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Abstract: The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease
in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the
glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype.
While GXM is a potential vaccine target, vaccine development has been confounded by the
existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective
antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved
problem. Here an array of molecular dynamics simulations reveal that the GXM mannan
backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A
and D. Backbone substitution does not alter the secondary structure, but rather adds structural
motifs: βDGlcA and βDXyl side chains decorate the mannan backbone in two hydrophillic fringes,
with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides
mechanistic rationales for clinical observations—the importance of O-acetylation for antibody binding;
the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that
elicit non-protective antibodies; and the self-aggregation of GXM chains—indicating that molecular
modelling can play a role in the rational design of conjugate vaccines.

Keywords: Cryptococcus neoformans; conjugate vaccines; GXM; conformation; capsular polysaccharide;
epitope; carbohydrate antigen; molecular modelling

1. Introduction

Cryptococcus neoformans is an opportunistic invasive fungus that causes serious disease
(typically meningitis) in immunosuppressed hosts [1]. Cryptococcus species are encapsulated fungi,
with a thick, hydrophillic capsule that covers the cell wall surface, forms a protective biofilm and
is the chief virulence factor [2]. The capsule is primarily composed of a glucuronoxylomannan
polysaccharide (GXM, around 90%); further minor components are a galactomannan polysaccharide
(GXMGal, 10%) and mannoproteins (<1%) [3]. C. neoformans is currently classified into two varieties
known as neoformans and grubii [4]. There are three serotypes of C. neoformans, referred to as serotype
D (Cryptococcus neoformans var. neoformans), serotype A (Cryptococcus neoformans var. grubii) and
serotype AD (hybrid). Globally, serotypes A and D are responsible for the vast majority of infections in
humans [4]. Serotypes B and C are now classified as a separate species, Cryptococcus gattii. However,
genomic analysis suggests that both the C. neoformans and C. gattii groupings include various species
and these are currently viewed as species complexes [5].
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The serotype classifications for Cryptococcus are on the basis of antigenic differences arising from
structural variations in GXM [6]. Light scattering and hydronamic studies suggest that GXM is a
branched polymer comprising an α(1→3) mannose backbone substituted with β(→2) glucuronic acid
every third mannose, along with variable β(1→2) and β(1→4) xylose side chains [7,8]. Some mannose
residues are 6-O-acetylated (up to 60%) and O-acetylation plays a key role immune recognition of
GXM [9]. The GXM polysaccharide has considerable heterogeneity [10]: in contrast to bacterial
polysaccharides that have a single oligosaccharide repeat unit (RU), GXM has at least six repeat
motifs (called triads), and a single molecule of GXM may include different motif combinations [11].
For each Cryptococcus serotype, the GXM structure has a major triad and one or more minor triads.
For serotype A, the dominant triad is a six-residue RU with two β(1→2) xylose side chains (triad M2),
whereas serotype D has a dominant five-residue RU with one β(1→2) xylose side chain (triad M1),
as shown in Figure 1. Serotypes A and D have an estimated average of two acetates per triad [12].
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Figure 1. The predominant GXM repeat unit motif (triad) in C. neoformans serotypes. Serotype A
(Cryptococcus neoformans var. grubii, top) has predominantly the M2 triad and serotype D (Cryptococcus
neoformans var. neoformans, bottom) the M1 triad [11]. The RUs are shown on the left with the SNFG
symbols [13,14].

