepatocytes and is involved in lipid and xenobiotic
metabolism (Bartucci et al., 2019), whereas Pex11a
(peroxisomal biogenesis factor 11 alpha) is involved in

peroxisome maintenance and proliferation associated with
dyslipidemia (Chen et al., 2018). All of these genes are known
as PPARa target genes (Rakhshandehroo et al., 2010; Lake et al.,
2016). Thus, these features indicate that RAID can predict
possible toxicity by taking into account a broader range of
mechanisms than the range of in vitro data. Indeed, the in
vivo changes detected using the in vitro data were limited
(Figure 4), and the PCA showed that most of the
differentially expressed genes were associated with irrelevant
nonphysiological conditions. Thus, the IVIVE effect
combining the QSAR technique and in vitro data would allow
for more precise predictions through de-noising these types of
in vitro specific biological responses.

In vitro data contribute to accurate gene expression
predictions that could not be achieved with QSAR alone
(Figure 2D). In vitro data contributed to the prediction of the
mechanism shown in Figure 5. The biological mechanisms
related to metabolic processes were consistent with the key
mechanisms of characteristic hepatotoxic substances described
above, which indicates that in vitro data contributes to the precise
predictions obtained using RAID. In addition, whether in vitro
responses were observed in the suggested mode of action
predicted by the RAID system or not is an important point in
terms of weight of evidence. This study provides valuable
evidence supporting that transcriptome data should be
considered in light of previous reports indicating that in vitro
data does not necessarily reflect in vivo conditions (Tamura et al.,
2006; Sutherland et al., 2016). Simultaneously, in vitro studies
focusing on a specific mechanism should consider the external
validity of their findings and whether the findings reflect in vivo
situations.

Evaluating the read-across performance using external
substances, such as 3,4,5,3′,4′-pentachlorobiphenyl, 2,2′,4,4′-
tetrachlorobiphenyl (a type of polychlorinated biphenyl) and
pentachlorodibenzofuran (dioxin-like compounds)
(Figure 7A), which are known as IARC group 1 carcinogens
and Cyp1a1 inducers (EPA,U S, 1996; Walker et al., 2005;
National; Toxicology Program, 2006); these were separated as
toxic substances. Additionally, benzo(a)pyrene, 3-
methylcholanthrene, and 9,10-dimethyl-1,2-benzanthracene
plotted apart from the origin of coordinates (PC1 = 0 and
PC2 = 0), and are polycyclic aromatic hydrocarbons inducing
Cyp1a1 (Moorthy et al., 2007; Pushparajah et al., 2008). Non-
carcinogenic chemical substances, such as food components or

FIGURE 5 | Enrichment analysis of in vitro–in vivo extrapolation (IVIVE)–related genes identified in a virtual microarray (RAID) system. Top 20 most important
(contribution) genes from the predictive models were analyzed.

FIGURE 6 | Distribution of RMSEs of a virtual microarray (RAID) and
in vitro data of (A) all genes and (B) in vitro genes having importance
(contribution) in predictive models. **p < 0.01 (Welch’s t-test).
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preservatives, were positioned near the origin, second quadrant or
third quadrant, indicating low risk. Furthermore, substances
interacting with Cyp4a (Figure 7B), such as ciprofibrate,
nafenopin, clofenapate, clofibric acid, and di(2-ethylhexyl)
phthalate, which plotted in the area of the 2nd substance
group (PC1 > 0), are also known as PPARa agonists (Bocos
et al., 1995; Roberts et al., 2002; Yadetie et al., 2003; Currie et al.,
2005; Pyper et al., 2010). Chemicals that were not characterized

by the PC1 component (PC1 < 0) are not hyperlipidemia drugs.
These results suggest that the RAID system effectively classifies
substances based on their mode of action as well as the strength of
their toxicity, and ultimately contributes to precise read-across.
Thus, the RAID system provides a new method for read-across in
line with IATA that should be called “a virtual functional read-
across”. Here, we showed that substances without high structural
similarities might have similar toxicological properties, and our
new approach interpreted the shared mechanism of action. This
means that RAID considers the qualitative and quantitative
similarities of biological responses, which was one of the
major issues of QSAR-based read-across. The structural
similarities of TAA, MP, and HCB observed using correlation
coefficients of the chemical descriptor used for the predictive
model, and the maximum common substructure (MCS)
similarities with the Tanimoto coefficient, were less than 0.5;
however, the homology of RAID and in vivo data was as high as a
0.8 Pearson’s correlation coefficient. Furthermore, achieving such
an accurate read-across without using in vitro data will provide a
new perspective on the structural information-based predictions.

