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A B S T R A C T   

Purpose: To investigate the diagnostic yield of low to ultra-high b-values for the differentiation of benign from 
malignant vertebral fractures using a state-of-the-art single-shot zonal-oblique-multislice spin-echo echo-planar 
diffusion-weighted imaging sequence (SShot ZOOM SE-EPI DWI). 
Materials and Methods: 66 patients (34 malignant, 32 benign) were examined on 1.5 T MR scanners. ADC maps 
were generated from b-values of 0,400; 0,1000 and 0,2000s/mm2. ROIs were placed into the fracture of interest 
on ADC maps and trace images and into adjacent normal vertebral bodies on trace images. The ADC of fractures 
and the Signal-Intensity-Ratio (SIR) of fractures relative to normal vertebral bodies on trace images were 
considered quantitative metrics. The appearance of the fracture of interest was graded qualitatively as iso-, hypo- 
, or hyperintense relative to normal vertebrae. 
Results: ADC achieved an area under the curve (AUC) of 0.785/0.698/0.592 for b = 0,400/0,1000/0,2000s/mm2 

ADC maps respectively. SIR achieved an AUC of 0.841/0.919/0.917 for b = 400/1000/2000s/mm2 trace images 
respectively. In qualitative analyses, only b = 2000s/mm2 trace images were diagnostically valuable (sensi-
tivity:1, specificity:0.794). Machine learning models incorporating all qualitative and quantitative metrics 
achieved an AUC of 0.95/0.98/0.98 for b-values of 400/1000/2000s/mm2 respectively. The model incorporating 
only qualitative metrics from b = 2000s/mm2 achieved an AUC of 0.97. 
Conclusion: By using quantitative and qualitative metrics from SShot ZOOM SE-EPI DWI, benign and malignant 
vertebral fractures can be differentiated with high diagnostic accuracy. Importantly qualitative analysis of ultra- 
high b-value images may suffice for differentiation as well.   

1. Introduction 

Both benign osteoporotic compression fractures as well as pathologic 

metastatic vertebral fractures due to vertebral metastases are common 
conditions, especially in elderly patients. 

In clinical routine, radiologists have to differentiate these two 
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entities as this paves the subsequent therapeutic process. 
However, the differentiation can be challenging on conventional MR 

images as both entities may result in similar changes in signal intensity 
on pre- and postcontrast T1-weighted (w) and on T2w images [1–6]. 

Recent endeavors in improving the differentiation of benign and 
malignant vertebral fractures with MRI have focused on diffusion- 
weighted imaging (DWI). Investigators have thereby proposed both 
qualitative and quantitative approaches based on trace images and 
apparent diffusion coefficient (ADC) maps in an effort to improve the 
differentiation of these entities [5,7]. 

Interestingly, all these studies used DWI protocols with low to 
moderate b-values. Specifically, b-values of around 400 s/mm2 were 
used most frequently with a single study using a high b-value of 1400 s/ 
mm2 [1,5,7]. Furthermore, previous studies have employed single shot 
(SShot) or multi shot (MShot) spin-echo echo-planar-imaging (SE-EPI) 
sequences [1]. For spine imaging, these DWI sequences are suboptimal 
as they are susceptible to off-resonance artifacts created by magnetic 
field inhomogeneity surrounding the spinal column and spinal cord. 
Additionally, given the small voxel sizes required to accurately image 
the spine and the large field of view (FOV) required to avoid aliasing of 
tissues outside the FOV, these artifacts intensify even more. 

Recently, novel MRI sequences have been developed to counteract 
these technical limitations. One promising method is the zonal oblique 
multislice (ZOOM)-EPI technique. This technique allows for imaging 
with reduced FOV without aliasing, thus also reducing image blurring 
and geometrical distortion [8]. 

Importantly, with this sequence, ultra-high b-values can be acquired 
robustly at 1.5 T at an acceptable scan time. Ultra-high b-values provide 
better imaging contrast, greater tissue diffusivity and less T2 shine- 
through effect than lower b-values [9,10]. 

Accordingly, in brain and body imaging, ultra-high b-values have 
shown promise in a clinical setting. Specifically, it has been suggested 
that diagnostic performance can be improved by using ultra-high b- 
values as compared to lower b-values [10,11]. 