GXM is a promising antigen in vaccine development since a polysaccharide-protein conjugate
vaccine could potentially provide effective protection [15]. However, there have been complications
following this route, because the GXM polysaccharide is poorly immunogenic and has been found to
elicit both protective and non-protective and even deleterious antibodies in humans [16]. This led to
the hypothesis that GXM contains some epitopes eliciting protective antibodies and other epitopes
eliciting non-protective antibodies, with a non-protective antibody response impeding the formation
of protective antibodies [17]. There is evidence that some epitopes that elicit protective antibodies are
conformational [18] and O-acetylation is known to be critical for binding of protective antibodies [19,20].
One approach to identifying protective GXM epitopes is the creation of a library of synthetic
oligosaccharides which are then conjugated to protein carriers and tested in mice to identify
immunogenic motifs that are potential vaccine candidates [18,21]. In the first stages of this strategy,
none of the smaller synthesised molecules (from a tetra to a heptasaccharide) were recognised by
protective antibodies; a synthetic heptasaccharide representing the GXM serogroup A triad (M2)
conjugated to human serum album raised a non-protective immune response in mice [17]. However,
recently a synthetic decasaccharide was shown to bind to a number of protective antibodies and is
therefore a promising vaccine candidate [18].
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It has been hypothesised that differences in the degree of side-chain substitution and O-acetylation
give rise to changes in the secondary structure of the GXM polysaccharide that directly affect Ab
binding and hence antigenicity [9]. However, despite postulates of the existence of conformational
epitopes of GXM [9,11,17], the secondary structure of GXM is still unknown and is recognised as
a gap in the understanding of C. neoformans capsule [20]. In addition, the mechanisms through
which the GXM polysaccharides (and other capsule molecules) assemble into a capsule remain
largely undiscovered [20], although there are indications that GXM molecules self-aggregate,
possibly mediated by divalent cations [22–24]. In the absence of experimental evidence on secondary
structure (which is extremely challenging to obtain for flexible polysaccharides), molecular modelling
has been demonstrated to provide insights into molecular conformation, biophysical dynamics and
interactions that can usefully inform vaccine development [25].

In this work we employ molecular dynamics simulations on an array of oligosaccharides (Figure 2) to
establish the conformation of GXM in serotype A and D, aiming to investigate the following questions.

1. What is the secondary structure or conformation of GXM?
2. Does the differing xylose substitution pattern in serotypes A and D alter the GXM conformation?
3. Does 6-O-acetylation on the mannose backbone alter the conformation of serotype A?
4. Do shorter strands with the M2 triad have the same conformational epitope as the GXM serotype

A polysaccharide?
5. What is mechanism of GXM self-aggregation?

Figure 2. The array of GXM oligosaccharides simulated in this work, shown with the SNFG
symbols [13,14] for the sugar residues. Six RUs of an unsubstituted backbone (cnX); the main repeat
motifs in serogroup D (cnD) serogroup A (cnA) and 6-O-acetylated serogroup A (cnA’) were run
in separate simulations; and three shorter strands of serogroup A GXM: a decasaccharide (cnAdec),
a 6-O-acetylated decasaccharide (cnAdec’) and a tetrasaccharide (cnAtet).
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To investigate the effects of the side chain substitutions on GXM conformation, we ran molecular
dynamics simulations in an aqueous solution of 6 RUs of an unsubstituted α(1→3) mannose backbone
(hereafter termed cnX), for comparison purposes, and simplified 6-RU chains of serogroup A (cnA) and
serogroup D (cnD). For the simplified strands, the saccharide chains comprised simple repeats of the
dominant triad motif for the serogroup (as shown in Figure 2). To investigate the effect of O-acetylation
on GXM, we simulated serogroup A with 6-O-acetylation on the first and third mannose in the RU
(cnA’). This pattern was chosen to match that in the synthetic decasaccharide [18] and is in accordance
with the estimated average of two acetates per triad [12]. Then, to investigate the effect of chain length
on conformation, we simulated a tetrasaccharide (cnAtet) as well as the decasaccharide representing
promising vaccine candidate, the latter both being 6-O-acetylated (cnAdec’) and de-O-acetylated
(cnAdec). Finally, to look at the possibility of GXM self-aggregation, we ran a simulation of cnA and
cnD together, to allow for possible spontaneous association of the chains. The trajectories of these
multiple simulations were then analysed and compared, as discussed below.

2. Results

We first compare the effects of substitution of the GXM mannan backbone on chain flexibility
and proceed to a comparison of the secondary structure in cnD, cnA and cnA’. We then contrast
the conformation of shorter fragments of serotype A with the 6-RU strands. Finally, we look at the
potential for GXM chain self-aggregation.

