
1Scientific Reports | 6:34891 | DOI: 10.1038/srep34891

www.nature.com/scientificreports

Assessment of regional air quality 
by a concentration-dependent 
Pollution Permeation Index
Chun-Sheng Liang1,3, Huan Liu1,2, Ke-Bin He1,2 & Yong-Liang Ma1,2

Although air quality monitoring networks have been greatly improved, interpreting their expanding 
data in both simple and efficient ways remains challenging. Therefore, needed are new analytical 
methods. We developed such a method based on the comparison of pollutant concentrations between 
target and circum areas (circum comparison for short), and tested its applications by assessing 
the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 
2015. We found the circum comparison can instantly judge whether a city is a pollution permeation 
donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a 
PPI-related estimated concentration (original concentration plus halved average concentration 
difference) can be used to identify some overestimations and underestimations. Besides, it can help 
explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not 
aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new 
analytical methods. These advantages, despite its disadvantages in considering the whole process 
jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum 
comparison can be efficiently used in assessing air pollution by yielding instructive results, without the 
absolute need for complex operations.

Air pollution is primarily measured by air quality monitoring networks (AQMNs) in many countries. AQMNs 
characterize pollution patterns and determines compliance of pollutants with air quality standards. Thus, it pro-
tects the public health1–3. Numerous modeling methods have been found in literature to assess the character-
istics, processes, sources and impacts of air pollution. Some of the methods include transport and dispersion 
simulations (source models), such as Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)4–7, 
Community Multiscale Air Quality (CMAQ)8–13, and potential source contribution function (PSCF)6,7,14. Many 
receptor models, such as positive matrix factorization (PMF)15–21, principal component analysis with multiple 
linear regression analysis (PCA-MLRA)6,22,23, and chemical mass balance (CMB)24,25 are also widely used. Besides, 
there are many other numerical modeling and analytical methods such as GEOS-Chem chemical transport 
model12,24–34, Weather Research and Forecasting model coupled with chemistry (WRF/Chem)29,35–37, land-use 
regression (LUR) models38–41, Dust REgional Atmospheric Model42, observation-based model43, GIS-based 
multi-source and multi-box modeling44, global sensitivity analysis method45, and episode-based evolution pat-
tern analysis46. In addition to using such methods to characterize the amount of pollution level in selected areas, 
the enhanced air quality index (AQI) can also be used47–49, such as in the form of pollutant concentration values 
divided by their standards50. The air pollution monitoring networks have been greatly improved worldwide in 
recent years with increased and updated sites51,52. The cities are more connected in a net, which offers better 
chances to assess regional air pollution.

However, first, the above-mentioned methods are mostly sector related analyses. Only few of them are region 
related analyses. Second, the region related analyses rely on large amount of data (such as emission inventory, 
meteorology, mechanism), to form white box models. Third, all the air quality models are calibrated by obser-
vational data, namely using the observed results to improve the understanding of the pollution process (such 
as atmospheric chemistry)53, which could be complemented by grey box models established by using direct 
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observation. Fourth, interpreting the monitoring data in simple and efficient way is still a challenge, despite using 
above-mentioned methods. In other words, there is a need for new analytical methods to assess air pollution 
using air quality monitoring data to improve the understanding and control measures of regional air pollution. 
This paper reports such a method whose peculiarities include: (1) region related; (2) requiring much less data; 
(3) directly using monitoring results, and (4) simple but efficient. This approach is based on the comparison of 
pollutant concentrations between target and “circum” areas (referred as circum comparison in short), namely a 
Pollution Permeation Index (PPI) that is concentration-dependent. Circum areas (cities) are the surrounding 
areas (cities) of a target area (city). PPI is a relative magnitude of concentration difference. It is the potential of 
an area (city) to permeate pollution to surrounding areas (cities) or to be permeated by pollution of surrounding 
areas (cities). To ensure this method’s rationalization and standardization for practical use, the influences among 
areas (cities) discussed in this work are all derived from concentration-difference permeation unless otherwise 
specified. The proposed method’s applications are tested by assessing the air pollution of four important Chinese 
regions, namely Jing-Jin-Ji (Beijing, Tianjin, and Hebei), Yangtze River Delta (here means Shanghai, Jiangsu, and 
Zhejiang), Pearl River Delta (Guangdong) and Cheng-Yu (Chengdu and Chongqing) during 2015, using back-
ward deduction.

