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Graph Ricci curvatures reveal 
atypical functional connectivity 
in autism spectrum disorder
Pavithra Elumalai1,9, Yasharth Yadav1,2,9, Nitin Williams3,4*, Emil Saucan5, Jürgen Jost6,7 & 
Areejit Samal1,8*

While standard graph-theoretic measures have been widely used to characterize atypical resting-state 
functional connectivity in autism spectrum disorder (ASD), geometry-inspired network measures 
have not been applied. In this study, we apply Forman–Ricci and Ollivier–Ricci curvatures to compare 
networks of ASD and typically developing individuals (N = 1112) from the Autism Brain Imaging 
Data Exchange I (ABIDE-I) dataset. We find brain-wide and region-specific ASD-related differences 
for both Forman–Ricci and Ollivier–Ricci curvatures, with region-specific differences concentrated 
in Default Mode, Somatomotor and Ventral Attention networks for Forman–Ricci curvature. We use 
meta-analysis decoding to demonstrate that brain regions with curvature differences are associated 
to those cognitive domains known to be impaired in ASD. Further, we show that brain regions with 
curvature differences overlap with those brain regions whose non-invasive stimulation improves ASD-
related symptoms. These results suggest the utility of graph Ricci curvatures in characterizing atypical 
connectivity of clinically relevant regions in ASD and other neurodevelopmental disorders.

Autism spectrum disorder (ASD) is an umbrella term for a diverse group of clinical presentations of neurode-
velopmental disorders such as Autism, Asperger’s syndrome, childhood disintegrative disorder and pervasive 
developmental disorder not otherwise specified (PDD-NOS)1. ASD is characterized by difficulties in social 
interaction, speech and non-verbal communication, restrictive/repetitive behaviors and varying levels of intel-
lectual disability, and can also be accompanied by neurological or psychiatric  disorders1,2. Memory and move-
ment impairments are also identified in  ASD3–5. Being highly  heritable2,6, the prevalence of ASD is globally 
increasing, affecting 1 in 54 children aged 8 years in the United  States7 and 1 in 100 children aged under 6 years 
in  India8. In 1990, ASD was declared as a disability in the United States. While an early diagnosis is key for early 
intervention, an accurate and effective diagnosis of ASD is  crucial9. In order to provide a proper diagnosis and 
to better characterize the disorder, several studies have been undertaken to understand the pathophysiology and 
neurobiology of ASD (see e.g. Lord et al.2 for a comprehensive review).

Neuroimaging methods like diffusion tensor imaging, magnetic resonance imaging (MRI) and functional 
magnetic resonance imaging (fMRI) are well recognized and enable us to understand structural and functional 
brain development in people with ASD compared to typical development and to identify the disrupted neural 
mechanisms underlying  ASD10–13. It also provides a means to validate clinical symptoms and cognitive theories 
of ASD  neurobiologically2,10,14. fMRI captures activations in different regions of the brain through the changes 
in blood oxygen levels (BOLD signals), and the temporal correlations between these BOLD signals are referred 
to as functional connectivity in the  brain15. Distant regions in the brain are activated synchronously even dur-
ing  rest16,17 and they form the resting-state functional connectivity of the brain. Resting-state functional MRI 
(rs-fMRI) studies that require participants to look at a blank screen with no task demands have been used to 
study resting-state functional connectivity in the human brain, and have been demonstrated to be a convenient 
paradigm to identify neuronal correlates of neuropsychiatric disorders such as  ASD11,14. Alongside individual 
studies, data sharing initiatives like the Autism Brain Imaging Data Exchange (ABIDE) have offered large datasets 
of rs-fMRI images, encouraging and accelerating research on  ASD2,14,18.
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Graph theory and network analysis provide objective, data-driven measures to analyze the topological archi-
tecture and connectivity patterns (human ‘connectome’) in the human  brain14,19–23, and can provide us with 
deeper insights about the functional, structural and causal organization of the  brain23. Remarkably, many previous 
studies on ASD have utilized graph-theoretic analysis of rs-fMRI functional connectivity networks (FCNs) to 
differentiate ASD from typical  development18,24–32, and furthermore, some of these  studies18,24,30,31 made use of the 
ABIDE-I dataset. These studies investigated network characteristics such as small-worldness, modularity, cluster-
ing, efficiency, rich club organization and connection densities of the FCNs in ASD versus typical development, 
and reported atypical functional organization in ASD both globally and at the level of individual brain regions.

In recent years there has been an increasing interest in the development of geometric tools for analyz-
ing complex  networks33, which enables the study of higher-order correlations in networks beyond pairwise 
 interactions34–36. A fundamental concept in geometry is Ricci  curvature37, which quantifies the extent to which a 
space differs from being flat. Various nonequivalent definitions of graph Ricci curvature have been  proposed38–42 
with an aim to capture the key properties of the classical Ricci curvature. Different notions of graph Ricci cur-
vature have found applications in diverse areas, such as differentiating gene co-expression networks of cancer 
cells and healthy  cells43, identifying crashes and bubbles in financial  networks44,45, and community detection in 
complex  networks46,47. Ollivier–Ricci curvature (ORC)40 and Forman–Ricci curvature (FRC)39,41 are two widely-
used notions of graph Ricci curvature.

Notably, graph Ricci curvatures have also been applied to structural and functional connectivity networks 
of the human brain. Farooq et al.48 applied ORC to brain structural connectivity networks to identify robust 
and fragile brain regions in healthy subjects. They also show that ORC can be used to identify changes in brain 
structural connectivity related to ASD and healthy aging. Simhal et al.49 used ORC to measure changes in brain 
structural connectivity of individuals with ASD before and after the infusion of autologous umbilical cord blood. 
ORC has also been used to study differences in brain structural connectivity networks of cognitively impaired and 
non-impaired multiple sclerosis  patients50. Recently, Chatterjee et al.51 used a version of FRC to determine the 
changes in brain functional connectivity related to attention deficit hyperactivity disorder (ADHD). Addition-
ally, FRC has been used to analyze task-based fMRI  data52 as well as to predict the intelligence of healthy human 
 subjects53. Most of these studies have also contrasted graph Ricci curvatures with standard network measures such 
as clustering coefficient and node betweenness centrality, and showed that graph Ricci curvatures can provide 
new information about brain connectivity organization. However, a systematic evaluation of the ability of graph 
Ricci curvatures to characterize atypical brain functional connectivity in ASD and other neurodevelopmental 
disorders is lacking.

In the present work, we expand the scope of curvature-based analysis for characterizing brain connectivity, 
by systematically applying graph Ricci curvatures to study atypical functional connectivity network organiza-
tion in ASD. For this purpose, we utilized raw resting-state fMRI images of 1112 subjects from the ABIDE-I 
dataset and obtained FCNs for each subject by implementing a uniform preprocessing pipeline and thorough 
quality assessment (QA) checks. We employ FRC and ORC to compare the FCNs of individuals with ASD rela-
tive to typically developing individuals (TD), and evaluate the role of these curvature measures as indicators of 
atypical functional connectivity in ASD. We analyzed the brain-wide changes in FCNs by comparing average 
edge curvatures across the two groups, and analyzed the region-specific changes in FCNs by comparing node 
curvatures across the two groups. Then, we used meta-analysis decoding with respect to a large database of 
fMRI studies, to determine if those regions showing curvature differences are also associated to those cognitive 
domains known to be impaired in ASD, e.g. social cognition. Finally, we determined if those regions showing 
curvature differences overlapped with those regions whose non-invasive stimulation with transcranial magnetic 
stimulation (TMS)54 and transcranial direct current stimulation (tDCS)55 are reported in the literature to result 
in improvement of ASD-related symptoms.