2.1. Comparison of GXM Chain Flexibility

A simple measure of chain flexibility is the fluctuation in end-to-end distance, r, for a molecule
over the course of a simulation. Figure 3 shows the r time series and corresponding histograms for
(a) cnX, (b) cnD, (c) cnA and (d) cnA’. Here we define r for all 6-RU GXM chains as the distance from O3
in the second linkage in the mannose chain to the O3 in the second last linkage, thereby excluding the
more flexible two terminal residues on either end of the chain (labeled on the cnA molecule in Figure 3,
right). The α(1→3) mannan chain is generally extended: the distributions of r (Figure 3 right column)
are tight and skewed to the right (larger r values), with all the four saccharides having a narrow peak
at the median chain length of 54 Å. The mannan backbone is thus remarkably inflexible, as there are
no short r distances indicating bends that bring the ends of the chain into close proximity; although
transient “elbow” bends do occur occasionally, they do not persist. Further, comparison of the r plots
shows a trend of decreasing chain flexibility with increasing chain substitution: the unsubstituted cnX
backbone is the most flexible with the broadest spread in r (σ = 2.8); this flexibility is decreased in cnA
(σ = 2.3) and the most substituted cnA’ is markedly the least flexible, with the narrowest range of r
(σ = 1.6) .

This trend of reduced flexibility with increased backbone substitution is further illustrated by
the decreasing range of rotation in the backbone mannose α(1→3) linkages, shown in the heat maps
in Figure 4a. Although the dominant orientation of this linkage is the same in cnX, cnD, cnA and
cnA’ (indicating the same backbone conformation in all 6-RU GXM molecules), the range of motion is
greatest in cnX and decreases in the order cnD, cnA and cnA’.
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Figure 3. End-to-end distance, r, time series and corresponding histograms for the (a) cnX, (b) cnD,
(c) cnA and (d) cnA’ GXM chains. The first 100 ns of simulation are considered equilibration and are not
shown. Here r is defined to exclude the two terminal residues on either end of the chain, as the distance
from O3 in the second linkage to O3 in the 16th linkage in the 18-mannose backbone—labelled for
cnA in the image on the right. The residues and substitutions are coloured as follows: αDMan—green;
βDGlcA—blue; βDXyl—pink; and 6-OAc—red.

The orientation of the βDGlcA(1→2)αDMan (Figure 4b) and βDXyl(1→2)αDMan (Figure 4c) side
chains does not vary greatly across cnD, cnA and cnA’. However, the side chains are considerably
more mobile than the backbone (compare the narrower extent of the heat maps in Figure 4a). Both side
chains are predominantly in a “face-on” orientation to the mannan backbone (insets i in Figure 4b,c),
where the plane of the ring and hence hydrophillic ring hydroxyls are aligned parallel to the mannan
backbone. This orientation is the global energy minimum for the βDGlcA(1→2)αDMan on the
vacuum PMF (Appendix A, Figure A1). The side chains also have a minor "edge-on" conformation
(insets ii in Figure 4b,c), where the plane of the ring and hence hydrophillic ring hydroxyls are
aligned perpendicular to the mannan backbone. This orientation is a local energy minimum for
the βDGlcA(1→2)αDMan on the vacuum PMF (roughly 2 kcal.mol−1 above the global minimum,
Figure A1). Note that a comparison of cnA and cnA’ in Figure 4 shows that 6-O-Ac substitution does
not significantly affect orientation of the βDGlcA and βDXyl side chains.
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Figure 4. Heat maps of the glycosidic linkage orientation distribution over the last 400 ns of
simulation in the two central RUs (RU3 and RU4) in the GXM chains. Row (a) shows the backbone
αDMan(1→3)αDMan linkage, row (b) the βDGlcA(1→2)αDMan side chain linkage and row (c) the
βDXyl(1→2)αDMan side chain linkage. Glycosidic linkage orientations are shown as rotations
of the linkage dihedral angles φ and ψ. The insets in row (b,c) show the major face-on (i) and
minor edge-on (ii) orientations of the β(1→2)-linked side chains relative to the mannan backbone.
The residues and substitutions are coloured as follows: αDMan—green; βDGlcA—blue; βDXyl—pink;
and 6-OAc—red.