Given these considerations we sought to assess the diagnostic yield of 
low to ultra-high b-values for the differentiation of benign from malig-
nant vertebral fractures using a single-shot zonal oblique multislice spin- 
echo echo-planar diffusion-weighted imaging sequence (SShot ZOOM 
SE-EPI DWI) at 1.5 T. Importantly, we hypothesized that ultra-high b- 
values acquired with a state-of-the-art optimized DWI sequence may 
further improve the capability of DWI for the differentiation of these two 
entities. 

To this extent, using a SShot ZOOM SE-EPI DWI sequence, we ac-
quired low (b = 400 s/mm2), high (b = 1000 s/mm2) and ultra-high (b =
2000 s/mm2) b-values in a representative patient cohort and compared 
the diagnostic performance of qualitative and quantitative metrics 
derived from ADC maps and DWI trace images to differentiate benign 
from malignant vertebral fractures. 

2. Materials and methods 

2.1. Study subjects 

In this institutional review board approved, head-to-head, intra-in-
dividual comparison study 66 patients were enrolled. Patients under-
went spine MR imaging using a dedicated protocol between January and 
June 2020. In line with previous studies [3], we enrolled patients 
referred for MRI examination due to suspicion of acute benign (osteo-
porotic) vertebral body fractures (25 females, 7 males, mean age 73.9 
years with range 56–90 years) and acute malignant (metastatic) verte-
bral body fractures (9 females, 25 males, mean age 76.4 years with range 
48–77 years). Inclusion criteria for all patients were as follows: 18 years 
or older, back pain at the level of the vertebral fracture, presence of bone 
marrow edema at the level of the fracture as assessed on Short Tau 
Inversion Recovery (STIR). Exclusion criteria were as follows: Preg-
nancy, contraindications to MRI, hematological disorders. Patients were 

allocated to the benign or malignant group based on clinical follow-up 
combined with information gained from histology (as obtained during 
surgery or after CT-guided biopsy), follow-up MRI (appearance of 
edema, possible morphological signs of malignancy), PET-CT (definite 
pathologic SUV in case of malignant cause), dual energy x-ray absorp-
tiometry (DXA) and subsequent CT imaging [3]. For patients allocated to 
the malignant group, metastatic vertebral body fractures were due to 
prostate carcinoma in 12 patients, breast carcinoma in 9 patients, 
non-small cell lung cancer (NSCLC) in 9 patients and hepatocellular 
carcinoma in 4 patients. 

2.2. MRI 

All patients underwent spine MRI on one of two 1.5 T MRI scanners 
(Philips Achieva (A) and Ingenia (B), Best, the Netherlands) at a single 
tertiary center. Scanner A was on software release 5.6 with a 5-channel 
spine coil, scanner B was on software release 5.7 with a 16-channel built- 
in posterior spine coil. The imaging protocol consists of sagittal T1w 
TSE, T2w TSE, STIR T2w TSE, diffusion weighted imaging (DWI) and 
transverse T2w TSE sequences. 

The DWI sequence used in this work uses a non-coplanar excitation 
combined with outer volume suppression. A detailed description of the 
sequence can be found elsewhere [12]. Specifically this reduced field of 
view (FOV) imaging technique is referred to as diffusion weighted zonal 
oblique spin-echo echo-planar imaging (DW ZOOM SE-EPI). The main 
applications for small-FOV DW imaging are DW imaging of the prostate, 
spinal cord, pancreas, breast, and heart, where a relatively small area of 
interest surrounded by tissue of less interest is depicted with high res-
olution and mainly leads to less image distortion [12–19]. Sequence 
parameters can be found in Table 1. As suggested and recommended 
elsewhere [20,21] two-point b-value ADC maps were generated from the 
following b-value combinations: b = 0,400; b = 0,1000 and b = 0,2000 
s/mm2 respectively. ADC maps were computed based on a 
mono-exponential fitting model using the inline ADC calculation tool on 
the scanner console. 