Results
The primary goal of this study is to evaluate the utility of two notions of graph Ricci curvature, namely For-
man–Ricci curvature (FRC) and Ollivier–Ricci curvature (ORC), that have been recently ported to the domain 
of complex networks, as indicators of atypical topological organization in resting state FCNs of individuals with 
ASD. For this purpose, we analyzed spatially and temporally preprocessed rs-fMRI images of 395 individuals with 
ASD and 425 TD individuals from the ABIDE-I dataset as described in “Methods”. The demographic and clinical 
information for these subjects is summarized in Table 1. Figure 1 is a schematic summarizing the processing 
pipeline for rs-fMRI data used in this study. Furthermore, Supplementary Table S1 gives detailed information 
on the quality assessment and exclusion criteria for rs-fMRI dataset. Subsequently, 200 regions of interest (ROIs) 
or nodes were defined in the brain using the Schaefer atlas, and a 200× 200 functional connectivity (FC) matrix 
was generated for each subject by computing the Pearson correlation coefficient between the time-series of all 
pairs of nodes. Thereafter, by combining maximum spanning tree (MST) and sparsity-based thresholding, we 
constructed FCNs over a wide range of graph densities between 0.02 or 2% edges and 0.5 or 50% edges, with an 
increment of 0.01 or 1% edges (see “Methods”). In a nutshell, we generated and analyzed 49 FCNs for each of the 
820 subjects in the ABIDE-I dataset considered in this study.

Brain-wide changes in functional connectivity networks. To investigate the differences in the global 
organization of FCNs between the ASD and TD groups, we computed the average edge FRC and average edge 
ORC across the 49 FCNs across the graph densities 2–50% for each subject. To compare the average edge cur-
vatures at each graph density between the ASD and TD groups, we employed a two-tailed two-sample t test 
followed by FDR correction (see “Methods”). In Fig. 2a,b, we show the differences in average edge FRC and 
average edge ORC, respectively, between the ASD and TD groups across the graph densities 2–50%. We find that 
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average edge FRC is significantly lower ( p < 0.05 , FDR-corrected) in the ASD group compared to the TD group 
in the graph density range 5–50% (Fig. 2a). Similarly, we find that average edge ORC is lower ( p < 0.05 , FDR-
corrected) in the ASD group compared to the TD group albeit the differences were insignificant ( p > 0.05 , FDR-
corrected) in the graph density ranges 2–5% and 24–33% (Fig. 2b). Although the directionality of the differences 
with the two discrete Ricci curvatures is the same for the two groups, that is, average edge curvature in the ASD 
group is lower than that in the TD group, it is important to emphasize that the two discrete Ricci curvatures 
capture different aspects of the classical Ricci curvature, and thus, cannot serve as alternative measures across 
different types of networks. Specifically, ORC captures the volume growth property of the classical Ricci cur-
vature whereas FRC captures the geodesic dispersal  property42. While ORC has a deeper correspondence with 
the classical Ricci curvature, FRC is based on a simple combinatorial expression which is significantly faster to 
compute in larger networks. After comparing the average edge curvatures between FCNs of ASD and TD groups, 
we find that the statistical test (t test followed by FDR correction) yielded lower p-values after FDR correction for 
average edge FRC compared to average edge ORC across most of the considered graph densities (Supplementary 
Table S2). In other words, the differences between FCNs for the two groups are more pronounced for the average 
edge FRC than average edge ORC.

To gain a deeper understanding of the altered global organization of FCNs between the ASD and TD groups, 
we also compared six other global network measures, namely, average clustering coefficient, modularity, aver-
age shortest path length, average node betweenness centrality, global efficiency and average local efficiency. We 
find that the average clustering coefficient is significantly lower ( p < 0.05 , FDR-corrected) in the ASD group 
compared to the TD group in the graph density range 2–50% (Fig. 2c). Moreover, our results for clustering coef-
ficient are consistent with results from previous studies that have employed graph-theoretic measures to analyze 
resting state FCNs in  ASD26,28,31. Thereafter, we find that the modularity of the FCNs is significantly reduced in the 
ASD group compared to the TD group in the graph density range 2–50% (Fig. 2d), and our results are consistent 
with the results from previous  studies26,31. Further, we find that the average shortest path length of the FCNs is 
significantly lower in the ASD group compared to the TD group in the graph density range 5–31% (Fig. 2e), and 
our results are consistent with results from previous  studies26,28. Lastly, we find that average node betweenness 
centrality is significantly lower in the ASD group compared to the TD group in the density range 5–31% (Fig. 2f).

Furthermore, we have computed two global measures that characterize how efficiently information is 
exchanged within a network, namely global efficiency and average local efficiency. We find that global efficiency 
is significantly higher (p < 0.05, FDR-corrected) in the ASD group compared to the TD group in the graph den-
sity range 4–31% (Supplementary Fig. S1). Note that the direction of the effects observed for global efficiency 
is opposite to the direction of effects observed for average shortest path length (Fig. 2e), as global efficiency is 
defined as the average of reciprocal shortest path lengths between all pairs of nodes in a network. Moreover, our 
results for global efficiency are consistent with the results from previous  studies26,28,31. We find that average local 
efficiency is significantly lower in the ASD group compared to the TD group in the graph density range 2–50% 
(Supplementary Fig. S1). Note that the results for average local efficiency are similar to the results of average 
clustering coefficient (Fig. 2c), since the two network measures are closely related to each other. Moreover, our 
results for average local efficiency are consistent with results from previous  studies26,28,31.

Table 1.  Summary of demographic and clinical information for the 820 subjects from ABIDE-I project that 
fulfil the inclusion criteria and were selected for network analysis in this study. 395 subjects belong to the 
autism spectrum disorder (ASD) group and 425 subjects belong to the typically developing (TD) group. The 
subjects in both groups are age-matched ( p = 0.835 ). Handedness data were missing for 137 ASD and 148 TD 
subjects. ADI-R social data were missing for 120 ASD participants. ADI-R verbal data were missing for 119 
ASD participants.

Characteristics ASD Group HC Group p-value

Number of subjects 395 (44 female) 425 (78 female) –

Age (in years)

Mean ± SD 15.6± 7.1 15.51± 6.23 0.835

Range 7–58 6–57 –

Handedness (n)

Left 29 27 –

Right 225 247 –

Mixed 3 3 –

Ambidextrous 1 – –

ADI-R Social

Mean ± SD 19.72± 5.25 – –

Range 7–30 – –

ADI-R Verbal

Mean ± SD 15.95± 4.25 – –

Range 2–26 – –
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Figure 1.  Schematic diagram summarizing the rs-fMRI processing pipeline employed in this study. The raw fMRI scans 
undergo four steps in spatial preprocessing, namely, motion correction, slice-timing correction, outlier detection, and direct 
segmentation and normalization. The raw structural MRI scans are normalized to the Montreal Neurological Institute (MNI) 
space, and segmented into grey matter, white matter and cerebrospinal fluid (CSF) areas. In the temporal preprocessing or 
denoising step, the BOLD time series of each voxel is extracted and the remaining physiological and motion confounds are 
removed using linear regression. The confounds include white matter and CSF masks, subject-motion parameters and outlier 
scans. The residual BOLD time series of each voxel undergoes a high-pass filtering at 0.008 Hz. The Schaefer atlas is used to 
parcellate the brain into 200 regions of interest (ROIs) and the mean time series for each ROI is computed. Finally, Pearson 
correlation coefficient is computed between all pairs of ROIs, resulting in a 200× 200 functional connectivity (FC) matrix. 
Thorough quality assessment (QA) checks were implemented both before and after preprocessing. In this figure, the head icon 
under denoising section is made by Freepik from flaticon.com (https:// www. flati con. com/ autho rs/ freep ik).

