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Abstract: Frequency stabilization can overcome the dependence of resonance frequency on amplitude
in nonlinear microelectromechanical systems, which is potentially useful in nonlinear mass sensor.
In this paper, the physical conditions for frequency stabilization are presented theoretically, and
the influence of system parameters on frequency stabilization is analyzed. Firstly, a nonlinear
mechanically coupled resonant structure is designed with a nonlinear force composed of a pair of
bias voltages and an alternating current (AC) harmonic load. We study coupled-mode vibration and
derive the expression of resonance frequency in the nonlinear regime by utilizing perturbation and
bifurcation analysis. It is found that improving the quality factor of the system is crucial to realize
the frequency stabilization. Typically, stochastic dynamic equation is introduced to prove that the
coupled resonant structure can overcome the influence of voltage fluctuation on resonance frequency
and improve the robustness of the sensor. In addition, a novel parameter identification method
is proposed by using frequency stabilization and bifurcation jumping, which effectively avoids
resonance frequency shifts caused by driving voltage. Finally, numerical studies are introduced to
verify the mass detection method. The results in this paper can be used to guide the design of a
nonlinear sensor.

Keywords: MEMS; nonlinear dynamics; coupled vibrations; bifurcation

1. Introduction

Recently, mass detection of very small chemical and biological species using micro-
electromechanical systems (MEMS) has attracted wide attention [1–6]. A MEMS mass
sensor mainly uses the mechanical characteristics changes before and after the adsorption
mass of a resonant element to detect and identify the target analyte [7]. Mass-sensing
methods based on a frequency shift [8] have gained increasing attention, as these methods
maintain the quasi-digital [9] nature of the signal. One challenge associated with these
methods is that in the nonlinear vibration region, the resonance frequency depends heavily
on vibration amplitude [10–12], which affects the accuracy of the mass sensor. In this
article, a mechanically coupled resonant structure is designed to realize the frequency
stabilization in the nonlinear regime. In addition, a quantitative relationship between
resonance frequency and added mass is proposed by using frequency stabilization, which
can avoid the dependence of resonant frequency on amplitude and greatly improve the
mass detection accuracy.

MEMS mass sensors are often affected by the typical nonlinear electrostatic forces,
geometric nonlinearity, environmental interference, and other factors [13–15]. This can
bring about an undesirable interdependence between the resonance frequency and the
vibration amplitude, which is obviously disadvantageous for MEMS mass sensors. It
is discovered that the frequency–amplitude interdependence can be drastically reduced
when appropriate coupled-mode vibration exists in a nonlinear system [16]. Mode coupled
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vibration is a universal phenomenon, where multiple vibration modes transfer energy
to each other due to the coupling [17]. Coupled-mode vibration can be divided into
two types: One is the vibration energy transfer between different structures caused by
mechanical components; the other is the vibration energy transfer between different modes
within the structure caused by electric field forces and geometric nonlinearity [18,19]. Kilinc
et al. [20] designed a nanoarray coupling resonant structure and obtained complex coupling
resonance behavior by adjusting the coupling stiffness between different resonators. Li
et al. [21] presented coupled vibration behavior between second-order and third-order
modes caused by the axial stress, which can be used to realize high precision parameter
identification by an antisymmetric mode. In addition, weakly coupled nonlinear MEMS
resonators can lead to mode localization, which can greatly improve the sensitivity of the
sensor [22]. Antonio et al. [23] used coupled-mode vibration to propose a novel method
in order to realize frequency stabilization by coupling two different vibration modes.
It was discovered that the low-frequency noise resonator was possible in a nonlinear
regime. Zhang et al. [24] experimentally studied the vibration energy transfer between the
flexural mode and the extensional bulk mode of a cantilever beam resonator by exciting
the two modes simultaneously. Experimental results showed that the interdependence
between the resonance frequency and the vibration amplitude can be limited by the mode
interaction in nonlinear micromechanical resonators [25]. Zanette [26] studied the joint
dynamics of coupled Duffing oscillators with a nonlinearity of opposite signs. Results
showed that the frequency stabilization of nonlinear coupled systems can be achieved
under appropriate parameter conditions. As it is known, nonlinear factors can lead to
complex dynamic phenomena such as bifurcation and chaos, which can seriously affect
the dynamic performance of the mass sensor [27]. Tchakui et al. [28] studied the dynamic
bifurcation behaviors of the unidirectionally coupled nonlinear electromechanical systems
considering three situations. Various dynamical behaviors corresponding to different types
of bifurcation were obtained with varying the coupling coefficient. In recent years, many
researchers have analyzed coupling resonance behaviors to reveal the complex dynamic
bifurcations and to improve frequency stabilization of nonlinear systems [29–35].