2.2. Comparison of GXM Chain Conformations and Binding Surfaces

Although the flexibility of the GMX molecules decreases with increasing substitution,
the backbone conformation does not change significantly. Conformational clustering reveals that
all the GXM chains have a strongly dominant molecular conformation, shown for each of the GXM
molecules in Figure 5. For all molecules, this dominant conformation corresponds to the peak in the
r histogram (see Figure A3). In addition, the prevalence of this primary conformation increases in
the order cnX (51%) < cnD (55%) < cnA (57%) < cnA’ (69%)—A further indication that in GXM the
chain flexibility decreases with increasing chain substitution. In all conformations, the backbone is
extended, as is most apparent in the unsubstituted cnX conformation (Figure 5a), but is also clear
for cnD (Figure 5b), cnA (Figure 5c) and cnA’ (Figure 5d). The backbone twists dynamically from
flatter ribbon-like conformations to extended helical conformations, but its behaviour is relatively
unaffected by the presence or absence of side-chain substitutions or O-acetylation. The sole effect of
increasing substitution on the backbone is to constrain rotation about the backbone linkages. Therefore,
the theory that the conformation of the backbone is changed with altered substitution patterns [9] is
not supported by our results.
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Figure 5. Dominant conformations of the GXM molecules shown with two representations in the VDM
package [26]—the PaperChain visualisation [27] to highlight the conformation of the backbone and
space-filling representations to highlight the exposed binding surface. Representative conformations are
shown for (a) the unsubstituted mannan backbone cnX; (b) cnD; (c) cnA; (d) and cnA’ (6-O-acetylated).
A schematic for the arrangement of the side chain substitutions is shown in (e) using the SNFG symbols
for the sugar residues [13,14]. Representative conformations of the chain fragments are shown for the
tetrasaccahride (f) cnAtet and the 6-O-acetylated decasaccharide (g) cnAdec’. The chain substitutions
in all representations are coloured as follows: αDMan—green; βDGlcA—blue; βDXyl—pink and
6-OAc—red.

The βDGlcA and βDXyl side chains are arranged along the backbone in two hydrophillic fringes,
primarily in the “face-on” orientation with the ring hydroxyl groups aligned in the same plane as the
mannan backbone. Side chains in the same fringe are in close proximity to each other and interact
with each other via a dynamic network of hydrogen bonds, shifting closer and further away within a
restricted range of 10 Å (see Appendix A, Figure A4). However, it is alternating (not neighbouring)
side chains in the primary structure that are in close proximity in the same fringe in the secondary
structure—as shown in the schematic in Figure (Figure 5e). This observation is by no means clear from
simple inspection of the primary structure of the GXM serotypes.

The side chain fringes are exposed and thus potentially form Ab binding surfaces—this is seen
more clearly in the space filling structure representations in the bottom row of Figure 5. The molecular
surface differs considerably across the serogroups. The fringes in the cnD structure (Figure 5b) comprise
repeated patches of βDGlcA -βDXyl side chain pairs in close proximity, with gaps between them where
the mannose backbone is exposed. In contrast, in cnA (Figure 5c) the additional βDXyl(1→2) side
chain in each trimer creates a very different binding surface, forming βDGlcA-βDXyl-βDXyl patches
in a continuous band in each side chain fringe. Further, in cnA’ (Figure 5d) the 6-O-acetyl substitution
forms a highly exposed hydrophobic ridge between the side chain fringes, which further conceals the
mannan backbone.
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The shorter chain fragments do not differ in conformation from the larger oligosaccharides.
For the serogroup A tetrasaccharide cnAtet (Figure 5f) and the two decasaccharides cnAdec and
cnAdec’ (Figure 5g), the side chains and the backbone glycosidic linkages have the same orientations
as in the 6-RU saccharides (see Appendix A, Figure A2)—there is no conformational change in these
shorter strands as compared to the longer chains.

2.3. GXM Self-Aggregation

Physical chemical studies have provided evidence that GXM molecules have the capacity for
self-aggregation, but the mechanism for this effect is unknown [22]. Our simulation of cnD and cnA’
together shows evidence for self-aggregation, after 300 ns of equilibration of the system where the
chains diffused in the water box. After this, there were repeated instances of prolonged (≈50 ns)
spontaneous inter-locking of the two chains. We found two modes of interaction between GXM
chains to occur. Firstly, a parallel head-to-tail orientation, where the side chains of one GXM molecule
interacted with the backbone mannan of the neighbouring molecule. Figure 6a shows an example of
this interaction. Here the cnA’ is rotated around the backbone axis by 90◦ relative to cnD, to bring
the side chains of the cnA’ molecule into contact with the mannan backbone in cnD (illustrated in the
cross-sectional schematic on the right of Figure 6a). The interacting side chains in both strands are in
the major “face-on” orientation.