https://www.flaticon.com/authors/freepik
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Region-specific changes in functional connectivity networks. Given the significant differences in 
FRC and ORC of the entire brain between the ASD group and the TD group, we evaluated node-level curvature 
differences in the FCNs, and determined how these differences are distributed across the 7 resting state networks 
(RSNs) in the brain. For this purpose, we first computed node FRC and node ORC for all the 200 nodes, across the 
49 FCNs with graph densities 2–50% for each subject. Second, to identify the set of nodes that show significant 
differences between the ASD and TD groups, we compared the area under the curve (AUC) of the node FRC and 
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Figure 2.  Brain-wide changes in functional connectivity networks. Comparison plots of global changes in 
functional connectivity networks (FCNs) as captured by network measures between 395 subjects with autism 
spectrum disorder (ASD) and 425 age-matched typically developing individuals (TD). Each network measure 
was compared over a wide range of graph densities between 0.02 (i.e., 2% edges) and 0.5 (i.e., 50% edges), with 
an increment of 0.01 (i.e., 1% edges). The shaded regions in each plot indicate statistically significant differences 
( p < 0.05 , FDR-corrected) between the two groups at the corresponding graph densities on the x-axis. Even 
though the differences are not explicit from the plots (e) and (f), the directionalities are programmatically 
verified. (a) Average Forman–Ricci curvature (FRC) of edges is significantly reduced in the ASD group across 
graph densities 5–50%. It is evidently the most visually observable difference among all the other network 
measures studied. (b) Average Ollivier–Ricci curvature (ORC) of edges is significantly reduced in the ASD 
group across graph densities 6–23% and 34–50%. (c) Average clustering coefficient is significantly reduced in the 
ASD group across all graph densities (2–50%). (d) Modularity is significantly reduced in the ASD group across 
all graph densities (2–50%). (e) Average shortest path length is significantly reduced in the ASD group across 
graph densities 5–31%. (f) Average node betweenness centrality is significantly reduced in the ASD group across 
graph densities 5–31%.
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the node ORC for each node using a two-tailed two-sample t test followed by FDR correction (see “Methods”). 
In Fig. 3 and Supplementary Fig. S2, we show the nodes or regions that exhibit significant differences ( p < 0.05 , 
FDR-corrected) in FRC and ORC, respectively, between the ASD and TD groups. We identify 83 regions that show 
significant between-group differences in FRC and 14 regions that show significant between-group differences 
in ORC. For FRC, the significant regions are spread across the 7 RSNs. However, they are mainly concentrated 
within 3 RSNs namely, default network (26 significant regions), somatomotor network (30 significant regions) 
and salient ventral attention network (13 significant regions). In the default network, RH_Default_pCunPCC_2 
(7,− 49, 31) , RH_Default_PFCdPFCm_6 (28, 30, 43) and LH_Default_pCunPCC_2 (− 5,− 55, 27) showed the 
lowest FDR corrected p-values. In the somatomotor network, LH_SomMot_7 (− 47,− 9, 46) , RH_SomMot_7 
(58,− 5, 30) and LH_SomMot_10 (− 39,− 24, 58) showed the lowest FDR corrected p-values. In the salient ven-
tral attention network, RH_SalVentAttn_TempOccPar_2 (60,− 38, 17) , RH_SalVentAttn_Med_3 (9, 4, 65) and 
RH_SalVentAttn_PrC_1 (51, 4, 40) showed the lowest FDR corrected p-values. For ORC, the significant regions 
are concentrated within the 2 RSNs namely, default network and somatomotor network. In the default network, 
regions LH_Default_Temp_3 (− 56,− 6,− 12) , LH_Default_PFC_4 (− 13, 63,− 6) , and RH_Default_Temp_5 
52,− 31, 2) exhibited the lowest FDR corrected p-values. In the somatomotor network, the region LH_Som-
Mot_3 (− 37,− 21, 15) exhibits the lowest FDR corrected p-value. Detailed information about the abbreviations 
of region names can be found at: https:// github. com/ Thoma sYeoL ab/ CBIG/ tree/ master/ stable_ proje cts/ brain_ 
parce llati on/ Schae fer20 18_ Local Global56. Thus, our node-level results for FRC and ORC suggest that the nodes 
or brain regions showing significant differences were not distributed evenly across the 7 RSNs, but concentrated 
within the default network, somatomotor network and salient ventral attention network.

After applying both FRC and ORC to resting state FCNs in ASD and TD groups, we find that the between-
group differences in FRC of the FCNs are more pronounced compared to ORC, both at the global-level and the 
node-level. Therefore, we mainly focus on the nodes identified using FRC in further analyses. We reiterate that 
the two discrete Ricci curvatures capture different aspects of the classical Ricci curvature, and thus, neither of 
the two measures can be treated as an alternative to the other.

We also evaluated the node-level differences in two standard network measures namely, clustering coeffi-
cient and node betweenness centrality. Notably, ORC is related to clustering in  networks42. We identify 78 brain 
regions that show significant differences ( p < 0.05 , FDR-corrected) in clustering coefficient, and 4 brain regions 
that show significant differences ( p < 0.05 , FDR-corrected) in node betweenness centrality (Supplementary 
Table S3). The brain regions identified by clustering coefficient are concentrated in three RSNs namely, default 
network, somatomotor network and salient ventral attention network (Supplementary Fig. S3). Further, we 
computed the overlap between sets of significant brain regions identified by each of the four node-level network 
measures used in our study. First, we found 8 brain regions that are commonly identified by both FRC and ORC, 
namely, LH_SomMot_1 (− 51,− 5,− 2) , LH_SomMot_3 (− 37,− 21, 15) , LH_Default_PFC_4 (− 13, 63,− 6) , 
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Figure 3.  Region-specific changes in functional connectivity networks. Visual representation of 83 nodes or 
regions in the brain that are significantly different ( p < 0.05 , FDR-corrected) between individuals with autism 
spectrum disorder (ASD) and typically developing individuals (TD), as captured by Forman–Ricci curvature 
(FRC) of the nodes in the functional connectivity networks (FCNs) of the subjects. The nodes are defined using 
the Schaefer atlas and each node belongs to one of 7 resting state networks (RSNs) as listed in the figure legend. 
We find that identified nodes are mainly concentrated within the default network, somatomotor network, and 
salient ventral attention network. This figure was created using BrainNet  Viewer103.

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
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RH_SomMot_3 (38,− 13, 14) , RH_DorsAttn_Post_2 (52,− 60, 9) , RH_SalVentAttn_FrOperIns_2 (46,− 3,− 4) , 
RH_SalVentAttn_TempOccPar_2 (60,− 38, 17) and RH_Default_Temp_2 (61,− 13,− 21) . Second, we found 71 
brain regions that are commonly identified by FRC and clustering coefficient. Third, we found 5 brain regions that 
are commonly identified by ORC and clustering coefficient. Fourth, we found that 1 brain region is commonly 
identified by FRC and node betweenness centrality. Fifth, we found 2 brain regions that are commonly identi-
fied by ORC and node betweenness centrality. We do not find any brain regions that are commonly identified 
by clustering coefficient and node betweenness centrality.