A MEMS resonant mass sensor mainly realizes detection by changing the resonant
frequency and vibration amplitude of the structure caused by the adsorption of the elastic
element of the sensor to the target analyzers [36–39]. Bouchaala et al. [40] derived analyti-
cal formulations to calculate the induced resonance frequency shifts caused by an added
mass. The results indicated that the detection sensitivity increases with the decrease of
size. However, with the reduction of size and complexity of the structure, there are obvious
nonlinear effects and complex bifurcation behaviors [41]. Younis et al. [42] utilized the
dynamic instabilities and bifurcations in a MEMS to realize novel methods and functionali-
ties for mass detection. It was noted that bifurcation-based mass detection methods led to
dramatically enhanced sensitivity and less performance deterioration due to measurement
noise as compared to frequency shift-based methods [43]. Similarly, Nguyen et al. [44]
used bifurcation jumping characteristics to propose a mass threshold detection method.
Results showed that sudden jumps in amplitude can make the detection of a very small
mass possible. Hasan et al. [45] studied the intelligent adjustable threshold pressure switch.
When the pressure exceeds the critical threshold, the system can be induced to produce
an amplitude jump, realizing the rapid sensing of pressure value. However, most of the
bifurcation-based mass sensors are used in mass threshold detection. It is difficult to
achieve high precision quantitative mass detection using this method.

It can be concluded from the above research status that frequency stabilization and
mass detection performance are very important in the design of MEMS mass sensors and
should be taken into account [46,47]. However, to the best of our knowledge, the physical
conditions and influencing factors of frequency stabilization have not been systematically
investigated. In addition, an effective parameter identification method is needed to realize
an accurate detection of mass sensors operating in a nonlinear vibration range. The
dependence of resonance frequency on amplitude seriously affects the mass detection
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results. In this paper, we design a mechanically coupled structure to realize frequency
stabilization by improving the quality factor and adjusting the driving voltage, which
overcomes the effect of voltage fluctuation on resonance frequency and improves the
robustness of nonlinear sensor. Then, a novel approach for mass detection in a nonlinear
coupled resonant sensor based on frequency stabilization and bifurcation jumping is
proposed, which greatly improves the performance of the nonlinear sensor.

The structure of this article is as follows. In Section 2, Hamilton’s principle and
Galerkin discretization are introduced to obtain governing equations. In Section 3, two
different vibration modes are coupled through the internal resonance, which can stabilize
the oscillation frequency of the nonlinear system. In Section 4, the influence of voltage
fluctuation on dynamic behavior is studied. In Section 5, a novel approach for mass
detection in a nonlinear coupled resonant sensor is proposed. Finally, summary and
conclusions are presented in the last section.

2. Problem Formulation

An electrically actuated microbeam structure has important applications in MEMS
mass sensors [1]. The mass added to the microbeam can result in downshifting its natural
frequency. However, the electrostatic and geometric nonlinearity can lead to a dependence
of resonant frequency on amplitude. To provide a stable resonance frequency, a mechani-
cally coupled resonant element was designed, as shown in Figure 1. A thin coupling beam
(microbeam 3) was introduced to realize vibration coupling between microbeams 1 and
2. The coupling strength can be controlled through the position, moment of inertia, and
length of the coupling beam. Microbeam 1 is a doubly clamped microresonator driven
by means of a pair of bias voltages and an AC voltage component, as shown in Figure 1c.
Microbeam 2 is a cantilever resonator driven by the coupling beam. Size parameters and
physical properties of the system are listed in Table 1. Then, a lumped mass m is added at
x = L2, as shown in Figure 1b. Added mass can be detected by observing the resonance
frequency of the device. Because the mass of the coupling beam is much less than that of
the resonators, the coupling beam can be assumed to be a spring that mechanically couples
resonators with each other. When the system oscillates slightly around the equilibrium
point, the interaction between the two oscillators is assumed to be linear and the stiffness
of the coupling beam can be obtained by the finite element software. Then, by using Hamil-
ton’s principle, the equations of motion that govern the transverse deflections ŵ1(x̂, t̂) and
ŵ2(x̂, t̂) are written as