(a)

cnD

cnA
'

(b)

cnD

cnA
'

cnD

cnA
'

cnA'

cnD

Figure 6. Examples of self-aggregation interactions between 6-RU strands of cnD and cnA in (a) parallel
and (b) orthogonal arrangements. Molecules are depicted using the VMD [26] van der Waals
representation (left); and the VMD PaperChain and Twister representations (middle) and a schematic
(right). The saccharide residues are coloured as follows: αDMan—green; βDGlcA—blue; βDXyl—pink;
and 6-OAc—red.

Secondly, an orthogonal interaction occurred, which brings the two chains perpendicular to each
other. Figure 6b shows an example of this. Here chain latching of cnA’ occurs in a complementary
“gap” region of the cnD chain where a βDXyl side chain is missing and the mannose backbone is
exposed. This allows the cnA’ side chains to interact directly with multiple hydrogen bonds to the
cnD mannan backbone. The flexible side chains on either edge of the gap in cnD orient “face-on” to
accommodate the cnA’ chain. This general mode of interaction is illustrated in the schematic on the
right of Figure 6b, where the cnA’ chain is drawn in cross-section.

3. Discussion

Our simulations reveal the GXM secondary structure to comprise an extended, relatively
inflexible, mannan backbone decorated by hydrophyllic fringes of βDGlcA and βDXYl side chains
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and a hydrophobic ridge of 6-O-acetyl substitutions. A rigid GXM molecule could help explain
some experimental observations from physical chemical studies of GXM and cryptococcal capsules.
Probing the polysaccharide capsule with polystyrene beads manipulated with optical tweezers to
measure its Young’s modulus revealed a relatively stiff structure [28]. The modelling prediction of a
linear, inflexible GXM molecule suggests an explanation for the stiffness of the capsule, despite it being
composed primarily of water [29]. Further, rigid GXM molecules imply that any increase in molecular
mass will translate into molecular length. In this regard, the macroscopic diameter of the capsule size
was correlated to the GXM effective diameter measured by light scattering, leading to the proposal
that capsule growth is mediated by linear extension of polysaccharide molecules [30]. The prediction
that GXM is a rigid molecule is consistent with this observation and suggests how linear growth of
individual molecules can translate into increases in capsule size.

Recently, serotype D strains were found to have higher cell surface hydrophobicity than the other
serotypes [31]. Although the connection between the predicted molecular structure and cell surface
hydrophobicity is not immediately obvious, we note this association and suggest that perhaps the
reduced hydrophillic fringes with the concomitant higher exposure of the mannose backbone in cnD
could contribute to this effect.

The GXM secondary structures predicted by this work provide a mechanistic rationale for the
importance of 6-O-acetylation for antibody binding: the O-acetyl groups line up in a hydrophobic
ridge along the mannan backbone—they are highly exposed for antibody binding and their absence in
cnA dramatically alters the exposed binding surface. In addition, O-acetylation reduces the flexibility
of the mannan backbone, which may further improve antibody binding be providing a more defined
epitope. There is a precedent for this in the Vi capsular polysaccharide of Salmonella typhi which is a
linear homopolymer of→4)αDGalNAcp(1→ variably O-acetylated at the C-3 position. Immunity of Vi
is closely linked to the degree of O-acetylation, a phenomenon which has been attributed to decreased
backbone flexibility [32]; modelling has shown O-acetylation to reduce the molecular flexibility of Vi
dramatically [33]. For the GXM mannan backbone, the slight constraint that O-acetylation imposes on
every acetylated sugar may be additive in maintaining preferential structures recognised by antibodies.

It may be that protective mAbs in general bind the O-acetyl ridge (which is more conformationally
defined) and that the non-protective Abs bind the far more mobile side chain ridges. For example,
the synthetic heptasaccharide (corresponding roughly to an M2 triad) recognised by a number of
mAbs (all “non-protective”) may induce Ab binding at the side-chain fringe and not the backbone,
as the acetylation pattern did not affect binding [21]. Further, Crp127 is an anti-GXM mAb whose
binding shows strong serotype dependence, with serotype D strains bound most strongly, followed by
serotype A strains, with little interaction with the C. gattii serotypes B and C [34]. Following our model,
it is likely that the Ab binds primarily to the exposed 6-O-Ac ridge on the backbone, not the fringe
regions. The reason for antigenic difference in C. gatti is likely the different binding surface exposed:
the additional βDXyl(1→4) side chains in serotypes B and C may further hide the mannose backbone
and block binding. However, comparative modelling of the C. gattii serotypes B and C, which feature
the βDXyl(1→4) side chains not investigated in this work, are necessary to confirm this hypothesis.