Behavioral relevance of region-specific changes using meta-analysis decoding. As discussed 
previously, we identify 83 brain regions that show significant between-group differences in FRC. Subsequently, 
we partitioned the set of significant brain regions according to their respective RSNs and determined the cogni-
tive domains associated to the significant regions in each RSN using Neurosynth meta-analysis (see “Methods”). 
The Neurosynth analysis enables identifying the cognitive domains associated to the significant regions in an 
RSN more rigorously than just assuming it as the putative functional role of that RSN. We limited the Neuro-
synth analysis only to default network, somatomotor network and salient ventral attention network, since a con-
siderable number of regions are detected in these RSNs and since these regions are nearly bilaterally symmetri-
cal. Figure 4 shows the significant brain regions separately for each of the three RSNs and the associated word 
clouds highlighting the behavioral relevance of the significant regions in each RSN. Supplementary Table S4 lists 
the significant brain regions and the terms associated with all seven RSNs.

The word cloud for default network shows terms associated with social cognition and memory (Fig. 4a). 
For the somatomotor network, we find terms associated with movement (Fig. 4b). For salient ventral attention 
network, we find terms associated with movement and language (Fig. 4c). Notably, previous studies on ASD 
population have found impairments in social  cognition3,57,58,  memory3,4,59,60,  movement5,61–63 and  language64–66. 
Hence, we find that those regions exhibiting ASD-related curvature differences are also associated to those 
cognitive domains known to be impaired in ASD.

Subsequently, we determined if there is a relationship between the FRC of brain regions that showed signifi-
cant differences and clinical scores for symptom severity in ASD. To do this, we related the FRC of just the brain 
regions which showed significant differences in each RSN with the behavioral function associated with that 
RSN, as determined by the Neurosynth meta-analysis decoding (see “Methods”). First, we used ADI-R social 
score as a measure of social cognition and related this score with the FRC of regions in the default network. 
Second, we used ADI-R verbal score as a measure of language and related this score with the FRC of regions in 
the salient ventral attention network. We did not find any nodes that showed significant correlations between 
FRC and clinical scores after FDR correction. Prior to FDR correction, FRC for the node LH_Default_Temp_1 
(− 47, 8,− 32) in the default network was positively correlated with ADI-R social score ( r = 0.122 , p = 0.044 ), 
and FRC for the node LH_SalVentAttn_ParOper_1 (− 56,− 40, 20) in the salient ventral attention network was 
positively correlated with ADI-R verbal score. We also repeated the analysis for the brain regions with signifi-
cantly different clustering coefficient values in the 2 RSNs namely, default network and salient ventral attention 
network. Similar to FRC, these brain regions show behavioral relevance and are associated to social cognition and 
memory in default network, and movement and language in salient ventral attention network (Supplementary 
Fig. S4). Thus, we correlated the clustering coefficient values of significant brain regions in default network with 
the ADI-R social score and the clustering coefficient values of significant brain regions in salient ventral attention 
network with the ADI-R verbal score. In this analysis for clustering coefficient, we did not find any significant 
correlations with both ADI-R social scores and ADI-R verbal scores after FDR correction. To sum up, neither 
FRC nor clustering coefficient show evidence for a relationship with symptom severity in individuals with ASD.

Agreement of results from node-level network analysis to TMS/tDCS literature. In addition 
to the meta-analysis decoding, we performed one more analysis to determine the agreement of our results with 
relevant previous neuroimaging literature. Specifically, we determined the overlap between those brain regions 
showing FRC differences and those whose non-invasive stimulation using TMS or tDCS, resulted in improve-
ment of ASD-related symptoms. To do this, we performed a literature search on PubMed to identify the set of 
brain regions whose non-invasive stimulation using TMS or tDCS yielded positive effects on ASD symptoms. 
The exact details of the PubMed search query are provided in Table 2. Then, we compared this set of brain 
regions to those with altered FRC values in resting-state fMRI FCNs of individuals with ASD. Figure 5 summa-
rizes the workflow we employed to collect and classify the eligible articles from the literature survey.

The studies employing TMS have reported positive effects in ASD-related symptoms after stimulating 4 target 
regions, namely, premotor cortex, dorsolateral prefrontal cortex (DLPFC), pars triangularis, and pars opercularis. 
The studies employing tDCS have reported positive effects in ASD symptoms after stimulating 2 target regions, 
namely, DLPFC and left primary motor cortex. Supplementary Tables S5 and S6 provide a detailed summary of 
the TMS and tDCS studies, respectively. Note that the target regions in these experiments are cortical regions that 
are defined differently from the ROIs (or nodes) defined in our study that are a part of the Schaefer 200 parcels 
 atlas56. Therefore, in order to compare the results of our node-level analysis with the effects of stimulating the 
target regions, we mapped the Brodmann areas that correspond to target  regions67,68 to the 200 Schaefer ROIs 
(see “Methods” and Supplementary Table S7).

Based on the data collected from previous NIBS experiments (Supplementary Tables S5 and S6), we identified 
five target regions that show evidence for improvement in behavioral or cognitive symptoms associated with ASD 
following TMS or tDCS, namely, premotor cortex, pars triangularis, pars opercularis, DLPFC and left primary 
motor cortex. These five target regions correspond to Brodmann areas 6, 45, 44, 9, 46 and 4, respectively. Note 
that DLPFC comprises two Broadman areas, 9 and  4667. We found these Brodmann areas to encompass 31 ROIs 
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Figure 4.  Behavioral relevance of region-specific changes using meta-analysis decoding. Visual representations of nodes or regions 
in different resting state networks (RSNs) that are significantly different (p < 0.05, FDR-corrected) between individuals with autism 
spectrum disorder (ASD) and typically developing individuals (TD) as captured by Forman–Ricci curvature (FRC) of the nodes, 
and the corresponding word clouds depicting the behavioral relevance of the nodes identified in each RSN. The size of the terms in 
each word cloud indicates their frequency count. Note that size of the terms in each word cloud are scaled separately and thus the 
frequency counts cannot be compared across word clouds. (a) Nodes in the default network that show significant differences in FRC, 
and the corresponding word cloud. The nodes identified in the default network are associated with tasks related to social cognition 
and memory. (b) Nodes in the somatomotor network that show significant differences in FRC, and the corresponding word cloud. The 
nodes identified in the somatomotor network are associated with tasks related to movement. (c) Nodes in the salient ventral attention 
network that show significant differences in FRC, and the corresponding word cloud. The nodes identified in the salient ventral 
attention network are associated with tasks related to movement and language. In this figure, the visualizations of brain regions are 
created using BrainNet  Viewer103 and the word clouds are generated using wordclouds.com (https:// www. wordc louds. com).

https://www.wordclouds.com
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(or nodes) in the Schaefer 200 parcels atlas. Out of these 31 ROIs, 18 ROIs also show significant ASD-related 
differences in FRC and 13 ROIs show significant ASD-related differences in clustering coefficient. None of these 
31 ROIs show significant ASD-related differences in ORC or node betweenness centrality. A visual representa-
tion of these ROIs is provided in Fig. 6. Notably, the 18 ROIs with significant ASD-related differences in FRC 
are a superset of the 13 ROIs with significant between-group differences in clustering coefficient. These results 
serve as a form of validation, based on the literature on outcomes from TMS and tDCS experiments, that FRC 
identifies clinically relevant brain regions underlying ASD. Further, FRC identifies some regions that might be 
clinically relevant in ASD, but are not identified by other node-based network measures, e.g. clustering coeffi-
cient. Table 3 lists the target regions that show improvement in clinical symptoms associated with ASD following 
TMS or tDCS, the corresponding ROIs in the Schaefer atlas that show significant between-group differences in 
node-level network measures, the network measure that captured the differences, and the experimental studies 
that report the effects.