2.3. Image analysis 

All quantitative analyses were performed twice by two readers 
(board-certified neuroradiologist with 30 years of experience and 
trainee with 3 years of experience in imaging) in consensus in a blinded 
and randomized manner. The averaged values were considered repre-
sentative for statistical analyses. 

Readers were provided with T1w, T2w, STIR T2w, DWI and ADC 
images/maps. For each patient, the readers selected the fracture with 
the highest signal intensity on STIR at the level of back pain [3]. As 
suggested elsewhere, in case of multiple (acute) fractures, only one 
lesion was considered for further analyses [3]. For a given fracture, ROIs 
were manually drawn on the area with hyperintense signal on STIR and 
hypointense signal on T1w images. Then, ROIs were copied to the ADC 
maps and DWI trace images using the copy-and-paste function. In case of 

Table 1 
Sequence parameters.   

SShot ZOOM SE-EPI DWI b0, b400, b1000, 
b2000 

Field of View (FoV) 220 × 100 × 60 mm3 

Acquired voxel size 2.75 × 2.75 × 5.0 mm3 

Reconstructed voxel size 1.2 × 1.2 × 5.0 mm3 

Number of slices 12 
Repetition time (TR) 2500 ms 
Echo time (TE) 93 ms 
Flip angle 90◦

EPI factor 47 
Number of signal averages (NSA) b0 = 1, b400 = 2, b1000 = 8, b2000 = 12 
Receiver bandwidth 33.3 Hz / pixel 
Acquisition time [mm:ss] 05:30  
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distortions, ROI placement was adjusted manually after copying. 
Additionally, for the DWI trace images of each patient, quantitative 

values for normal vertebral bodies were obtained. To this extent, ROIs 
were manually drawn on a normal vertebral body on T1w images situ-
ated below or above the level of the fracture and were copied to the DWI 
trace images using the copy-and-paste function. In case of distortions, 
ROI placement was adjusted manually after copying. 

Using the mean values from these ROIs, the following quantitative 
metrics were derived:  

1.) For the ADC maps we used the ADC value derived from the 
fracture as a biomarker [3,22,23].  

2.) In an effort to quantify the appearance of lesions on DWI trace 
images, we also computed a further metric as proposed previ-
ously by Wang et al. [24]. Specifically, the quotient between the 
mean signal intensity (SI) of the vertebral fracture and the mean 
SI of the normal vertebral body on DWI trace images was 
considered as a biomarker (signal intensity ratio – SIR). The 
formula is as follows: 

SIR =
Mean SIFracture

Mean SINormal Vertebral Body 

Ultimately, the two readers also performed a qualitative analysis of 
the images in consensus. Specifically, for each patient they rated the 
appearance of the fracture of interest on ADC maps and DWI trace im-
ages relative to the normal bone marrow of adjacent vertebra and 
structures as either hypo- iso- or hyperintense [2]. The qualitative 
appearance of fractures on STIR T2w, T1w and T2w images was also 
recorded in this manner. 

2.4. Data analysis 

First the diagnostic performance of metrics, stratified by each b- 
value, was assessed individually. To assess the combined diagnostic 
performance of all metrics and the diagnostic yield of DWI in general, 
machine learning (ML) backed models were used. 

2.4.1. Statistical analysis for individual metrics 
Normality was checked with histograms, boxplots, quantile-quantile- 

plots and Shapiro-Wilks tests. In case of normally distributed data, stu-
dent’s t-tests and in case of non-normally distributed data, Mann- 
Whitney U tests were computed to check for statistical differences be-
tween the two study groups. Additionally, receiver operating charac-
teristics (ROC) analyses were performed on the data to quantify the 
(individual) performance of the various metrics in differentiating benign 
from malignant vertebral fractures. In this regard, the area under the 
curve (AUC), and the best cutoff based on the Youden index were 
computed. Sensitivity and specificity based on the optimal cutoff were 
also determined. Wherever appropriate, p-values were corrected for 
multiple comparisons with the Holm method. Adjusted p-values < 0.05 
were considered significant. All statistical analyses were performed in 
the R programming language (version 3.6.3) using the packages 
“ggplot2”, “rstatix”, and “pROC”. 