PCA analysis was used to understand the features of substances to
predict the modes of action and identify biologically similar
substances for read-across in this study. The examples of
applications of RAID for read-across described above were
compared to other methods (Table 5). The RAID system could
enhance read-across reliability by estimating toxicity including
modes of action, while this was difficult by other methods (e.g.,
QSAR or read-across using chemical structure data)
(Supplementary Figure S1). On the other hand, focusing on
certain specific toxicities, discriminant analysis, classifier model,
or biomarker analysis might improve the separation of toxic
substances. Indeed, as shown in Supplementary Table S1,
when the RAID system was applied to discriminating

TABLE 4 | List of chemical substances used for external validation of the RAID
system.

Name CAS no. Name in PCA plot

Potential Cyp1a inducers
2,3,4,7,8-Pentachlorodibenzofuran 57117-31-4 Pentachlorodibenzofuran
3,4,5,3′,4′-Pentachlorobiphenyl 57465-28-8 Pentachlorobiphenyl
3-Methylcholanthrene 56-49-5 Methylcholanthrene
9,10-Dimethyl-1,2-benzanthracene 57-97-6 Dimethylbenzanthracene
Benzo(a)pyrene 50-32-8 Benzo(a)pyrene
Dexamethasone 8054-59-9 Dexamethasone
Genistein 446-72-0 Genistein
2,2′,4,4′-Tetrachlorobiphenyl 1336-36-3 Tetrachlorobiphenyl
Quercetin 117-39-5 Quercetin
Resveratrol 501-36-0 Resveratrol
Thiabendazole 148-79-8 Thiabendazole
Potential Cyp4a inducers
Streptozotocin 18883-66-4 Streptozotocin
2-Ethylhexanol 104-76-7 Ethylhexanol
Di(2-ethylhexyl) phthalate 117-81-7 Di(2-ethylhexyl)_phthalate
Clofenapate 21340-68-1 Clofenapate
Clofibric acid 882-09-7 Clofibric_acid
Ciprofibrate 52214-84-3 Ciprofibrate
Nafenopin 3711-19-5 Nafenopin
TO-901317 293754-55-9 TO-901317
Acetaminophen 719293-04-6 Acetaminophen
Diltiazem 33286-22-5 Diltiazem

FIGURE 7 | Read-across using PCA plot of external data predicted by a virtual microarray (RAID). (A) Cyp1a and (B) Cyp4a inducing chemical substances were
analyzed for validation.
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hepatotoxicity, PLS-DA using RAID data showed a good predictive
performance, indicating usefulness for the specified toxicity
prediction. Thus, the use of RAID data instead of experimental
transcriptome data would achieve previously reported biomarker-
based classification without using animals. For example, Liu et al.
(2017) indicated that certain genes were associated with
hepatocellular hypertrophy and hepatocarcinogenesis, as well as
markers such as Cyp1a1, Acot1, Stac3 (SH3 and cysteine rich
domain 3), and Hdc (histidine decarboxylase), which were
correctly evaluated in the present study to characterize hepatotoxic
substances. Similarly, the constructed RAID system could be applied
to previous studies to predict carcinogenicity or estimate
transcriptional benchmark dose by toxicogenomics analysis of
short term in vivo studies (Ellinger-ziegelbauer et al., 2008;
Thomas et al., 2013b;Matsumoto et al., 2014; Kawamoto et al., 2017).