Discussion
Graph Ricci curvatures have not been previously applied to study atypical resting-state functional connectivity 
in ASD. In the present work, we used two notions of graph Ricci curvature, namely Forman–Ricci curvature 
(FRC) and Ollivier–Ricci curvature (ORC) to compare the resting-state FCNs of individuals with ASD relative 
to TD individuals. We found that average edge curvature can effectively distinguish the whole-brain functional 
connectivity of individuals in the ASD and TD groups. Additionally, we studied the differences in node curva-
ture between the two groups and identified specific regions in the brain with atypical functional connectivity in 
ASD. Notably, we found that brain regions with altered FRC in functional connectivity networks of individuals 
with ASD, were also associated in the fMRI literature to those cognitive domains known to be affected in ASD. 
Further, we observed an overlap between the set of regions with altered FRC in functional connectivity networks 
of individuals with ASD, and those brain regions whose non-invasive stimulation in TMS/tDCS experiments 
resulted in improvement of ASD-related symptoms.

We acquired rs-fMRI scans of 1112 participants as provided by the ABIDE-I  project18. The large sample 
size of the ABIDE-I dataset offers substantial statistical power, thereby increasing the reliability of the reported 
 results2,14,18. We preprocessed each scan using the CONN functional connectivity  toolbox69, implementing thor-
ough quality assessment (QA) checks both before and after preprocessing. For each participant, we generated a 
200× 200 functional connectivity (FC) matrix using Schaefer  atlas56 and constructed FCNs with a broad range 
of edge densities using a maximum spanning tree (MST) followed by sparsity-based thresholding. MST-based 
network construction is particularly useful for network analyses since it ensures the resulting network is always 
connected. Similar network construction approaches involving spanning trees have previously been used for 
financial  networks44,45 and brain  FCNs70.

After comparing the average edge curvatures of the FCNs in the ASD and TD groups, we found reduced 
average FRC and average ORC in individuals with ASD. Similar analysis using standard network measures 
revealed reduced average clustering coefficient, reduced modularity, reduced average path length, reduced average 
node betweenness centrality, increased global efficiency and reduced average local efficiency. All the standard 
network measures except node betweenness centrality have previously been used to study brain-wide changes 
in functional connectivity in  ASD26,28,31 and our results are in agreement with previous findings. However, the 
changes in graph Ricci curvatures have not previously been studied for FCNs in ASD. Our results illustrate the 
sensitivity of graph Ricci curvatures, especially FRC, in discriminating the resting state FCNs of individuals 
with ASD compared to TD.

After comparing the node curvatures of the FCNs in the ASD and TD groups, we identified 83 brain regions 
that are significantly different in FRC and 14 brain regions that are significantly different in ORC between the 
two groups. FRC and ORC identify 5 common regions. Moreover, we found that these regions are bilaterally 
symmetrical and mainly concentrated in 3 RSNs namely, default network, somatomotor network and salient 
ventral attention network. Previously, Farooq et al.48 have used ORC to compare structural connectivity networks 
of individuals with ASD relative to TD, and showed that regions with significant difference in ORC are present 
in visual, dorsal attention, ventral attention areas and temporal lobe. Our results from comparing ORC of resting 

Table 2.  Literature search for non-invasive brain stimulation studies in ASD. Detailed summary of the 
electronic search query on PubMed that we used to obtain our original corpus of articles that perform non-
invasive brain stimulation on individuals with ASD.

Search date Search query Search filters Source

October 18, 2021

((transcranial magnetic stimulation) AND (autism)) OR ((tran-
scranial magnetic stimulation) AND (Asperger)) OR ((transcranial 
magnetic stimulation) AND (PDD NOS)) OR ((transcranial direct 
current stimulation) AND (autism)) OR ((transcranial direct cur-
rent stimulation) AND (Asperger)) OR ((transcranial direct current 
stimulation) AND (PDD NOS)) OR ((transcranial alternating 
current stimulation) AND (autism)) OR ((transcranial alternating 
current stimulation) AND (Asperger)) OR ((transcranial alternating 
current stimulation) AND (PDD NOS)) OR ((TMS) AND (autism)) 
OR ((TMS) AND (Asperger)) OR ((TDCS) AND (autism)) OR 
((TDCS) AND (Asperger)) OR ((TACS) AND (autism)) OR 
((TACS) AND (Asperger))

year : no filter, article attribute : no filter, language : no filter, age : no 
filter, sex : no filter, publication date: no filter PubMed (n = 235)
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state FCNs in ASD reveal regions in visual network, dorsal attention network, salient ventral attention network, 
and additional regions in default network, somatomotor network and limbic network.

We performed meta-analysis decoding, based on the fMRI literature, to determine if those brain regions 
with altered FRC in individuals with ASD, were also associated to those cognitive domains that are known to 
be affected in ASD. We found that brain regions with altered FRC were associated to the cognitive domains of 
social cognition, memory, movement and language. Farooq et al.48 used ORC to compare structural connectivity 
networks of individuals with ASD relative to TD, and showed that regions with significant difference in ORC 
are related to semantic memory, socially relevant memories, emotions and visual perception. Since these results 
were obtained with structural connectivity networks, it is difficult to compare our results to these. However, 
each of the cognitive domains suggested by the meta-analysis decoding are known to be affected in  ASD3–5,57–66.

STAGE-3

STAGE-2

STAGE-1
Literature search with PubMed

Unique articles identified from
PubMed (n = 235)

Articles selected by title
(n = 128)

Articles excluded by abstract:
Review articles, n = 33
Protocol papers, n = 1
Not relevant, n = 19

Articles selected by abstract
(n = 75)

Scanned review articles for more
records and looked for existing 
databases for additional data

Articles excluded by title
(n = 107)

tDCS studies (n = 34) tACS studies (n = 1)TMS studies (n = 49)

Excluded because not an ASD 
study

TMS studies included for data 
collection (n = 19)

tDCS studies included for data 
collection (n = 12)

TMS studies excluded
Did not perform TMS, n = 3

Not an ASD study, n = 6
Target area not clear, n = 7

No improvements post TMS, n = 3
Protocol papers, n = 2

Not in English language, n = 1
No full-text access, n = 1

Not relevant, n = 7

tDCS studies excluded
Did not perform tDCS, n = 1

Not an ASD study, n = 9
Target area not clear, n = 4

No improvements post tDCS, n = 3
Protocol papers, n = 2

No full-text access, n = 2
Not relevant, n = 1

Filtering literature manually based on title and abstract

Manual classification and screening of NIBS studies

NIBS studies
(n = 84)

Figure 5.  Summary of the workflow employed to compile data from non-invasive brain stimulation (NIBS) 
experiments. The workflow is presented according to PRISMA  statement99. First, we identified 235 potential 
records from PubMed. Second, we filtered the articles based on title and abstract. Third, we scanned review 
articles for more records and looked for existing databases for additional data. After performing the above steps, 
we were left with 84 potential NIBS studies. Finally, we classified the studies based on the stimulation technique 
(TMS/tDCS/tACS) and screened the studies individually for eligibility. We were left with 19 TMS studies and 12 
tDCS studies, which were used to extract experimental data.
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In addition to meta-analysis decoding based on the fMRI literature, we assessed the agreement of our results 
with those of TMS/tDCS experiments involving individuals with ASD. We found that brain regions with altered 
FRC in individuals with ASD overlap with those brain regions whose non-invasive stimulation with TMS/
tDCS have been reported to result in improvement of ASD-related symptoms. We further note that the set of 
regions with altered values of other node-based network measures, e.g. clustering coefficient, which overlap 
with those regions identified by non-invasive stimulation, are a subset of the set of regions identified by FRC. 
To our knowledge, this is the first instance of using results from TMS/tDCS experiments as a form of valida-
tion of results from a graph-theoretic analysis of brain functional connectivity networks. Hence, these results 
suggest that FRC captures atypical connectivity of clinically relevant brain regions underlying ASD. Further, 
FRC might capture atypical connectivity not captured by other node-level network measures such as clustering 
coefficient. These results commend the use of graph Ricci curvatures as a source of hypotheses about clinically 
relevant brain regions underlying ASD, which can then be tested by stimulating these regions with non-invasive 
technologies, e.g.  TMS71–73.