ρA ∂2ŵ1
∂t̂2 + EIŵiv

1 + c1
∂ŵ1
∂t̂ = ( EA

2L
∫ L

0 ŵ′1
2dx)ŵ′′1

+ ε0b[Vdc+Vac cos(Ω̂t̂)]2

2(d−ŵ1)
2 − ε0bV2

dc
2(d+ŵ1)

2 + k(ŵ2 − ŵ1)δ(x− L1)
(1)

[ρA + δ(x− L2)m]
∂2ŵ2

∂t̂2 + EIŵiv
2 + c2

∂ŵ2

∂t̂
= k(ŵ1 − ŵ2)δ(x− L1) (2)

Table 1. Mass sensor parameters and physical properties [48].

Physical Parameter (Units) Value

Length of microbeam 1, L (µm) 150
Length of microbeam 3, R (µm) 10

Thickness of all microbeams, h (µm) 1
Widths of microbeams 1 and 2, b (µm) 10

Width of microbeam 3, b′ (µm) 1
Position of the coupling beam, L1 (µm) 5

Mass adsorption position, L2 (µm) 50
Gap between the electrodes, d (µm) 1.5

Density of the electrode material, ρ (kg/m3) 2300
Young’s Modulus, E (GPa) 169

Dielectric constant of the medium, ε0 8.85 × 10−12
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Figure 1. Schematic diagram of the mechanically coupled resonance sensor. (a) Three-dimensional schematic diagram of
the resonant structure; (b) size parameters of the resonant mass sensor; (c) schematic diagram of the electrically actuated
microbeam structure.

The boundary conditions for the coupled resonance structure are

ŵ′1(0, t̂) = ŵ1(0, t̂) = ŵ1(L, t̂) = ŵ′1(L, t̂) = 0

ŵ′2(0, t̂) = ŵ2(0, t̂) = ŵ′′2 (L′, t̂) = ŵ′′′2 (L′, t̂) = 0

where ŵ′i =
∂ŵi
∂x̂ for i =1, 2.

Here, x̂ is the position along the beam length, A and I are the area and moment of
inertia of the cross section, L′ is the length of microbeam 2, and t̂ is the time. The last terms
in Equations (1) and (2) represent the elastic restoring force caused by the coupling beam,
where k represents the coupling strength coefficient.

Galerkin discretization method is introduced to deal with partial differential equations.
Then, considering the first and second vibration modes, we can obtain the governing equa-
tions:

d2u1
dt2 + c1n

du1
dt + β2

1u1 − [α1
∫ 1

0 φ′1
2dx
∫ 1

0 φ
′′
1 φ1dx + 8α2V2

dc

∫ 1
0 φ4

1dx]u3
1

= 2α2VdcVac
∫ 1

0 φ1dx cos Ωt + k′[u2φ2(l1)φ1(l1)− u1φ2
1(l1)]

(3)

(1 + η′)
d2u2

dt2 + c2n
du2

dt
+ β2

2u2 = k′[u1φ2(l1)φ1(l1)− u2φ2
2(l1)] (4)

A detailed derivation and parameters are given in Appendix A.
To verify the theoretical model and obtain the vibration mode of the coupled resonator,

the software COMSOL was introduced to study the coupled resonant structure by using
the multifield solver [49], as shown in Figure 2. Here, the coupling strength coefficient
k can be obtained by using the software COMSOL. To get the two lowest frequencies of
the system to be as close as possible, the stiffness of the coupling beam should not be too
large. Meanwhile, to ensure the energy transfer between different resonators, the coupling
beam stiffness should not be too small. When the length of the cantilever is near 60 µm, we
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obtain the coupling strength coefficient k = 507 N/m. Figure 3 shows the first mode and
the second mode of the coupled structure. It was found that the first mode is in phase and
the second mode is out of phase.
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Through Equations (3) and (4), the Jacobian matrix for the linear system can be obtained:

J =

[
β2

1 + k′φ2
1(l1) −k′φ2(l1)φ1(l1)

−k′φ2(l1)φ1(l1)
1+η′

β2
2+k′φ2

2(l1)
1+η′

]
(5)

Then, the resonant frequencies can be obtained by solving the eigenvalues of Equation (5).

(β2
1 + k′φ2

1(l1)−ω2)(
β2

2 + k′φ2
2(l1)

1 + η′
−ω2)− (k′φ2(l1)φ1(l1))

2

1+η′
= 0 (6)

Figure 4 shows the variation of the first natural frequency and the second natural
frequency versus the length of microbeam 2 when Vdc = 2 V. The increase of the length
of microbeam 2 can reduce the natural frequencies of the system. When the length of
microbeam 2 is near 59.5 µm, the first natural frequency of the system is approximately
equal to the second natural frequency. Then, 1:1 internal resonance may occur. Here, the
results obtained by COMSOL are given to verify the theoretical results. The error between
theoretical results and the COMSOL results is very small, which means that the theoretical
method and equivalent coupling stiffness are reasonable. Following this, we focus on the
frequency stabilization caused by internal resonance. It should be noted that the driving
voltage selected in this paper is far less than the pull-in voltage.
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3. Nonlinear Dynamic Behavior

In this section, the complex dynamic bifurcation behaviors in the weakly coupled
system are considered.

3.1. Perturbation Analysis

To simplify Equations (3) and (4), they can be rewritten as

d2u1

dt2 + c1n
du1

dt
+ ω2

1u1 − κu2 + k1au3
1 = f cos Ωt (7)

(1 + η′)
d2u2

dt2 + c2n
du2

dt
+ ω2

2u2 = κu1 (8)

where κ = k′φ2(l1)φ1(l1), f = 2α2VdcVac
∫ 1

0 φ1dx, ω2
1 = β2

1 + k′φ2
1(l1), ω2

2 = β2
2 + k′φ2

2(l1),
and k1a = −α1

∫ 1
0 φ′1

2dx
∫ 1

0 φ
′′
1 φ1dx− 8α2V2

dc

∫ 1
0 φ4

1dx.
Through Equation (8), we find that the vibration of microbeam 2 is linear. Firstly, we

can use linear vibration theory to express the vibration form of microbeam 2 in terms of
the displacement and velocity of microbeam 1.

We assume c2n = c1n = cn and obtain

u2 = − κcn

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2
du1

dt
−

κ(η′Ω2 + Ω2 −ω2
2)

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2 u1 (9)

Substituting Equation (9) into Equation (7) yields the following:

d2u1

dt2 + c′
du1

dt
+ ω2

nu1 + k1au3
1 = f cos Ωt (10)

Here, the equivalent damping and equivalent stiffness of microbeam 1 can be writ-
ten as

c′ = cn − κus (11)

ω2
n = ω2

1 − κuc (12)

where
us = −

κcn

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2 (13)

uc = −
κ(η′Ω2 + Ω2 −ω2

2)

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2 (14)
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A perturbation analysis is introduced to deal with Equation (10). Then, the amplitude–
frequency response equation of the coupled resonator can be obtained.

(
1
2

c′)2 + (σ− λ

ωn
a2)

2
= (

f
2ωna

)
2

(15)

The detailed derivation and parameters are given in Appendix B.