The GXM structures also provide a mechanistic rationale for why short GXM fragments do not
bind to protective antibodies: they are of insufficient length to reproduce the binding surfaces of the
GXM polysaccharide: the tetrasaccharide is too short to reproduce the GXM O-acetyl ridge or side
chain fringes, which may explain its lack of success as a vaccine candidate. In contrast, the cnAdec’
6-O-acetylates decasaccharide produces a representative segment of the side chain fringes and O-acetyl
ridge in the cnA’ strand, which explains the success of this epitope in eliciting antibody binding [18].
To reproduce the secondary structure motif in cnA’ thus requires a stretch of at least two triads, not the
single triad (pentasaccharide) that is suggested by the primary structure. This work thus illustrates the
potential utility of molecular modelling in informing the rational design of conjugate vaccines.

Given the inflexibility of the mannan backbone, the role of GXM in the capsule is likely as a
scaffold molecule, giving structure and support to the capsule. In addition, this work provides a
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mechanism for self-aggregation of GXM chains [22,24]—chain interlocking occurs spontaneously
with complementary stretches on neighbouring GXM strands via strong self-association interactions
between mobile side chains and the mannan backbone on the neighbouring strand. We identified
two modes of interlocking—a parallel orientation and an orthogonal orientation—both of which
could be useful in building a capsule. The chemical structure of GXM predicts linear molecules,
but physical chemical studies imply that GXM is a branched structure in solution with properties
of a dendrimer [35]. The finding that modelling suggests that GXM molecules have the capacity for
self-association provides a mechanism for reconciling molecular linearity with solution branching
structures without having to invoke the presence of yet undiscovered chemical structures required
for making branched molecules. Consequently, it is possible to envisage how self-associations of
individual GXM molecules assemble to form dendrimers by non-covalent interactions.

A function of the side chains could be to facilitate interlocking of the GXM strands: flexible side
chains can orient to accommodate and enhance the interlocking interaction. Interaction is likely to
be further facilitated in the presence of divalent cations [23] which could pull the chains together.
However, as divalent cations cannot be accurately modelled with the standard biomolecular force fields,
an alternative simulation methodology will be required to investigate this. Further, varying motifs in a
GXM chains may facilitate the random inter-locking of GXM strands: backbone regions with fewer side
chains (and hence gaps exposing the mannan backbone) are compatible with regions with increased
side chains. For example, if M1 motifs interlock with M2 motifs, then chain interlocking would be
facilitated by a serotype D chain (primarily M1) with occasional insertion of M2 motifs. This work
therefore also provides a rationale for the unusual heterogeneity in the GXM polysaccharide. There is
considerable scope for exploring the mechanisms of self-association with simulations of multiple GXM
molecules, and the role of the galactomannan polysaccharide in the capsule, in future work.

4. Materials and Methods

To model the GXM polysaccharides, we followed our established systematic molecular modelling
approach used in previous work [36–40]. First, we determined the low energy conformations of each
of the glycosidic linkages in the polysaccharide by calculation of the φ, ψ potential of mean force (PMF)
for the corresponding disaccharides. We then used these preferred conformations to build reasonable
initial conformations for each of the seven oligosaccharides (cnX, cnD, cnA, cnA’, cnAtet, cnAdec and
cnAdec’) with our CarbBuilder software [41]. These starting structures were then minimised and
molecular dynamics simulations run in a water box (with addition of neutralising counter ions
when the system contained the charged βDGlcA residues). The saccharide conformations were then
extracted from the simulation trajectories and analysed to establish the dominant conformations and
chain dynamics. Details are as follows.

4.1. Disaccharide PMF Calculations

The orientations of the glycosidic linkages in the GXM polysaccharides are each described by
two dihedral angles, φ and ψ. For the backbone αDMan(1→3)αDMan linkages, these are defined
here as φ = H1–C1–O3’–C3’ and ψ = C1–O3’–C3’–H3’. For both the βDGlcA(1→2)αDMan the
βDXyl(1→2)αDMan side chain linkages, φ = H1–C1–O2’–C2’ and ψ = C1–O2’–C2’–H2’.

