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Zeo-1, a computational data set  
of zeolite structures
Leonid Komissarov   & Toon Verstraelen  

Fast, empirical potentials are gaining increased popularity in the computational fields of materials 
science, physics and chemistry. With it, there is a rising demand for high-quality reference data for the 
training and validation of such models. In contrast to research that is mainly focused on small organic 
molecules, this work presents a data set of geometry-optimized bulk phase zeolite structures. Covering 
a majority of framework types from the Database of Zeolite Structures, this set includes over thirty 
thousand geometries. Calculated properties include system energies, nuclear gradients and stress 
tensors at each point, making the data suitable for model development, validation or referencing 
applications focused on periodic silica systems.

Background & Summary
Atomistic models are an essential tool for the prediction of thermodynamic, mechanical or biochemical prop-
erties of a substance. More recently, the use of pre-trained models has become increasingly popular due to their 
comparably low complexity and high accuracy on modern hardware1–6. In order for such models to perform 
well, their empirical parameters require fitting to high-quality reference data. Depending on the application, 
reference data are either experimental, or come from computationally more expensive ab initio calculations. 
Although there are already a handful of large computational data sets covering small organic molecules7–9, such 
data is still scarce for larger periodic systems (cf. Materials Cloud Archive10,11 or the NOMAD database12,13). 
Motivated by this fact, we present a quantum-chemical data set for zeolites. Zeolites are porous materials com-
prised of interconnected SiO4 or AlO4 tetrahedra. Their properties can be fine-tuned through synthesis of mate-
rials with specific pore size, or the inclusion of additional metal cation sites14–17. Because of their topology and 
synthetic flexibility, zeolites have various applications as adsorbents18–20 and catalysts17,21–23. To this day, a myriad 
of different zeolite framework types is available experimentally, and many more hypothetical structures can be 
derived24–26. The documentation of fundamental zeolite framework types and derived materials has led to the 
publication of the well-known Atlas of Zeolite Structures27 in several editions. The atlas lists each unique frame-
work type by its three-letter-code, as assigned by the by the Structure Commission of the International Zeolite 
Association (IZA). Today, its contents are available online at the Database of Zeolite Structures28, which we use 
as a source of initial structures for our data set. In this first installment, we include properties for 204 out of the 
currently available 256 zeolite framework types in the database (a total of 226 unique geometries when also con-
sidering derived materials). Our descriptor provides the complete optimization trajectories for each system with 
atomic positions, lattice vectors, atomic gradients and stress tensors at each step. We envision future extensions 
of the data set to focus on derived geometries, covering structural defects and host-guest interactions.

Methods
Initial zeolite structures are collected from the public Database of Zeolite Structures28 in the Crystallographic 
Information File (CIF) format, before conversion to the XYZ format with the Atomic Simulation Environment29 
(ASE) package. After selection of all systems with less than 301 atoms, each is manually filtered by removing 
redundant atom positions in case of fractional occupancies and adding missing hydrogen atoms where needed. 
Each structure’s coordinates and cell parameters are energy-minimized with the periodic density functional 
code BAND30, as implemented in the Amsterdam Modeling Suite31 (AMS). The calculations are performed with 
the revPBE functional32,33, a ‘Small’ frozen core and the double-ζ polarized (DZP) basis set. Grimme’s D3(BJ) 
dispersion correction34 is applied to all calculations. Previous research has shown that the selected level of theory 
can accurately reproduce zeolite geometries, albeit slightly overestimating the Si-O bond length (in the range 
of 2 pm) and smaller Si-O-X angles (in the range of 5 degrees) when compared to experimental results35,36. 
At the same time, dispersion-corrected functionals are generally more accurate when describing adsorption 
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processes37–39. For the optimization of the initial structures, geometry convergence criteria are left at their default 
values, namely 0.001 Hartree/Å, 0.00001 Hartree/Atom and 0.1 Å for atomic gradients, energy and atomic dis-
placements respectively. We use a Quasi-Newton optimizer40 in the delocalized coordinates space for the initial 
optimizations. Cases of problematic convergence are restarted with the FIRE41 optimizer.