2.4.2. Machine learning 
To quantify the combined performance of all qualitative and quan-

titative metrics derived from a single b-value and from DWI in general, 
we used machine learning (ML). We built, trained, and evaluated 9 
different models. For each b-value, two models (full, reduced) were 
designed. In the full model, both qualitative (appearance of fracture on 
STIR T2w, T1w and T2w images, DWI trace images and ADC maps) and 
quantitative metrics (ADC and SIR values of fracture) were available as 
input data (for example, for b = 400 s/mm2 there were 5 qualitative and 
2 quantitative parameters as input data), and in the reduced model, only 
the qualitative metrics were available as input data (for example, for b =
400 s/mm2 there were only 5 qualitative parameters as input data). As a 

baseline (i.e. to quantify the overall diagnostic yield of DWI in general), 
a model was also calculated that included only the (qualitative) image 
information from conventional STIR T2w, T1w, and T2w imaging. 

ML was performed in the R programming language using the package 
“healthcareai”. In brief, for each model, three algorithms (Random 
Forest, Extreme Gradient Boosting and Regularized Regression) were 
individually fitted and optimized iteratively. The data was randomly 
split in a 90:10 ratio for training and testing respectively. For training, 
models were tuned via 5-fold cross validation over 10 combinations of 
hyperparameter values. The optimal algorithm with the optimal 
hyperparameter values was selected based on the AUC-ROC perfor-
mance metric. The optimal algorithm was then tested on the final 10 % 
of data reserved for testing. 

3. Results 

Typical image examples are shown in Figs. 1 and 2. A detailed 
overview of the data can be found in Tables 2 and 3 and in Figs. 3–5. 

3.1. Performance of individual metrics 

3.1.1. ADC 
In brief, for ADCb=0,400 (p < 0.001) and for ADCb=0,1000 (p = 0.02) 

the values between benign and malignant fractures differed significantly 
while for ADCb=0,2000 (p = 0.3) no significant difference was observed. 
Accordingly, for the differentiation of both entities, ADCb=0,400 achieved 
an AUC of 0.785 (accuracy = 0.773; sensitivity: 0.813; specificity: 
0.735; cutoff: 1.265 × 10–3 mm2/s) followed by ADCb=0,1000 with an 
AUC of 0.698 (accuracy = 0.742; sensitivity: 0.906; specificity: 0.588; 
cutoff: 0.805 × 10–3 mm2/s) and lastly ADCb=0,2000 with an AUC of 
0.592 (accuracy = 0.621; sensitivity: 0.844; specificity: 0.412; cutoff: 
0.545 × 10–3 mm2/s). 

3.1.2. Signal Intensity Ratio (SIR) 
In brief, for SIRb=400 (p < 0.001), SIRb=1000 (p < 0.001) and 

SIRb=2000 (p < 0.001) 
significant differences between both groups were observed. 
SIRb=1000 achieved the best discriminative performance to differen-

tiate both entities (AUC = 0.919; accuracy = 0.909; sensitivity: 0.969; 
specificity: 0.853; cutoff: 1.497) followed closely by SIRb=2000 (AUC =
0.917; accuracy = 0.909; sensitivity: 0.906; specificity: 0.912; cutoff: 
1.074) and lastly by SIRb=400 (AUC = 0.841; accuracy = 0.803; sensi-
tivity: 0.938; specificity: 0.676; cutoff: 2.96). Importantly, for SIRb=2000 
the optimal cutoff based on the Youden index was computed as very 
slightly above 1, which signifies the transition from an isointense to a 
hyperintense image impression. 

3.1.3. Qualitative analysis 
In brief, except for the b = 2000 s/mm2 DWI trace images, there was 

a large overlap between the visual signal intensity characteristics of 
benign and malignant vertebral fractures as assessed qualitatively on 
ADC maps and DWI trace images. For the b = 2000 s/mm2 DWI trace 
images, a specificity of 0.794 and a sensitivity of 1 was achieved for the 
differentiation of benign from malignant vertebral fractures when 
relying on the presence of hyperintense signal as the cutoff. 

3.2. Performance of combined metrics 

All full ML models achieved a high diagnostic performance in 
differentiating benign from malignant vertebral fractures. For the 
Fullb=400 model, a random forest (optimal hyperparameter values: mtry 
= 2, splitrule = extratrees, min.node.size = 7) achieved an AUC in ROC 
of 0.95/1 for the training/testing data set respectively. 