We identified the low-energy conformations of the each of the glycosidic linkages in
isolation by calculation of the potential of mean force (PMF) for rotation about the φ and ψ

dihedral angles in representative disaccharides; viz., αDMan(1→3)αDMan; βDGlc(1→2)αDMan
and βDXyl(1→2)αDMan (note that the βDGlcA(1→2)αDMan linkage was approximated with the
uncharged βDGlc(1→2)αDMan disaccharide). PMFs were calculated with the metadynamics [42]
routine incorporated into NAMD [43] using the glycosidic linkage torsion angles as collective variables
and the CHARMM36 additive force field for carbohydrates [44,45]. All PMF surfaces were calculated
in gas-phase. Gas phase PMFs for uncharged disaccharides have been demonstrated to be a reasonable
approximation to solution PMF in a polysaccharide [37,46,47]. Each standard metadynamics simulation
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comprised a 1500 ns MD simulation, with a Gaussian hill height of 0.5, hill frequency of 1000 and a hill
width of 2.5 degrees. The three PMFs appear in Appendix A, Figure A1 .

4.2. Molecular Dynamics Simulations

All simulations were performed with the NAMD molecular dynamics program [43] version 2.12
(employing NAMD CUDA extensions for calculation of long-range electrostatics and nonbonded
forces on graphics processing units [48]). Carbohydrates were modelled with the CHARMM36
additive force field for carbohydrates [44,45] and water was simulated with the TIP3P model [49].
Initial configurations of seven oligosaccharides (cnX, cnD, cnA, cnA’, cnAtet, cnAdec and cnAdec’)
were built using our CarbBuilder software [41,50] v1.2.23 which employs the psfgen tool to create
“protein structure” (psf) files for modelling with the CHARMM force field and the NAMD molecular
dynamics program. These initial oligosaccharide structures were optimised with 20,000 steps of
standard NAMD minimisation in vacuum and then solvated (using the solvate plugin to the visual
molecular dynamics (VMD) [26] analysis package) in a periodic cubic unit cell. The charged
saccharides (cnD, cnA, cnA’, cnAdec and cnAdec’) incorporated randomly distributed sodium ions to
electrostatically neutralise the system.

All MD simulations were preceded by a 30,000 step minimisation phase, with a temperature
control and equilibration regime involving 10 K temperature reassignments from 10 K culminating
in a maximum temperature of 300 K. Equations of motion were integrated using a Leap-Frog Verlet
integrator with a step size of 1 fs and periodic boundary conditions. Simulations were performed under
isothermal-isobaric (nPT) conditions at 300 K maintained using a Langevin piston barostat [51] and a
Nose-Hoover [52,53] thermostat. Long-range electrostatic interactions were treated using particle mesh
Ewald (PME) summation, with κ = 0.20 Å−1 and 1 Å PME grid spacing. Non-bonded interactions were
truncated with a switching function applied between 12.0 and 15.0 Å to groups with integer charge.
The 1–4 interactions were not scaled, in accordance with the CHARMM force field recommendations.
Each system was equilibrated 0.03 ns with a cycled temperature increase from 0 to 300 K in 10 K
increments, each cycle commencing with a 10,000 step energy minimisation followed by a 0.001 ns MD
simulation at the specified temperature until 300 K. For all simulations, structures were collected at
intervals of 250 ps for analysis.

4.2.1. Simulations of Single Saccharide Chains

The 6-RU strands (cnX, cnD, cnA and cnA’) were placed in the centre of a cubic water box with
sides of 80 Å, while the tetrasaccharide (cnAtet) and decasaccharide (cnAdec and cnAdec’) strands
employed box lengths of 50 Åand 60 /AA, respectively. The charged systems were neutralised with
Na+ ions: 6 ions for cnD, cnA and cnA’; 1 ion for cnAdec and cnAdec’. All 6-RU MD simulations ran
for 500 ns (with the first 100 ns treated as equilibration) and the simulations of the shorter fragments
(cnAtet, cnAdec and cnAdec’) ran for 125 ns (with the first 25 ns treated as equilibration).

4.2.2. Simulation of Two Saccharide Chains: cnA’ and cnD

For the combined simulation of cnA’ and cnD, 6-RU strands of each polysaccharide were placed
in close proximity within a 80 Å water box with 12 neutralising Na+ ions. The combined simulation of
cnA’ and cnD ran for 1200 ns, to allow the molecules to relax, diffuse and spontaneously interact.