The circum comparison approach supports to instantly judge whether a city is a pollution permeation donor 
or a pollution permeation receptor with Pollution Permeation Index (PPI). Areas with positive PPI values cor-
respond to pollution permeation donors and vice versa. Donor is underestimated or loosened because of its net 
polluting role and receptor is overestimated or wronged because of its net being-polluted role. Furthermore, PPI 
provides a kind of estimated concentration for a target city based on its original concentration plus halved average 
concentration difference. Thus, the overestimations and underestimations of self-made pollution severity can be 
identified from the pollution-permeation point of view. The donors that are underestimated or loosened should 
be more strictly controlled for air pollution control, and vice versa. Hence, the PPI can provide quantitative 
information of interaction among target and circum areas and provide instructions on how to control regional air 
pollution. This complements the AQI or air pollution index (API) that provides information to inform the public 
about air pollution54. Besides, it can help explain pollution process (e.g., PM2.5 in Beijing may be largely promoted 
by non-local SO2) though not aiming at characterizing pollution process. Moreover, it is applicable to other mon-
itored regions and easy for users to quickly get started with it. Thus, it fully broadens the application scope and 
improve the usage efficiency of existing pollution data. Other new applications and efficient air pollution analyt-
ical methods are expected to be developed with PPI that would be foundation of other new analytical methods. 
These features demonstrate that simple calculation methods can also be used in assessing air pollution, without 
the absolute need for complex operations such as developing and using models. With better spatial representa-
tiveness, accuracy and reliability of monitoring network51,52,55–58, and future micro-stations using technologies 
such as durable and solar-powered air monitoring park bench59, low-cost micro-scale sensors60, the PPI based 
method may become more reliable and useful.

Materials and Methods
China has a strong national monitoring network with more than 1400 nation-owned sites (non-state-owned sites 
are excluded) across its territories61. Similarly, for example, the US has 1500 sites maintained by both state-owned 
and non-state-owned agencies62. Air pollution data from air quality monitoring stations under study were taken 
from http://www.aqistudy.cn/historydata/. We used these data for calculating the Pollution Permeation Index 
(PPI) in target regions and cities. We selected four well-known regions in China as an example to examine the 
feasibility of assessing their air quality according to the PPI based methods. These four regions are Jing-Jin-Ji 
(Beijing, Tianjin, and Hebei), Yangtze River Delta, Pearl River Delta and Cheng-Yu (Chengdu and Chongqing). 
Some surrounding cities of Chongqing are excluded because of the unavailability of monitoring data. We mainly 
used the yearly data (annual average) that are calculated from monthly data (Table S1). The approach is limited for 
yearly cases as only yearly air pollution data of the exampled cities and their neighbor cities was utilized.

Theoretical Basis and Calculations.  A certain city and its surrounding cities were defined as a target city 
and circum cities respectively for the circum comparison in the study. The specific examples used in this study 
are shown in Table S2.

PPI is the sum of the concentration difference of pollutants between an area and its surrounding areas divided 
by its pollutant concentration, a permeation potential by concentration difference, namely the potential of an area 
to permeate pollution or to be permeated pollution by its surrounding areas purely from the concentration- 
difference point of view. Mathematically, PPI is represented as IPP, and Ix

pp is the PPI of a certain pollutant. For 
convenience, in short PPI can be called I.
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In Equation 1, x =​ PM2.5, PM10, SO2, NO2, O3, or CO; i is the i-th connected city; and n means the total number 
of circum cities. Figure 1 shows the overview on the concept.

For a more specific example, Beijing is the target city which has 6 surrounding (circum) cities, namely 
Zhangjiakou, Chengde, Tangshan, Tianjin, Langfang, and Baoding. The PM2.5 PPI of Beijing is 6 minus the sum 
of PM2.5 concentrations of Zhangjiakou, Chengde, Tangshan, Tianjin, Langfang, and Baoding divided by the 
PM2.5 concentration of Beijing. Similarly, each PPI of the other pollutants such as PM10, SO2, NO2, O3, and CO of 
an area can be calculated. We used administrative areas to classify the regions. So, the individual cities are exam-
ples of target and comparison objectives in this study. PPI users can classify a region into some (e.g., four equal as 
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Fig. 1 shows) areas according to its geography and meteorology. The black arrows represents the mutual pollution 
permeation between neighboring cities that dynamically interacts with each other.

Equation 2 represents the mathematical definition of a kind of estimated concentration for an objective area 
based on its original concentration and halved average concentration difference between this area and its sur-
rounding areas, wrote as Ce (estimated average-concentration-difference-halved concentration), and Cx

e  is the Ce 
of a certain pollutant (x). For convenience, Ce can be abbreviated to C.
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The explanations of x, i, n are same with those in the definition of PPI. In short, the Ce is the original concen-
tration plus the average concentration difference between target and circum areas divided by two. Here, we split 
the average concentration difference fifty-fifty, treating the target area and its circum areas as two parallel lines.