For Fullb=1000 a random forest (optimal hyperparameter values: mtry 
= 1, splitrule = gini, min.node.size = 2) achieved an AUC in ROC of 
0.98/1 for the training/testing data set respectively. For Fullb=2000 a 
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random forest (optimal hyperparameter values: mtry = 2, splitrule =
extratrees, min.node.size = 19) achieved an AUC in ROC of 0.98/1 for 
the training/testing data set respectively. 

For the reduced models, only the Reducedb=2000 model achieved a 
comparable performance to the full models thus further corroborating 
the high diagnostic yield of qualitative image information as obtained 
from b = 2000s/mm2 DWI. Specifically for the Reducedb=2000 model a 
random forest (optimal hyperparameter values: mtry = 1, splitrule =
extratrees, min.node.size = 2) achieved an AUC in ROC of 0.97/1 for the 
training/testing data set respectively. 

The Reducedb=1000 and Reducedb=400 models achieved an AUC in 
ROC of 0.87/0.88 and 0.87/0.61 for the training/testing data set 
respectively. The base-line model achieved an AUC in ROC of 0.71/0.77 
for the training/testing data set respectively thus confirming the overall 
added value of DWI for the differentiation of benign from malignant 
vertebral fractures. 

4. Discussion 

In this head-to-head comparison study, using a state-of-the-art SShot 
ZOOM SE-EPI DWI sequence, we compared the capability of low to 
ultra-high b-values to differentiate benign from malignant vertebral 
fractures at 1.5 T. 

We showed that when considering metrics individually, quantitative 
(signal intensity ratio - SIR) and qualitative metrics (grading of signal 
intensity of fracture) derived from DWI trace images exhibit an 
improved discriminative performance compared to metrics derived from 
ADC maps. Incidentally, the SIRs as derived from b = 1000 and b = 2000 
s/mm2 DWI trace images individually allowed for an excellent separa-
tion of these two entities with the AUC reaching 0.92. Importantly 

however, an excellent separation of these entities could also be achieved 
simply by analyzing the signal intensity of the fracture of interest on b =
2000 s/mm2 DWI trace images. Importantly, our data suggests that a 
hyperintense signal on b = 2000 s/mm2 DWI trace images is highly 
indicative of a malignant fracture. 

The overall added value of DWI for the differentiation of benign from 
malignant vertebral fractures was confirmed by the baseline ML model 
(i.e. considering only qualitative metrics from STIR T2w, T1w and T2w 
imaging), that only achieved an AUC in ROC of 0.71/0.77 for the 
training/testing data set respectively. When combining all metrics (from 
conventional imaging and DWI), an excellent separation (AUC: 0.95- 
0.98 in training set) of both entities could be achieved irrespective of 
the choice of b-value. However, when relying solely on qualitative 
metrics, only the model relying on b = 2000 s/mm2 data could match 
the performance of the full models relying on qualitative and quantita-
tive metrics. This further corroborates the high diagnostic yield of 
qualitative b = 2000 s/mm2 image analysis. 

In a recent meta-analysis, the impact of the choice of b-value on the 
discriminative performance of individual DWI/ADC metrics for the 
differentiation of vertebral fractures was investigated [5]. The authors 
concluded that low-b-values (i.e. below 500 s/mm2) are superior to 
standard b-values (i.e. above 500 s/mm2) for the computation of ADC 
maps and thus for subsequent differentiation of the two entities. 
Accordingly, the differences in ADC values between benign and malig-
nant fractures were greater on ADC maps derived from lower b-values 
than those derived from higher b-values. Furthermore, ADC values in 
general were found to be lower on ADC maps derived from higher 
b-values [5]. We confirm this finding in our study, as the diagnostic 
performance of the ADC also decreased with increasing b-values and 
ADC values decreased with increasing b-values. Notably, Park et al. [4] 