3.2. Coupled-Mode Vibration

Figure 5 shows the nonlinear coupled mode vibration behavior of a resonator under
different AC voltages. When Vac = 0.08 V, there is typically hard nonlinearity in the
amplitude–frequency response curves. The resonant frequency of the system depends
heavily on the amplitude. As the AC voltage increases, it was discovered that the discon-
tinuous phenomenon of frequency response curve occurs, which can lead to the isolated
branches, as shown in Figure 5b. The long-time integration of Equations (3) and (4) is
introduced to verify the analytical solution derived from the method of multiple scales.
To further analyze the complex dynamic behavior, the swept harmonic responses of mi-
crobeam 1 are obtained by sweeping up the frequency under different AC voltages, as
shown in Figure 6a. For Vac < 0.171 V, the peak frequency increases with driving force,
but for the higher driving voltages, the peak frequency changes slightly. It was found
that this discontinuity phenomenon caused by coupled-mode vibration can improve the
stability of the peak frequency, which has important potential applications in mass sensors.
In addition, the frequency stabilization caused by coupling modes has been experimentally
studied, as shown in Figure 6b [23]. The experimental results are qualitatively consistent
with the theoretical results in this paper.
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3.3. Frequency Stabilization

Frequency stabilization is caused by the energy transfer between different vibration
modes in a weakly coupled system. We propose theoretically the physical conditions for
frequency stabilization and analyze the influence of quality factor on frequency stabilization.
Firstly, we try to obtain an analytical expression for the resonance frequency. The backbone
curve can be obtained by Equation (15):

a2
1(Ω) =

σωn

λ
(16)

When the vibration amplitude of microbeam 1 is equal to that of the backbone curve,
the resonance of the system occurs. Substituting Equation (16) into Equation (15) yields
the following:

λ f 2

σωn
− (c′ωn)

2
= 0 (17)

Substituting Equations (11) and (12) into Equation (17) yields the following:

λ f 2

σ
√
(ω2

1 − κuc)
− (cn − κus)

2(ω2
1 − κuc) = 0 (18)

As a function of f, Ω is the root of a nonlinear polynomial equation, with one or
three real positive solutions. Working out their analytical expressions is impractical, but
accurate approximations can be obtained when the quality factor is high enough. Through
Figures 5 and 6, it was found that the frequency stabilization occurs when Ω ≈ ω2/

√
1 + η′

(i.e., the natural frequency of microbeam 2). Thus, uc ≈ 0 is obtained by Equation (14).
Then, substituting uc = 0, Ω = ωn + εσ and Equation (13) into Equation (18) yields
the following:

λ f 2

(Ω−ω1)ω1
− [cn +

κ2cn

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2 ]
2

ω2
1 = 0 (19)

To indicate the resonant frequency near ω2/
√

1 + η′, Equation (19) can be rewritten as

Ω =
ω2√
1 + η′

± cn

2(1 + η′)

√√√√ (1 + η′)κ2ω1/cnω2
2√

λ f 2/(ω2/
√

1 + η′ −ω1)ω1 − cnω1

− 1 (20)

The detailed derivation is given in Appendix C.
Two solutions to Equation (20) represent the two peak frequencies (P1 and P2 as

shown in Figure 5b) of the resonant system. Figure 7a shows the effects of damping and
driving voltage on the peak frequencies. It was found when the driving force is below the
critical value, the peak frequency of the system increases significantly with the increase
of the driving voltage. When the driving voltage is in a certain range, the peak frequency
has very little dependence on the driving voltage, which is called frequency stabilization.
Improving the quality factor is beneficial to improving the frequency stabilization of the
system. Here, the resonance peak frequency of a single-degree-of-freedom system is also
obtained under different AC voltages, as shown in Figure 7b. Due to nonlinearity, the
resonance peak frequency of the system depends heavily on the driving voltage. There is
no frequency stabilization for a nonlinear system with a single degree of freedom.
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Then, the physical conditions for frequency stabilization can be obtained from Figure 7.
By Equation (20), it was found that the peak frequency reaches the upper critical value

when (1 + η′)κ2ω1/cnω2
2 =

√
λ f 2/(ω2/

√
1 + η′ −ω1)ω1 − cnω1. Then, we can obtain

fmax =
(1 + η′)κ2ω1/cnω2

2 + cnω2√
λ/(ω2/

√
1 + η′ −ω1)ω1

(21)

Through Figure 7, when the resonance frequency of a single-degree-of-freedom system
is equal to ω2/