The mathematical definition of Concentration Difference (Dc) is represented in Equation 3. Cx
m means the 

measured concentration of a pollutant x. Cx
e  is defined in formula (2). Dx

c  is the Dc of a certain pollutant (x), which 
means the difference of the pollutant’s measured concentration minus its estimated average-concentration- 
difference-halved concentration. For convenience, Dc can be called D for short.
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Equation 4 represents the mathematical definition of Overestimation or Underestimation Percentage (PO/U) of 
self-made pollution severity. Px

o/u is the PO/U of a certain pollutant (x), which is the quotient of the pollutant’s 
concentration difference to its estimated average-concentration-difference-halved concentration multiplied by 
100%. For convenience, PO/U can be abbreviated to P.
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Results and Discussion
The city sequence from left to right in Fig. 2 is listed in decreasing order of the PM2.5 concentrations in each 
region. Figure 2 shows cities with higher PM2.5 concentrations generally have positive (>​0) PM2.5 PPI, but not in 
linear ways. Most cities have both positive and negative PPIs for different pollutants. When cities are judged on 
the basis of average PPI index (values in brackets), Baoding (2.15), Tangshan (1.22), Xingtai (0.68), and Handan 
(0.05) are the air pollution donors (underestimated or loosened) on the whole (regarding the six monitored reg-
ular pollutants) in Jing-Jin-Ji. It is found that Chengde (−​2.01), Zhangjiakou (−​1.82), Beijing (−​1.76), Cangzhou 
(−​1.02), Tianjin (−​0.34), Langfang (−​0.27), Qinhuangdao (−​0.26), Hengshui (−​0.23), and Shijiazhuang (−​0.15) 
are air pollution receptors (overestimated or wronged) on the whole.

Figure 2 shows that SO2 has the greatest sum of absolute PPI values (in brackets) in Jing-Jin-Ji: SO2 
(27.3) >​ PM10 (16.7) >​ CO (16.2) >​ NO2 (12.9) >​ PM2.5 (12.4) >​ O3 (8.2). The sum of absolute PPI value indicates 
the regional transport intensity (or degree) of a pollutant. Hence, in this region SO2, PM10, and CO are more sus-
ceptible to regional transport than NO2, PM2.5, or O3. For example, the SO2 PPI in Beijing (−​10.35) is very low, 
which shows that SO2 is transported to Beijing during the study period.

Many more instructive results can be obtained from the data in Table S3 and their derivative data (such as 
absolute values). PPI users can analyze the air pollution status in details by using these data or by results from 
other novel PPI based methods that users develop. As the present study aims at introducing in general the analyt-
ical methods based on the PPI that is proposed, only limited results are presented for demonstration.

Researchers can use the customized ways in Table 1 to show the air pollution status of a target city and sur-
rounding cities to the government and the public, when simple but efficient presentations are needed. Table 1 
vividly inform readers for which pollutants a city can be called a pollution donor and or a pollution receptor in 
its region. As a whole, Beijing and Shanghai are pollution receptors while Guangzhou and Chengdu are pollution 
donors. The common point is that these four cities are pollution receptors in SO2 and pollution donors in NO2. 
The SO2 PPIs of Beijing, Shanghai, Guangzhou, and Chengdu are −​10.35, −​1.22, −​1.14, and −​0.70 respectively. 
Their NO2 PPIs are 0.68, 0.11, 2.00, and 1.95 respectively. This common feature demonstrates that these large 

Figure 1.  A schematic of an example city (or area) with 4 neighbor cities by the circum comparison 
method. 
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populous cities tend to be infected by introduced SO2 from outside (regional sources such as coal) and have inva-
siveness of NO2 due to huge numbers of local vehicles.

Figure 2.  Pollution Permeation Index (PPI) of China’s four regions in 2015. (a) Jing-Jin-Ji (Beijing-Tianjin-
Hebei), (b) Yangtze River Delta (YRD), (c) Pearl River Delta (PRD), and (d) Cheng-Yu (Chengdu-Chongqing). 
The specific PPI values are presented in Table S3.

City PM2.5 PM10 SO2 NO2 O3 CO Average

Beijing

Shanghai

Guangzhou

Chengdu

Table 1.  Examples of air pollution permeation donors and receptors in 2015 judged by Pollution 
Permeation Index. , donor; , receptor.