There was a significant difference in the IQ scores between the ASD and TD groups, which introduces a 
potential confound to our analysis. Previous studies involving graph-theoretic analysis of rs-fMRI scans in the 
ABIDE dataset have matched the groups on IQ  scores30,31,74. However, we choose to include all subjects in our 
analysis rather than sub-selecting ASD subjects according to IQ, since sub-selecting would make ASD cohort less 
representative and the results of our analyses would be less generalizable to the typical ASD  population75. Confin-
ing the analysis to IQ-matched ASD subjects would include only high-functioning ASD subjects in the analyses, 
hence, our results would not be generalizable to ASD subjects whose cognitive functioning is more severely 
affected. In addition, we have not included IQ as a covariate while comparing the global and local network 

FRC

FRC & NIBS.

CC

CC & NIBS

NIBS: Regions associated with improvements in ASD symptoms, based on evidence from NIBS experiments 
FRC: Regions with significant between-group differences in Forman-Ricci curvature
CC: Regions with significant between-group differences in clustering coefficient

NIBS

FRC & NIBS

FRC & CC & NIBS

a.

c.

b.

Figure 6.  Agreement of results from node-level network analysis to TMS/tDCS literature. Visual representation 
of nodes or regions with significant between-group differences in node-level network measures that exhibit 
improvements in clinical symptoms of ASD when stimulated, based on evidence from published NIBS 
experiments on subjects with ASD. (a) We found 31 nodes with experimental evidence out of which 13 nodes 
are identified by both FRC and clustering coefficient and 5 nodes are identified only by FRC. (b) 83 nodes 
identified by FRC out of which 18 nodes have experimental evidence. (c) 78 nodes identified by clustering 
coefficient out of which 13 nodes have experimental evidence. The visualizations of the brain regions are created 
using BrainNet  Viewer103.
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measures across groups. However, Dennis et al.75 have shown that using IQ as a matching variable or covariate 
during studies of neurodevelopmental disorders could lead to anomalous findings about neurocognitive function.

To sum up, we find that geometric notions of graph Ricci curvature can be effectively used to determine global 
and node-level changes in functional connectivity networks of individuals with ASD. Importantly, we present a 
validation based on TMS/tDCS literature, to suggest that graph Ricci curvatures, particularly FRC, are sensitive 
to atypical functional connectivity of clinically relevant brain regions underlying ASD. The methods used in the 
present work could further be applied to study functional connectivity networks in other atypical populations. 
Additionally, since graph Ricci curvatures are fundamentally defined on edges, future studies could be aimed at 
devising edge-based methods to analyze brain functional or structural connectivity.

Methods
In this section, we describe the methodology used to construct the resting-state functional connectivity networks 
(FCNs) of individuals with autism spectrum disorder (ASD) and typically developing (TD) individuals, from 
raw resting-state functional MRI (rs-fMRI) images acquired from the Autism Brain Imaging Data Exchange I 
(ABIDE-I)  project18. Note that TD individuals are the healthy subjects. First, raw rs-fMRI data were spatially and 
temporally preprocessed using the CONN  toolbox69. Second, we parcellated the brain into 200 regions of interest 
(ROIs) or nodes using the Schaefer  atlas56 and a 200× 200 functional connectivity (FC) matrix was generated for 
each subject. Third, we filtered the FC matrix using a maximum spanning tree (MST) based approach followed 
by sparsity-based thresholding to construct FCNs for each subject.

Participants and imaging dataset. From the ABIDE-I  project18, we obtained raw rs-fMRI and anatomi-
cal data for 1112 participants (age range = 7-64 years, median = 14.7 years), comprising 539 individuals with 
ASD and 573 age-matched TD individuals. ABIDE-I project is an international effort by 17 imaging sites that 
have collectively shared rs-fMRI, anatomical and phenotypic data. Further details such as MRI modalities and 
scan parameters are available on the ABIDE website. This study was carried out in accordance with relevant 
guidelines and regulations.

Quality assessment and exclusion criteria before preprocessing. We used the following criteria to 
exclude subjects in ABIDE-I from this study. First, the subjects with missing anatomical or functional files were 
excluded. Second, all subjects from the imaging site Stanford were excluded as it is the only site with spiral image 
acquisition protocol. Third, all subjects from the imaging site Leuven-1 were excluded due to unknown repeti-
tion times for the functional scans. Fourth, to assess the quality of the raw images in ABIDE-I, we have used the 
information on raters’ decisions available from the Preprocessed Connectome Project (PCP)76, and the subjects 
whose raw image quality was described as ‘fail’ by both the raters were excluded. Note that we did not exclude 
the subjects based on IQ or match the cohorts for IQ in order to ensure that the results of our analyses are gener-
alizable to the typical ASD  population18,75. After removing subjects based on the quality assessment (QA) checks 

Table 3.  Agreement of results from node-level network analysis to TMS/tDCS literature. The list of the target 
brain regions that show improvement in clinical symptoms associated with ASD following TMS or tDCS 
procedure, the corresponding ROIs in the Schaefer atlas that show significant between-group differences in 
node-level network measures and the network measures that capture the differences (Forman–Ricci curvature 
(FRC), clustering coefficient (CC)).

Target area Schaefer ROI Network measure

Premotor cortex (BA 6)

RH_SalVentAttn_PrC_1 FRC

LH_SomMot_7

FRC, CC

LH_SomMot_12

LH_SalVentAtnt_Med_3

RH_SomMot_10

RH_SomMot_11

RH_SalVentAttn_Med_3

RH_SomMot_14

Pars Triangularis (Part of Broca’s area) (BA 45)
RH_Cont_PFCl_3

FRC
RH_Cont_PFCl_6

Pars Opercularis (Part of Broca’s area) (BA 44) RH_DorsAttn_PrCv_1 FRC, CC

Dorsolateral prefrontal cortex (BA 9 and BA 46)

LH_Default_PFC_11
FRC

RH_Default_PFCdPFCm_5

LH_Default_PFC_9
FRC, CC

RH_Default_PFCdPFCm_6

Left primary motor cortex (BA 4)

LH_SomMot_6

FRC, CCLH_SomMot_10

LH_SomMot_15
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and exclusion criteria described above, we were left with 494 subjects in the ASD group and 520 subjects in the 
TD group (Supplementary Table S1).

Raw fMRI data preprocessing. We used the CONN functional connectivity  toolbox69 to process the rs-
fMRI data from ABIDE-I. Figure 1 is a schematic summarizing the processing pipeline for rs-fMRI data used 
in this study. We have created a protocol video providing a visual guide to rs-fMRI preprocessing using CONN 
toolbox which is available at: https:// youtu. be/ ch7- dOA- Vlo.

We performed motion correction, slice-timing correction, outlier detection, and structural and functional 
segmentation and normalization. First, the functional images were co-registered to the first scan of the first ses-
sion. The SPM12 realign and unwarp  procedure77 was used to realign and motion correct the images using six 
rigid body transformation parameters: three translations in x, y and z directions, and three rotations namely pitch, 
yaw and roll. Second, the SPM12 slice-timing correction  procedure78 was used to temporally align the functional 
images. Third, Artifact Detection Tools (ART)-based outlier detection was performed where acquisitions with 
framewise displacement greater than 0.5 mm or global BOLD signal changes greater than 3 standard deviations 
were marked as outliers. Fourth, segmentation and  normalization79 was carried out to normalize the images into 
the standard Montreal Neurological Institute (MNI) space, and then, segment the brain into grey matter, white 
matter and cerebrospinal fluid (CSF) areas. Raw T1-weighted volume of the anatomical image and mean BOLD 
signal of the functional images were used as reference in this step. Subjects with bad image quality and signal 
dropouts in their scans or subjects with registration or normalization errors were excluded from further analysis.