One important issue that should be considered in toxicological
evaluation using the RAID system is consideration of species
differences. The RAID system provides mechanistic insights on
repeated-dose toxicity in animal models; however, since some
species differences have been observed, the suggested mode of
action and the corresponding molecules need to be confirmed by
toxicologists. The interspecies extrapolations, such as rat-to-

human extrapolations, could be achieved by further
experiments to construct new RAID systems with these
different species’ transcriptome data. In addition, RAID data
of substances that were separated as toxic substances in PCA (e.g.,
TAA, MP, HCB,WY, FFB, BBr, and GFZ) showed high similarity
to in vivo data (Supplementary Table S2). Since regression
analysis requires certain levels of standard deviation of
training data, the RAID accuracy for substances may be
related to the number of substances with similar modes of
action. Thus, database expansion for several substance groups
with minor modes of action would contribute to further
improving the accuracy and applicability domain. In
addition, evaluation of RAID usefulness for various toxicities
is required.

The present approach integrates QSAR and IVIVE and will
contribute to other areas of research, such as drug repositioning,
which has recently attracted attention toward pharmaceuticals
that are available on the market and might be repurposed for new
diseases (Jourdan et al., 2020). However, the previously proposed
methodologies (Iwata et al., 2018; Lippmann et al., 2018; Zhu
et al., 2020; He et al., 2021) have room for improving the IVIVE
aspect of in vivo predictions. Thus, our system provides an

TABLE 5 | The relationships between the pros and cons of RAID and other methods for read-across.

Examples of chemical
substances in the
present study

QSAR Read-across using PCA
of chemical structure

data

Read-across using PCA
of RAID data

Internal data
A: TAA
B: FFB
External data
C: 3,4,5,3′,4′-
pentachlorobiphenyl
D: Nafenopin

Pros. Toxicity may be identified. Pros. Chemical structure similarity can be
calculated easily.

Pros. The toxicity and modes of action of in
vivo can be estimated from the PCA plot.
Animal testing data of similar substances can
be utilized for the assessment. A: HCB and
MP were similar substances, and it was
estimated that TAA could make Cyp1a
induction via AHR, and substances plotted in
the first quadrant would have similar
possibilities. B: WY, BBr, and GFZ were
similar substances, and it was estimated that
FFB could make Cyp4a induction via PPARa
activation, and substances plotted in the first
quadrant would have similar possibilities. C:
Its toxicological response could be similar to
“TAA, MP, and HCB,” indicating that it could
induce Cyp1a. Its carcinogenic potential
should be confirmed using further additional
testing. D: Its toxicological response could be
similar to “WY, FFB, BBr, and GFZ,” indicating
that it could induce Cyp4a and also affect the
expression of PPARa-related genes.

Cons. Mechanisms cannot be fully estimated
because of the lack of biological activity data.
Toxicity in organs and individuals cannot be
characterized. Biologically similar substances
cannot be identified.

Cons. Estimation of the toxicity and modes of
action from the PCA plot is complicated
because toxic substances cannot be
separated well from non-toxic substances. A,
C: Estimation of the toxicity and modes of
action was difficult since similar substances
were both toxic and non-toxic. B, D: Specific
similar substances were not identified since
they were surrounded by many substances.

Cons. The reliability of the estimated modes of
action would depend on the accuracy of the
RAID system.
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alternative to screening candidate drugs and exploring new
biologically similar drugs at a low cost.

In conclusion, we developed a virtual DNA microarray
system that quantitatively predicts in vivo gene expression
profiles based on the chemical structure and/or in vitro
transcriptome data. Estimated transcriptomes are
considered scientifically relevant from PCA data
interpretation as well as pathway and GO analysis. Based
on its external validation, our system works as an
alternative test for repeated dose toxicity tests with
toxicogenomics analysis enabling IVIVE and mechanism
estimation. Although our technology might have limited
applicability domain due to the small data size of chemical
substances and their characteristics (using hepatotoxic
substances), the concept of the virtual microarray analysis
contributes to the 3Rs (reduction, refinement, and
replacement) and might benefit much future animal testing.
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