Figure 3.  Examples of estimated annual PM2.5 concentrations in 2015 using PPI. Two biggest PM2.5 
pollution donors and two biggest PM2.5 receptors in each region are shown here. Estimated concentrations of all 
the 6 regular pollutants PM2.5, PM10, SO2, NO2, O3, and CO by PPI in the exampled cities in 2015 are shown in 
Table S4.
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Figure 3 shows the estimated average-concentration-difference-halved concentration (Ce) of PM2.5 in 16 
exampled cities. Given fifty-fifty withdrawn circum influence (see Equation 2 for calculation method), some cities 
like Chengde and Ziyang should have met the level-2 of Chinese annual averaged PM2.5 standard; moreover, the 
PM2.5 concentrations in Zhangjiakou and Zhoushan should have been close to the annual averaged PM2.5 stand-
ard 1 of China.

Since the PPI calculated above is only based on the final results of annual averaged monitoring data, other 
variables such as geography and meteorology are ignored. Therefore, there is a scope of future work to improve 
the accuracy considering those variables.

Both Air Quality Index (AQI) and PPI are indexes. The comparison of those indexes is carried out, where 
the intriguing result is found. AQI can tell whether a city is heavily polluted or not, but it cannot tell whether 
a city is overall giving pollution or receiving pollution as PPI can do (Fig. 4). For example, Beijing, Langfang, 
Shijiazhuang, and Hengshui have relatively high annual average AQIs above 120 in Jing-Jin-Ji during 2015, but 
their PPIs (below 0) show they are more or less wrongly treated due to their features of pollution receptor. The 
PPI (below 0, as a role of receptor) in Hengshui might depend heavily on the relatively high level of pollution in 
Baoding (with higher concentrations of PM2.5, PM10, SO2, NO2 and CO) and Xingtai (with higher concentra-
tions of PM2.5, SO2, NO2 and CO) as the surrounding area of Hengshui (Table S1). It is also found that Tàizhou, 
Shanghai and Huzhou in YRD, and Meishan and Neijiang in Cheng-Yu are also wronged. On the other hand, 
Ningbo in YRD, Jiangmen in PRD, and Chongqing in Cheng-Yu have relatively low AQIs, but they are loosened 
because of their roles of pollution donors judged by PPIs above 0.

The results and discussions made above shows that PPI can tell whether the severity of self-made pollution is 
overestimated or underestimated. Furthermore, the overestimations and underestimations can be quantified by 
PO/U (Fig. 5), a relative magnitude of the concentration difference between measured and estimated concentra-
tions (Table S5). For example, the transportation of SO2 from neighboring cities to Beijing is very severe, because 
SO2 is 627.2% overestimated (Fig. 5). Hence, besides the local abundant NOx (NO2 is 5.4% underestimated) and 
other related pollutants, the relatively high concentration of PM2.5 (6% underestimated) can be easily originated 
in Beijing (Table S6). In other words, higher PM2.5 mass concentration in Beijing is more indirectly influenced 
by the transported SO2 than by the direct transport of PM2.5 from neighboring cities. In this way, the PPI based 
method helps reveal the formation mechanism or process of PM2.5 pollution.

The validation study could be carried out in future with the results from other studies. However, it is not fully 
rational because there lies a controversy among different results as well. For example, some studies support our 
results63, which concluded that chemistry of urban traffic related VOCs and NOx and regional SO2 contributed 
largely to PM2.5 in Beijing during September‒​November 2013, but the influence of primary emissions and regional 
transported PM2.5 is small. However, this is surprisingly inconsistent with a broadly held view that the regional 
transported PM2.5 is a major source of smog in Beijing64. In other city like Shanghai, it is reported that PM2.5 were 
significantly due to local sources in the YRD65, instead of long-time transport from the Circum-Bohai-Sea (CBS) 

Figure 4.  Comparison between AQI and PPI. (a) Jing-Jin-Ji (Beijing-Tianjin-Hebei), (b) Yangtze River Delta 
(YRD), (c) Pearl River Delta (PRD), and (d) Cheng-Yu (Chengdu-Chongqing). These two different indicators 
have similar tendencies, but the advantage of PPI is that it is capable of distinguishing an air pollution donor 
from an air pollution receptor. Moreover, a higher AQI does not necessarily imply an air pollution donor and 
vice versa.
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and northwestern China during 2011‒​2012. Such study supports our work that focuses on surrounding influence 
and shows Shanghai was permeated PM2.5 (with a PPI of −​0.12) pollution by its surrounding cities.