Data records
The data is made available at the Materials Cloud Archive42. Each system’s trajectory is stored in an individual 
NumPy43. npz file. We describe the data types held in each file in Table 1, storing the complete geometry opti-
mization trajectory, including atomic coordinates, system energies, nuclear gradients, lattice vectors and stress 

Data Unit Key Array Shape

Atomic Numbers — numbers (R,)

Atomic Coordinates Å xyz (N, R, 3)

x-, y- and, z-Components of the Lattice Vectors Å lattice (N, 3, 3)

Energy hartree energy (N,)

Nuclear Gradients hartree/bohr gradients (N, R, 3)

Stress Tensors atomic units stress (N, 3, 3)

Hirshfeld Charges atomic units charges (R,)

Table 1. Overview of the data structures stored in a .npz file. Each array can be accessed through the respective 
key. The variables N and R denote the number of geometry optimization steps and the system size respectively. 
Partial charges are only computed for the last geometry.

Fig. 1 Distribution of convergence criteria at the last optimization step for all calculated systems in the data 
set. Showing (a) the highest absolute component of all nuclear gradients, (b) change in system energy and (c) 
highest relative atomic displacement.

Element Occurrence

Si 226

O 226

H 21

Al 12

N 4

Ca 4

Ge 3

Li 2

Na 2

K 2

C 2

F 1

Be 1

Cs 1

Ba 1

Table 2. Elemental occurrences in the complete data set. Counting all structures containing at least one atom of 
the listed element. Each element’s isolated atomic energy is listed in hartree.
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Fig. 2 Distributions of (a) Si-O bond lengths, (b) Si-Si distances in the second coordination sphere and (b) 
Si-O-Si angles as calculated from all geometries in the data set. Blue and orange bars denote data from initial 
and optimized geometries, respectively. Mean μ and standard deviation σ printed in the same color as the 
underlying data. N denotes the total sample size.

Fig. 3 Distribution of relative cell volumes per system as the quotient of optimized-to-initial cell volumes. Values 
below 1 describe a shrinking cell as the optimization progresses. Black line marks V/V0  =  1. Sample size is 226.

Bond Mean Std. Dev. Number of points

Si-O 1.638 0.0085 30439

H-O 0.999 0.1174 266

Al-O 1.763 0.0133 234

Ge-O 1.795 0.0239 202

Na-O 2.473 0.0841 104

C-C 1.540 0.0049 100

C-H 1.100 0.0027 98

K-O 3.175 0.4809 61

Ca-O 2.469 0.0925 57

N-H 1.055 0.0913 50

Si-K 3.945 0.3196 41

Cs-O 3.429 0.2820 28

Li-O 1.970 0.0263 21

Be-O 1.669 0.0152 16

Al-K 3.625 0.1650 14

C-N 1.472 0.0037 10

Ba-O 2.903 0.1261 10

Table 3. Mean atomic bond length distributions and their standard deviations (std. dev.) in in ångström. 
Averaged over all geometry-optimized structures.

https://doi.org/10.1038/s41597-022-01160-5
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tensors for each geometry optimization step. Entries at the first position correspond to the input structure; the 
last position holds the data for the final, optimized structure. Hirshfeld partial charges44 are provided for the 
final (optimized) geometries. Atomic coordinates and lattice vectors are stored in ångström, all other properties 
are stored in atomic units.