Fig. 1. 73 years old female patient with multiple malignant (i.e. metastatic) vertebral body fractures of thoracic vertebrae TH4 – TH6. Hyperintense signal of 
fractures relative to normal vertebral bodies on all DWI images with b400 (Fig. 1A), b1000 (Fig. 1B) and b2000 (Fig. 1C). The signal intensity on ADC decreases with 
highest values on b = 0,400 ADC images (Fig. 1D), followed by b = 0,1000 ADC images (Fig. 1E) and lowest values on b = 0,2000 ADC images (Fig. 1F). The fracture 
is hypointense on T1w TSE images (Fig. 1G) and inhomogeneously hyperintense on STIR T2w images (Fig. 1H). For ROI measurements the vertebral body Th6 with 
the most intense STIR hyperintensity was chosen (Fig. 1H). 
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similarly observed reduced diagnostic performance in differentiating 
benign from malignant fractures by using ADC maps derived from 
higher b-values. Specifically, using a standard SShot SE-EPI DWI 
sequence, the authors achieved a sensitivity and specificity of 80.5 % 
and 76 % respectively for the ADC maps derived from b-values of 0 and 
400 s/mm2 and a sensitivity and specificity of 63 % and 85 % respec-
tively for ADC maps derived from b-values of 0 and 1000 s/mm2 [4]. In 

this regard it should be noted that at different b-values, different un-
derlying effects may also impact the image information. For example, at 
higher b-values, non-Gaussian diffusion effects (i.e. diffusion kurtosis) 
may also be included in the image. Furthermore, even for tissues with a 
mono-exponential dependence on diffusion, the ADC value as computed 
from two b-values is known to be affected by the baseline SNR, the true 
tissue ADC, and the selected high b values. It has been shown that the 

Fig. 2. 69 years old female patient with osteoporotic vertebral body fracture of lumbar vertebra L3 (red arrow). Hyperintense signal of fractures relative to normal 
vertebral bodies on DWI with b400 (Fig. 2A) and on DWI with b1000 (Fig. 2B), but no hyperintensity on DWI with b2000 (Fig. 2C). Moderate to high signal intensity 
on ADC of b = 0,400 (Fig. 2D), on ADC of b = 0,1000 (Fig. 2E) and on ADC of b = 0,2000 images (Fig. 2F). The fracture is hypointense on T1w TSE images (Fig. 2G) 
and inhomogeneously hyperintense on STIR T2w images (Fig. 2H) (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article). 

Table 2 
Overview of quantitative data.  

Mean ± Standard 
Deviation - Median; 
[Interquartile Range] 

ADC (b = 0,400 s/ 
mm2) [x 10–3 mm2/s] 

ADC (b = 0, 1000 s/ 
mm2) [x 10–3 mm2/s] 

ADC (b = 0, 2000 s/ 
mm2) [x 10–3 mm2/s] 

SIR (b = 400 s/mm2) 
[arbitrary units] 

SIR (b = 1000 s/ 
mm2) [arbitrary 
units] 

SIR (b = 2000 s/ 
mm2) [arbitrary 
units] 

Malignant Fracture 1.054 ±
0.454–1.005; [0.758; 
1.3] 

0.837 ± 0.38− 0.775; 
[0.583; 1.008] 

0.663 ± 0.293− 0.64; 
[0.455; 0.855] 

3.493 ±
1.481–3.502; 
[2.501; 4.253] 

2.441 ±
1.143–2.235; [1.635; 
2.935] 

1.69 ± 0.666–1.527; 
[1.28; 2.039] 

Benign Fracture 1.505 ± 0.363–1.57; 
[1.305; 1.705] 

1.033 ± 0.244–1.045; 
[0.838; 1.193] 

0.728 ± 0.218− 0.695; 
[0.618; 0.833] 

1.833 ±
0.658–1.842; 
[1.328; 2.081] 

1.101 ±
0.268–1.527; [1.28; 
2.039] 

0.882 ±
0.179− 0.895; 
[0.793; 0.974]  

Table 3 
: Overview of qualitative data.   