It is an omnipresent conclusion or a consensus that PM2.5 concentrations in big cities are a result of transport 
of pollutants from regional sources. However, unlike the present work, many other studies did not investigate the 
net influence (net result of interaction instead of one-way influence) a city gets from its all surrounding cities, 
which is unfavorable for the comparisons between current study and other studies. Most of the studies focus on 
the influence a target city can have from neighboring cities and other sources than otherwise. Hence, consider-
ation of net effect of interaction or two-way influence in a region provides profound understanding on annual 
regional air quality. In such a way, other studies and current study would provide mutual validations.

Thus, it is highlighted that PPI is unable to accurately quantify the whole transport of air pollution, but it indicates 
the relative transport magnitude of different pollutants for each city. Accordingly, the PM2.5 PPI (positive except 
Shanghai) does not emphasize the direct regional sources of PM2.5 in the four big cities (Fig. 5, Tables 1 and S3),  
but the indirect regional sources of PM2.5 is supported by the introduction of SO2 from surrounding cities (nega-
tive PPIs) that jointly improves PM2.5 concentrations with self-emitted NO2 (positive PPIs).

Limitations of the Method
The current study is only based on the annual averaged value of monitoring data. Thus, the method is limited 
for annual averaged monitoring results of pollutants only. When it comes to high temporal resolution, it can still 
show the potential of pollution permeation donor and receptor especially during heavy haze episodes that often 
concurrent with stable weather, but it still will have difficulty in reflecting timely process of pollution formation.

Concentration difference (infiltration), pressure (wind and turbulence), chemical reaction, physical boundary 
layer, and many other factors affect the diffusion and transport of air pollution. The independent variable (con-
centration) of PPI depends upon above factors. Thus, the actual concentration-dependent PPI itself is influenced 
by all the factors. Therefore, some other limitations of this method are: (1) the PPI is nonlinear, but the PPI based 
backward deduction in current study was linearly processed; (2) it only discusses about the penetration effect 
caused by concentration difference, thus it is unable to fully discuss the diffusion and transport of air pollution. 
However, all the final results are decided by the process of pollution formation, so the results-based PPI is essen-
tially process-decided. Therefore, despite these limitations, the PPI can be considered as one of the valid and 
robust indexes in assessing regional air quality.

Conclusions
The study concludes that PPI method can be used to distinguish the pollution permeation donor from the pol-
lution permeation receptor by using the corresponding comparison of pollutant concentration. As shown in 
examples in the study, the PPI based circum comparison can be a convenient and quick method to assess the air 
pollution in different regions.

The study concludes the basic functions of this method as follows:

(1)	 PPI itself can theoretically judge the pollution permeation potential (invasion ability). Positive PPI values 
correspond to air pollution permeation donors and negative PPIs to air pollution permeation receptors.

(2)	 When pollution permeation (concentration-difference-driven circum influence) is halved as one part equal 

Figure 5.  Overestimation or Underestimation Percentage (PO/U) of self-made pollution severity in 4 
exampled cities in 2015. The reported percentage (label) is the average of the six pollutants’ PO/U values. The 
concentration difference can be found in Table S5, and the overestimation or underestimation percentage in 
Table S6.
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to the target area and another to its circum areas, the estimated average-concentration-difference-halved 
concentration (Ce) can be obtained. If the pollution permeation is withdrawn fifty-fifty, Ce acts as the concen-
tration that an area would have, reflecting the area’s inherent or self-made pollution status.

(3)	 The method also helps to understand the formation mechanism or process that could affect different air 
pollutions (such as for PM2.5 pollution by SO2 and NO2). The overestimation or underestimation percentage 
(PO/U) of self-made pollution severity helps to apportion the local and non-local sources. With this quantifi-
cation, the role and interactions between the internal and external sources can be partly assessed, which helps 
to identify the formation, causes and processes of pollution.

In addition, the PPI based tool is expected to find more applications in future. For example, health impact of 
air pollution may also be included in the applications of PPI based method. Furthermore, quantification and mon-
etizing the health burden that an area contributing to or receiving from its surrounding areas could be assessed.

Hence, this method assesses regional air quality only based on pollutant concentration comparison, just like 
assessing the quality of a group of things by comparing performance instead of producing process. Therefore, it 
can identify the donors and receptors of pollution permeation rather than the process (formation, diffusion and 
transport) of pollution. An interesting phenomena of this method is that a combination of the PPIs of different 
pollutants can help to explain the formation, diffusion and transport of pollutants of a region in a quicker way.
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