Technical Validation
The complete data set includes geometry optimizations of 226 systems, resulting in a total of 32550 geometries. 
System sizes range between 15 and 334 atoms (mean: 126). We illustrate the convergence of all reference calcu-
lations in Fig. 1, showing that all optimized systems are well within the defined convergence criteria. Elemental 
occurrences in the data set are listed in Table 2. Si-O, Si-Si distances as well as Si-O-Si angles are presented in 

Angle Mean Std. Dev. Number of points

Si-O-Si 148.7 11.2 12548

Si-O-Al 140.6 8.9 170

Si-O-K 106.8 8.8 81

Si-O-Na 112.8 15.1 64

Si-O-Ge 143.2 12.0 52

Si-O-H 110.7 7.9 40

Si-O-Cs 101.6 6.9 36

Si-O-Ca 118.5 16.6 19

Si-O-Be 129.9 0.2 16

Si-O-Li 112.7 4.2 8

Si-O-Ba 112.6 14.1 5

Table 4. Mean Si-O-R angle distributions and their standard deviations (std. dev.) in degrees. Averaged over all 
geometry-optimized structures.

Fig. 4 Distributions of physical quantities in the data set. Showing (a) energy differences per atom, relative to 
the respective energy of the optimized system; (b) atomic gradient components; (c) unit cell volumes, relative to 
the optimized system’s volume; (d) stress tensor components. Data is printed on a logarithmic y-scale for a clear 
display of the distribution. Mean μ and standard deviation σ printed in the same units as the underlying data. N 
denotes the total sample size.

https://doi.org/10.1038/s41597-022-01160-5
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Fig. 2 as the most prominent geometrical descriptors. As most of the initial structures from the IZA database 
are idealized geometries45, a sharp mean for the Si-O bond distance can be observed at roughly 161 pm (Fig. 2a, 
blue histogram). Long tails in the distribution vanish and the mean is shifted towards approximately 164 pm 
when considering geometry-optimized structures (Fig. 2a, orange histogram). Considering the Si-O-Si angles, 
a slight shift towards smaller values is observed (mean of 149 vs. 142 degrees, Fig. 2c). Both effects have been 
previously reported by Fischer et al.35,36 and are inherent to the selected level of theory. Distributions of the Si-Si 
distances in the second coordination sphere do not shift significantly when comparing initial and optimized 
geometries (Fig. 2b). Relative changes in the cell volumes are presented in Fig. 3 as the ratio of each system’s 
optimized-to-initial volume. Values below 1 translate to a shrinking unit cell as the optimization progresses. 
Overall, the geometrical descriptors are in good agreement with experimental data46–51. Additional averages 
for bond distances and angles are summarized in Tables 3, 4 respectively. Distributions of energies, atomic 
gradients, cell volumes and stress tensors are depicted in Fig. 4. As expected from geometry optimization trajec-
tories, all properties have – with the exception of relative cell volumes – a distinct mean close to zero. Structures 
close to the initial input geometries contribute to the relatively high standard deviations. Evaluation of the 
relative cell volumes shows a shifted distribution, with roughly 76% of all structures having a larger volume 
than their respective optimized geometry. A detailed overview of all calculated structures, sorted by their IZA 
three-letter-code, the system size and number of iterations is provided in Online Table 1.

Usage Notes
No data points were filtered as outliers with regards to the distributions of chemical properties (see. Figure 4). 
Consecutive structures from the same optimization trajectory will be autocorrelated. The data repository pro-
vides an interactive plotting script, displaying the system energy, maximum absolute component of the nuclear 
gradients and the cell volume at every iteration step for each structure. This requires the Bokeh52 (v. 2.3.1) pack-
age for Python to be installed. SHA-1 hash sums are provided for each file to guarantee data integrity, as well as 
an example input script for a calculation with BAND. Naming conventions: Derived materials are referred to by 
their IZA three-letter-code, e.g. H-EU-12 is tabulated as ETL_0. Leading non-alphabetical characters have been 
removed, e.g. *-ITN is tabulated as ITN.

Code availability
Downloads of the Atomic Simulation Environment29 (v. 3.21.1) and NumPy43 (v. 1.20.1) packages for Python are 
freely available. Amsterdam Modeling Suite31 (v. 2020.203, r92091) is a commercial software, for which a free trial 
may be requested at www.scm.com.
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