ADC (b = 0,400 s/ 
mm2) 

ADC (b = 0, 1000 s/ 
mm2) 

ADC (b = 0, 2000 s/ 
mm2) 

DWI Trace Image (b =
400 s/mm2) 

DWI Trace Image (b =
1000 s/mm2) 

DWI Trace Image (b =
2000 s/mm2) 

Malignant Fracture 
(n = 34) 

Hypointense: 3 Hypointense: 1 Hypointense: 1 Hypointense: 0 Hypointense: 0 Hypointense: 1 
Isointense: 17 Isointense: 0 Isointense: 0 Isointense: 1 Isointense: 6 Isointense: 6 
Hyperintense: 14 Hyperintense: 33 Hyperintense: 33 Hyperintense: 33 Hyperintense: 28 Hyperintense: 27 

Benign Fracture (n 
= 32) 

Hypointense: 0 Hypointense: 0 Hypointense: 0 Hypointense: 0 Hypointense: 0 Hypointense: 0 
Isointense: 17 Isointense: 1 Isointense: 1 Isointense: 6 Isointense: 19 Isointense: 32 
Hyperintense: 15 Hyperintense: 31 Hyperintense: 31 Hyperintense: 26 Hyperintense: 13 Hyperintense: 0  
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increased baseline noise in the DWI image at high b values can lead to a 
systematic bias in estimating the signal reduction due to true diffusion. 
This may result in a lower measured ADC [25]. Such effects may also 
explain the differences in diagnostic accuracy at various b-values. 

Furthermore, we would briefly like to address the benefits of our 
ZOOM SE-EPI DWI sequence. By using a tilted refocusing pulse to reduce 
the phase-encoding FOV, geometrical distortion, image blurring and 
aliasing can be minimized. Especially when imaging the spinal cord, this 
sequence poses considerable benefits over its non-ZOOM prepared 
counterparts. Thus, this sequence allowed us to acquire high b-value 
images robustly at an acceptable scan time [8]. In this regard it should 

also be noted that we increased the number of signal averages (NSA) 
from 2 and 8 (at b = 400 and 1000 s/mm2) to 12 at b = 2000 s/mm2 to 
counteract possible SNR limitations associated with high b-value ac-
quisitions, Furthermore, it should be noted that this sequence can also be 
used for diffusion tensor imaging (DTI) [8,26]. Accordingly, promising 
results have been reported for its application in the imaging of pediatric 
spinal tumors. While not investigated in this study, DTI parameters may 
potentially also serve as biomarkers for the differentiation of benign and 
malignant vertebral fractures. In this regard, a previous pilot study has 
shown the potential of DTI to characterize osteoporotic vertebral frac-
tures [27]. 

Fig. 3. Boxplots depicting quantitative data. The line in the box shows the median, the lower and upper hinges correspond to the first and third quartiles. The upper/ 
lower whisker extends from the hinge to the largest/smallest value no further than 1.5 * IQR from the hinge. 

Fig. 4. Receiver operating characteristics (ROC) curves for the quantitative metrics ADC and SIR.  
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Concerning the metric SIR, we observed an opposite trend for the SIR 
as compared to the ADC values as the diagnostic performance of the SIR 
metric increased with higher b-values. 

By using the SIR metric (individually) as a means of differentiating 
benign from vertebral fractures an excellent AUC of 0.92 could be 
achieved both for b = 1000 and b = 2000 s/mm2 DWI trace images. As 
indicated above, the AUC for b = 400 s/mm2 was lower (0.841), yet, 
interestingly, still higher than what could be achieved by using values 
derived from ADC maps. 

Most importantly however, the optimal cutoff for SIR differed be-
tween b = 1000 and b = 2000 s/mm2. Specifically, for b = 1000 s/mm2 

DWI trace images, an optimal cutoff of 1.497 was computed whereas for 
b = 2000 s/mm2, an optimal cutoff of 1.074 was found. This opens up 
the possibility of considerably simplifying the process of differentiating 
the two entities by using b = 2000 s/mm2 DWI trace images, as an SIR of 
close to 1 signifies the transition from an isointense to a hyperintense 
image impression. 

This could be confirmed by grading the fractures qualitatively: By 
using a hyperintense image impression as a “threshold” on b = 2000 s/ 
mm2 DWI trace images, a specificity of 0.794 and a sensitivity of 1 was 

achieved for the differentiation of benign from malignant vertebral 
fractures. Specifically, a hyperintense signal on b = 2000 s/mm2 DWI 
trace images was highly indicative of a malignant fracture. 