After the spatial preprocessing of the raw rs-fMRI scans, the BOLD time-series associated with each voxel was 
extracted using the CONN toolbox. Next, we performed temporal preprocessing or denoising using the CONN 
toolbox to further reduce physiological or motion effects from the BOLD time-series. First, we implemented 
anatomical component-based noise correction procedure (aCompCor), to simultaneously remove 5 potential 
noise  components80 each from white matter and CSF areas, 12 potential noise components from estimated subject 
motion parameters and their associated first-order  derivatives81, and 1 noise component from each of the identi-
fied outlier scans (scrubbing)82 in a single linear regression step. Second, a high-pass filtering was performed to 
remove temporal frequencies below 0.008 Hz from the BOLD time-series.

Quality assessment and exclusion criteria after preprocessing. After preprocessing the raw fMRI 
data, we applied the following criteria to exclude participants from the analysis. Subjects were excluded if the 
FC distribution deviated significantly from normal distribution, or if the FC distribution showed noticeable 
distance  dependence83. We additionally excluded subjects that showed a noticeable correlation between quality 
control (QC) variables and FC values, or if the QC-FC correlations showed a noticeable distance  dependence83. 
After removing subjects based on these exclusion criteria, we were left with 395 subjects in the ASD group and 
425 subjects in the TD group (Supplementary Table S1). The FC matrices of these remaining 820 subjects were 
used for network analysis. The demographic and clinical information for these subjects from ABIDE-I included 
in our study is summarized in Table 1.

Atlas-based definition of nodes and functional connectivity. A widely-used approach for defining 
nodes in functional connectivity networks (FCNs) is to group closely related neighboring voxels into cortical 
parcels, in order to obtain nodes with interpretable neurobiological  meaning84. Furthermore, the use of brain 
parcellations also reduces the computational load of further analyses. In this study, we used a predefined corti-
cal parcellation atlas by Schaefer et al.56, which is based on a gradient-weighted Markov random field approach. 
While the Schaefer atlas is available at multiple resolutions, we considered the resolution that parcellates the 
brain into 200 distinct regions of interests (ROIs) wherein each hemisphere comprises 100 ROIs. In this parcel-
lation, each ROI belongs to one of seven resting state networks (RSNs), namely, ‘visual’, ‘somatomotor’, ‘dorsal 
attention’, ‘salient ventral attention’, ‘limbic’, ‘control’, and ‘default’. Using the CONN toolbox, the time series of 
each ROI was computed as the average of the time series of all the voxels that it contains. Subsequently, Pearson 
correlation coefficient between the time series of every pair of ROIs was calculated in the CONN toolbox, which 
resulted in a 200× 200 FC matrix for each subject.

Construction of Sparsity-based functional connectivity networks. In the preceding subsection, 
we described the FC matrix which is a correlation matrix that can be represented as a complete, weighted and 
undirected graph wherein the ROIs correspond to the nodes and the weights of edges are given by the correlation 
values between ROIs. The construction of the FCN from the FC matrix of a subject includes two steps, namely 
maximum spanning tree (MST) construction and sparsity-based thresholding. First, to extract the most impor-
tant edges from the FC matrix, we constructed its MST using Kruskal’s  algorithm85. The MST is a spanning tree 
of the weighted graph with maximum edge weight. Note that the MST for a weighted graph with n nodes is an 
acyclic graph (more precisely, a tree) with ( n− 1 ) edges which is always connected. Second, we used sparsity-
based thresholding, wherein edges are iteratively added to the MST in decreasing order of their correlation val-
ues, until a resulting network with the desired sparsity was obtained. Further, the resulting network with desired 
sparsity was binarized by ignoring the edge weights before proceeding to compute the network  properties26,86.

Evidently, this choice of MST construction followed by sparsity-based thresholding to generate the FCNs 
ensures that the constructed networks for different subjects are connected and have the same number of 
edges. Such networks enable direct mathematical comparison of global and local network properties across 
 subjects26,87,88. We remark that this choice of MST followed by sparsity-based thresholding to construct FCNs 
from rs-fMRI images has been used earlier by Achard et al.70.

https://youtu.be/ch7-dOA-Vlo.
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As there is no rationale for using a specific graph density, previous  studies26,28,31 have explored network prop-
erties across a range of graph densities. In this work, we have studied the network properties over a wide range 
of graph densities between 0.02 or 2% edges and 0.5 or 50% edges, with an increment of 0.01 or 1% edges. Thus, 
for each of the 820 subjects from ABIDE-I considered in this study, we have constructed 49 unweighted and 
undirected networks. In other words, we have generated 820× 49 FCNs for 820 subjects across 49 graph densities 
or thresholds for this study, and the constructed networks are made publically available in our GitHub repository.

Network based analysis and post-hoc analyses. In this section we describe the methodology used 
to analyze and compare the resting-state FCNs of individuals with ASD and TD individuals constructed as 
mentioned in the preceding section. First, we performed global and node-level network analysis to compare the 
FCNs in the ASD group and the TD group. Second, we used Neurosynth-based meta-analysis  decoding89,90 to 
determine the behavioral relevance of the results of our node-level network analysis, and studied the relationship 
between node-level network measures and relevant scores of symptom severity in ASD. Third, we assessed the 
agreement of the results of our node-level network analysis against results reported in non-invasive brain stimu-
lation (NIBS) studies with Transcranial Magnetic Stimulation (TMS) and transcranial Direct Current Stimula-
tion (tDCS).

Global and node‑level network analysis. As mentioned in preceding subsection, we constructed 49 unweighted 
and undirected networks with varying sparsity from the FC matrix corresponding to each subject, and there-
after, each of the 49 networks for a subject was characterized by computing discrete Ricci curvatures and other 
network properties. Specifically, we have focused here on two discrete Ricci curvatures, namely Forman–Ricci 
curvature (FRC)39,41,42 and Ollivier–Ricci curvature (ORC)40. Notably, the two discrete Ricci curvatures are natu-
rally defined for edges in a network and capture different aspects of the classical Ricci  curvature42. Moreover, 
we have also explored here several standard global network measures including average clustering coefficient, 
 modularity91, average shortest path length, average node betweenness centrality, global  efficiency92 and average 
local  efficiency92. In Supplementary Information, we describe the different global and local network measures 
employed here to characterize the FCNs.

To compare the global properties of the FCNs across the two groups (ASD versus TD), we first computed 
the average FRC of edges, average ORC of edges and seven other global network measures (including average 
clustering coefficient, modularity, average shortest path length, average node betweenness centrality, global 
efficiency and average local efficiency), for each of the 820× 49 networks corresponding to the FC matrices of 
820 subjects across 49 graph densities. To compare the node-level properties of the FCNs across the two groups 
(ASD versus TD), we computed the node FRC and node ORC for each of the 200 nodes in each of the 820× 49 
networks corresponding to the FC matrices of 820 subjects across 49 graph densities. Note that the node Ricci 
curvature is defined as the sum of edge Ricci curvatures for the edges incident on that  node42 (see Supplementary 
Information). Additionally, we computed two standard network measures, namely node clustering coefficient 
and node betweenness centrality.