√
1 + η′, frequency stabilization appears in the coupling system. Consider-

ing κ = 0, we can obtain the minimum critical voltage by Equation (17):

fmin = cnω1

√
ω1(ω2/

√
1 + η′ −ω1)

λ
(22)

When the driving force satisfies f ∈ [ fmin, fmax], frequency stabilization occurs.
Figure 8 shows the variation of frequency stabilization versus the length of microbeam 2
and AC voltage. As the length of microbeam 2 increases, the resonance frequency of the
cantilever beam decreases. There is a positive correlation between the resonance frequency
and the driving voltage. Thus, the lower critical drive voltage and the upper critical drive
voltage of the frequency stabilization decreases. In addition, it was found that reducing
damping can improve the frequency stabilization of the nonlinear system.

It is worth mentioning that the drive voltage has a slight effect on the peak frequency
when frequency stabilization occurs. The performance of frequency stabilization is deter-
mined by the quality factor. When the quality factor of the system is high enough, the effect
of the driving voltage on the peak frequency can be ignored. On the contrary, when the
quality factor is low, there is no frequency stabilization in the coupled resonant system.
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4. Robust Analysis

Environmental disturbances and voltage noise are important factors that affect the
dynamic stability of the resonant sensor. Because the nonlinear resonant sensor has many
stable periodic solutions, the basin of attraction of periodic solutions is very important
to the dynamic performance of the sensor. Nguyen et al. [44] studied the robustness
of mass detection mechanism and obtained the basin of attraction of periodic solutions
under different design parameters. In addition, voltage noise is also very important to
the stability of the sensor. In this section, we propose the influence mechanism of voltage
noise on bifurcation frequency. The significance of frequency stabilization is to suppress
the influence of voltage on system response. Voltage fluctuation was introduced to study
the dynamic behavior and peak frequency of the coupled system. Equation (10) can be
rewritten as

d2u1

dt2 + c′
du1

dt
+ ω2

nu1 + k1au3
1 = ( f + ξ(t)) cos Ωt (23)

where the fluctuating part ξ(t) represents the noise produced by random modulations of
the driving force, which is caused by the amplitude fluctuation of AC voltage. We consider
the voltage fluctuation ξ(t) to be white Gaussian noise. Then, a random sequence with a
mean of 0 and a variance of 1 is generated in MATLAB to study the influence of voltage
fluctuation on dynamic behavior.

As shown in Figure 6a, for Vac < 0.171 V, the peak frequency increases with driving
strength, but for the higher driving voltages, frequency stabilization occurs. Figure 9
shows the effect of voltage fluctuation on the dynamic behavior of a coupled resonance
system when Vac < 0.171 V and Vac> 0.171 V. The voltage noise causes the fluctuation
of the amplitude–frequency response curve. It was noted that voltage noise has little
effect on the peak frequency of the system when Vdc = 8 V, Vac = 0.3 V, as shown in
Figure 9a. However, the phenomenon of frequency stabilization disappears, and voltage
noise greatly reduces the peak frequency when Vdc = 8 V, Vac = 0.1 V, as shown in
Figure 9b. Therefore, the frequency stabilization proposed in this paper can overcome the
influence of voltage fluctuation on bifurcation frequency and improve the robustness of the
sensor. This phenomenon can be explained as follows: When frequency stabilization occurs,
the peak frequency is determined by the natural frequency of the cantilever beam, and the
voltage fluctuation does not affect the peak frequency. As the driving voltage decreases, the
frequency stabilization disappears, and the peak frequency is determined by the driving
voltage. Thus, voltage fluctuation has an important impact on the peak frequency.
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Figure 9. Effect of voltage fluctuation on dynamic behavior of a coupled resonance system. (a) The voltage fluctuation has
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Vac = 0.1 V.

5. Parameter Identification Based on Frequency Stabilization and Bifurcation
Jumping Behavior

The added mass can change the natural frequency of the system. Thus, researchers
can identify the mass by measuring the resonance frequency of the system. The bifurcation-
based mass sensing method greatly improves the sensitivity due to the sharpness of
amplitude transition in a nonlinear regime [42–44]. However, the nonlinearity in flexural
microbeam results in a dependence of bifurcation frequency on amplitude. In this section,
we present an effort to explore the exploitation of frequency stabilization and bifurcation
jump in a MEMS to realize a novel method for mass detection.