4.3. Data Analysis

Analysis of the simulations used time series frames 25 ps apart. Molecular conformations
extracted from the MD simulations were depicted with VMD, where necessary using the PaperChain
and Twister visualisation algorithms for carbohydrates [27] to highlight the hexose rings and
backbone, respectively. Dihedral angles and end-to-end distances from the simulations were extracted
using VMD’s Tcl scripting interface and statistical values calculated with in-house Python scripts.
Conformations from all MD simulation trajectories were clustered using VMD’s internal measure cluster
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command. Clustering analysis used time series frames 250 ps apart, discarding the first 100 ns as
equilibration. First, all simulation conformations were aligned on the two middle mannose residues
in the 18 mannose chain (i.e., the ninth and tenth mannose residues). Then all conformations were
clustered into families according to a rmsd fit (cutoff of 5 Å) to all the saccharide rings and glycosidic
linkage oxygens in the molecules, ignoring the first two and last two residues in the chain. Only the
top four clusters are reported; more minor clusters are ignored.
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Abbreviations

The following abbreviations are used in this manuscript:
Ab antibody
cnA 6-RU chains of GXM serogroup A primary motif
cnA’ 6-RU chains of GXM serogroup A primary motif, 6-O-acetylated

on every second and third mannose in the RU
cnD 6-RU chains of GXM serogroup D primary motif
cnAtet a tetrasaccharide of GXM serogroup A primary motif
cnAdec a decasaccharide of GXM serogroup A primary motif
cnAdec’ a decasaccharide of GXM Serogroup A primary motif 6-O-acetylated

on the second and third mannose and last mannose
GXM glucuronoxylomannan polysaccharide
MD molecular dynamics
PMF potential of mean force
RU repeat unit

Appendix A

Appendix A.1

Figure A1. Contoured 2D φ, ψ PMF surfaces for disaccharide in the gas phase illustrate the range of
motion possible for an unrestrained linkage: αDMan(1→3)αDMan (left); βDGlc(1→2)αDMan (middle);
and βDXyl(1→2)αDMan (right). Contours are drawn at intervals of 1 kcal.mol−1 to a maximum of 12
kcal.mol−1. The β(1→2) PMF maps are annotated with the φ, ψ regions associated with the (i) major
“face-on” and (ii) minor “side-on” linkage orientations. The insets show schematics of the relative
rotations of the glycosidic rings in these two orientations.

http://hpc.uct.ac.za
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Appendix A.2
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Figure A2. Heat maps of the distribution of the central backbone αDMan(1→3)αDMan glycosidic
linkage orientation for a the cnAtet tetrasaccharide fragment (left) and decasaccharide cnAdec (middle)
as well as a 6-O-acetylated decasaccharide cnAdec’ (right). Glycosidic linkage orientations are shown
as rotations of the linkage dihedral angles φ and ψ.
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Figure A3. The end-to-end distance, r, time series and corresponding histograms of the dominant
conformational clusters for the (a) cnX, (b) cnD, (c) cnA and (d) cnA’ GXM chains. For each molecule,
the end-to-end distance of the dominant conformational cluster is plotted in blue, the secondary
conformational cluster in orange, tertiary in green and quaternary in grey. Lesser clusters are not
shown. Percentages for each cluster relative to the total simulation are listed in the legends. The first
100 ns of simulation are considered equilibration and are not shown. Here r is defined to exclude
the two terminal residues on either end of the chain, as the distance from O3 in the second linkage
to O3 in the 16th linkage in the 18-mannose backbone—labeled for cnA in the image on the right.
The residues and substitutions are coloured as follows: αDMan—green; βDGlcA—blue; βDXyl—pink
and 6-OAc—red.
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Figure A4. The time series for the distances between interacting side chains in the cnA’ molecule
labeled on the right. (a) The βDGlcA and βDXyl distance d1, (b) the βDXyl and βDXyl distance d2
(c) the βDGlcA and βDXyl distance d3 and (d) the βDXyl and βDXyl distance d4. Here in each case d
is defined to as the distance from C4 in one residue to C4 in the proximal side chain residue. The first
100 ns of simulation are considered equilibration and are not shown. The residues and substitutions
are coloured as follows: αDMan—green; βDGlcA—blue; βDXyl—pink and 6-OAc—red.
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