Sung et al. [7] also observed an increase in the frequency of hyper-
intense signal in malignant fractures when switching from b = 800 to b 
= 1400 s/mm2 DWI trace images as acquired with a standard SShot 
SE-EPI sequence [7]. 

In contrast, the diagnostic yield of b = 1000 and b = 400 s/mm2 DWI 
trace images or ADC maps for qualitative grading was low, as the fre-
quency of hypo-, iso- and hyperintense fractures was much more evenly 
distributed between the benign and malignant fracture groups. 

Thus, by visually inspecting b = 2000 s/mm2 DWI trace images as 
acquired with a SShot ZOOM SE-EPI DWI sequence it seems that an 
accurate differentiation of benign and malignant vertebral body frac-
tures can be achieved without having to resort to calculating quantita-
tive metrics, as firstly a hyperintense signal was indicative of a 
malignant fracture and secondly an isointense signal was indicative of a 
benign fracture. This approach thus has the potential to considerably 
simplify and accelerate the diagnostic process. 

A future prospective and dedicated study should investigate whether 
this finding can be reproduced in a larger cohort of patients. 

By pooling the diagnostic information of different metrics, as in 
clinical routine, an even better diagnostic performance may be achieved. 
Our full models integrating qualitative and quantitative metrics from 
conventional imaging and DWI achieved a nearly perfect diagnostic 
performance of 0.95− 0.98 (AUC) in differentiating benign from malig-
nant fractures irrespective of the b-value. In contrast, the baseline model 
that only incorporates information from conventional imaging, only 
achieved a diagnostic performance of 0.71− 0.77 (AUC) thus confirming 
the overall added value of DWI. However, and importantly, the reduced 
b = 2000 s/mm2 model incorporating solely qualitative image infor-
mation (from conventional imaging and DWI) achieved an AUC of 0.97 
thus matching the performance of the full models. This further corrob-
orates the impressive stand-alone performance of the qualitative image 
information that can be gained from b = 2000 s/mm2 images. 

Lastly, our study has certain limitations: Firstly, this was a single 
center study encompassing only data from two MR scanners from a 
single vendor and obtained at a single field strength. This is of relevance 
as, besides the choice of b-values, the ADC is also affected by the mag-
netic field strength of the MR scanner and the exact choice of the pulse 
sequence (amongst other factors). Furthermore, while comparable to 
that of other studies [3,23], our sample size was limited, and our study 
cohort was quite heterogenous. Specifically, the exact signal charac-
teristics of various benign and malignant entities may differ consider-
ably. This may have impacted our results. Also, concerning the limited 
sample size, it should be noted that larger datasets are likely to decrease 
the risk of overfitting the machine learning classifiers. To partially 
counteract this limitation, we implemented 5-fold cross validation of our 
results. Thirdly, readers may not have been fully blinded towards the 
diagnoses in all cases as certain patients presented with multiple 
(sometimes older) vertebral fractures, which may have given away the 
diagnoses. Fourthly, qualitative image analysis was performed in 
consensus. As there was a large difference in experience between the 
readers, the scores from consensus reading may mostly reflect the 
analysis of the senior expert radiologist, which can be considered a 
limitation. Lastly, we included all patients with benign or malignant 
vertebral fractures irrespective of their image appearance on conven-
tional imaging as we sought to define the general diagnostic yield of 
qualitative and quantitative metrics from SShot ZOOM SE-EPI DWI. In 
other words, we did not focus specifically on fractures with an atypical 
appearance in conventional imaging. A future study specifically 
assessing the value of DWI for the differentiation of benign and malig-
nant vertebral fractures with atypical appearance in conventional im-
aging may be of interest. 

In conclusion, using quantitative and qualitative metrics from SShot 
ZOOM SE-EPI DWI, benign and malignant vertebral fractures can be 

Fig. 5. Overview of qualitative data. The frequency of appearances of the 
fractures of interest are depicted as bar plots. 
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differentiated with high diagnostic accuracy. Importantly qualitative 
analysis of ultra-high b-value images may suffice for differentiation as 
well. 
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