The computer codes for FRC and ORC are made publically accessible via a GitHub repository. The other 
global network measures mentioned above for FCNs were computed using the Python package  NetworkX93. 
Furthermore, the statistical tests were performed in Python packages  SciPy94 and  statsmodels95.

Neurosynth meta‑analysis decoding. We used Neurosynth meta-analysis  decoding89,90 to interpret the results 
of the node-based network comparisons, in terms of their behavioural relevance. Corresponding to each node-
level network measure studied here, we identified a set of nodes (ROIs) that showed significant differences 
between the ASD and TD groups. For a set of nodes with significant between-group differences for a network 
measure, we used Neurosynth meta-analysis tool to find terms related to cognition, perception and behavior 
corresponding to the centroid coordinates of each ROI in the set. Further, we partitioned the set of identified 
ROIs which show significant between-group differences, by the 7 RSNs in the Schaefer atlas, and thereafter, the 
frequency counts of the terms associated with the subset of identified ROIs in a particular RSN were calculated 
and the statistical significance of these frequency counts was determined. This was done for each RSN separately, 
to identify those terms selectively associated with each of the 7 RSNs.

After determining the behavioral relevance of the brain regions with significant between-group differences 
in node-based network measures, we performed a post-hoc correlation analysis to measure the strength of the 
linear relationship between the values of the node-based network measure for each of the brain regions, and 
clinical scores related to symptom severity of the identified cognitive domains. We performed this analysis just 
for the ASD group. Specifically, we chose two clinical scores based on the Autism Diagnostic Interview-Revised 
(ADI-R)  scoring96, namely ADI-R verbal and ADI-R social. We chose the ADI-R scores among all the possible 
clinical scores because they are available for the most number of participants ( n = 275 ) in the ASD group, and 
the ADI-R social and ADI-R verbal scores are appropriate means to capture symptom severity in autism com-
pared to other clinical  scores97.

Literature search for non-invasive brain stimulation studies in ASD. We performed a literature 
search to identify brain regions whose non-invasive stimulation were reported to result in improvement of ASD-
related symptoms. We first performed the literature search, to identify scientific papers reporting the effect of 
non-invasive brain stimulation (NIBS) on core symptoms of ASD, and then used results reported in these papers 
to identify those brain regions whose stimulation resulted in positive behavioral and cognitive outcomes. Fig-
ure 5 summarizes the workflow we employed to collect and classify the eligible articles. We used PubMed to 
perform the literature search. The search query to PubMed reflected diagnosis of interest including ‘autism 
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spectrum disorder’, ‘Asperger’s syndrome’, ‘autism’ and three major brain stimulation methodologies including 
‘Transcranial magnetic stimulation’, ‘TMS’, ‘transcranial direct current stimulation’, ‘tDCS’, ‘transcranial alternat-
ing current stimulation’, ‘tACS’. The search was performed in October 2021 and the exact details regarding the 
search query are provided in Table 2. The PubMed search returned 235 articles.

We followed a three-stage procedure to further refine the list of 235 articles returned by the PubMed search. 
First, we checked for papers missing from the corpus generated by the PubMed search, by scanning review arti-
cles on the use of NIBS methods to study ASD. We also searched these review articles for potential databases of 
NIBS experiments on ASD. Second, we filtered the articles based on title and abstract, based on relevance. We 
defined relevance according to the following criteria. The inclusion criteria were: (1) studies on ASD popula-
tions, (2) studies that have used NIBS techniques namely, TMS (and its variants such as rTMS), tDCS and tACS, 
(3) studies that have investigated the effect of NIBS on the core behavioral and cognitive symptoms of ASD, 
and (4) studies that are peer-reviewed. The exclusion criteria were: (1) review articles, (2) articles presented in 
languages other than English, (3) studies that did not perform NIBS, (4) studies that investigate new protocols 
for NIBS, (5) studies that report no positive effects in ASD symptoms post NIBS, (6) studies whose target areas 
for NIBS were not clearly reported, and (7) articles without access to full-text. Third, we classified the articles 
based on their stimulation technique (TMS/ tDCS/ tACS) and checked the full text of the articles for relevance, 
according to the same criteria as above. This process yielded 19 eligible articles for TMS, 12 eligible articles for 
tDCS and zero articles for tACS.

We identified Barahona-Corrêa et al.98 as a database of TMS studies in ASD published before 2018, with data 
collection guided by preferred reporting items for systematic reviews and meta-analysis (PRISMA)99. Similarly, 
we identified García-González et al.100 as a database of tDCS studies in ASD published before August 2019, also 
guided by PRISMA data collection. We utilized the data presented in these two databases along with the data 
that we extracted from the eligible articles in our corpus, such as author, publication year, DOI, number of par-
ticipants, gender distribution, mean age, intellectual abilities, stimulation methodology and parameters, target 
areas, stimulation schedule, behavioral and cognitive outcome measures, behavioral and cognitive results, and 
any adverse reactions for the experiment group and the control group (if applicable). All the data collected are 
provided as Supplementary Tables S5 and S6. From these data, we identified the set of brain regions whose stimu-
lation using these NIBS methods on individuals with ASD resulted in positive cognitive and behavioral outcomes.

Estimating overlap between regions identified in NIBS studies and node-level network analy-
sis. We estimated the overlap between the sets of regions identified from literature search of NIBS studies and 
the sets of regions revealing ASD-related differences in node-level network measures. The target areas described 
in the NIBS studies were cortical regions in the brain that are specified by their respective Brodmann  areas68 
while we identified node-level differences in areas of the Schaefer 200 atlas. We used the MRIcron  tool101 to 
map each of the Brodmann areas to Schaefer ROIs, by identifying the Brodmann area encompassing the MNI 
centroid coordinates of each Schaefer  ROI73. The mapping from Schaefer ROIs to the Brodmann areas is pre-
sented in Supplementary Table S7. Next, we compiled the set of Brodmann areas that serve as target areas from 
the eligible NIBS experiments and have shown a positive outcome, either behavioral or cognitive, as a result of 
stimulating that region. We then identified the set of Schaefer ROIs that were mapped to these Brodmann areas. 
From this set of Schaefer ROIs, we found the subset that yielded significant ASD-related differences according 
to the graph Ricci curvatures namely, FRC and ORC, as well as for clustering coefficient and node betweenness 
centrality.

Quantification and statistical analysis. For the global measures, we evaluated the differences between 
the two groups across the 49 graph densities in the range 2–50% considered in this study by using a two-tailed 
two-sample t test. For the node-level measures, we first computed the area under the curve (AUC) for a given 
node measure across the 49 graph densities considered in this  study28,86. Thereafter, we used a two-tailed two-
sample t test to evaluate the differences between the two groups via AUCs of the node measures for each of the 
200 nodes in the network. Further, we measured the relationship between the values of the node-based network 
measure and the ADI-R scores by computing the partial correlations, with age and gender as covariates. For the 
Neurosynth meta-analysis decoding, to determine statistical significance of these frequency counts, we calcu-
lated the frequency counts of the same terms associated with an equal size set of randomly selected surrogate 
ROIs, and thereafter, the z-score for the frequency counts of each term associated with the subset of original 
ROIs was calculated. Subsequently, the z-scores were converted into p-values assuming a normal distribution.

After each of the above-mentioned tests or computations, we used a false discovery rate (FDR)  correction102 
to correct for multiple comparisons and control the occurrence of false positives. Note that the alpha for these 
FDR corrections was set to 0.05.

Data and code availability
Functional connectivity matrices and networks generated in our study, and all original codes are deposited 
on GitHub and are publically available at https:// github. com/ asama llab/ Curva ture- FCN- ASD as of the date of 
publication.
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