Figure 10 shows the variation of the frequency response curves versus drive voltage
and added mass when cn = 0.04. It was noted that the bifurcation frequency of the resonator
is reduced due to the added mass. In addition, the amplitude–frequency response curves
under different driving voltages are given, as shown in Figure 10b. The result shows that
the driving voltage mainly affects the bifurcation frequency in region A. However, the
bifurcation frequency in region C is almost unaffected by AC voltage. Thus, the bifurcation
frequency in region C is used to realize mass detection, which can improve the robustness
of the sensor.
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Figure 10. (a,b) Effect of added mass and AC voltage on the dynamic behavior of a coupled resonance system.

The variation of the bifurcation frequency of the coupled microbeam resonators with
various values of the AC voltages and added mass was also studied, as shown in Figure 11.
The bifurcation frequency decreases linearly with the increase of added mass. When
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the drive voltage is lower than the critical voltage of frequency stabilization, the voltage
variation has obvious influence on the bifurcation frequency. With the increase of driving
voltage, the influence of AC voltage on bifurcation frequency is very weak, as shown in
Figure 11a. Similarly, we study the dynamic behavior of the single-degree-of-freedom
system and found that voltage variation has a great influence on the bifurcation frequency.
Here, we used bifurcation frequency, which is independent of the driving voltage under
the condition of frequency stabilization, to realize mass detection. Amplitude resonance
curves of microbeam 1 with a different added mass are shown in Figure 12.
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Figure 11. Variation of the bifurcation frequency of mechanically coupled microbeam resonators with different mass and
AC voltage when cn = 0.02, Vdc = 8 V, and L′ = 59.2 µm. Here, (a) represents coupled resonant structure (the resonant
frequency changes slightly when the voltage exceeds the critical value), and (b) represents the single-degree-of-freedom
resonant structure.
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Then, we try to derive a nonlinear parameter identification formula based on frequency
stabilization and amplitude jump behavior. If the quality factor of the system is high
enough, the bifurcation frequency of the system can be assumed as Ω ≈ ω2/

√
1 + η′ by

Equation (20). Then, we can obtain

η′ =
Ω2

1 −Ω2
2

Ω2
2

(24)
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By dimensional transformation, the parameter identification formula is obtained:

m =
Ω2

1 −Ω2
2

Ω2
2φ2

2(L2/L)
ρAL (25)

Following this, numerical studies are introduced to prove the mass detection method.
P1, P2, P3, and P4 represent resonance frequencies when m = 6× 10−6 µg, m = 4 × 10−6 µg,
m = 2 × 10−6 µg and m = 0 µg in Figure 12. Through Equation (25), the mass detec-
tion results are obtained in Table 2. The results show that the parameter identification
method presented in this paper can accurately identify the mass. However, as the damp-
ing increases, the error of mass detection increases gradually. In order to explain this
phenomenon, we propose the error function of mass detection. In fact, we ignore the
effect of added mass on the last term of Equation (20) and use Equation (24) to obtain an
approximate mass.

Table 2. Nine groups of mass detection results when Vdc = 8 V, Vac = 0.2 V.

Number The True Mass m
(10−6 µg)

Damping
Coefficient cn

Identification Results
m (10−6 µg)

The Ratio between the
Analyte and the Sensor

Mass
Error

1 2 0.02 1.884 0.04% 5.8%
2 4 0.02 3.768 0.08% 5.81%
3 6 0.02 5.647 0.12% 5.89%
4 2 0.01 1.939 0.04% 3.05%
5 4 0.01 3.876 0.08% 3.1%
6 6 0.01 5.813 0.12% 3.12%
7 2 0.005 1.976 0.04% 1.22%
8 4 0.005 3.95 0.08% 1.24%
9 6 0.005 5.922 0.12% 1.3%

Thus, the error function can be defined by Equations (20) and (24).

η′error =
cn

ω2
√

1+η′

√
(1+η′)κ2ω1/cnω2

2√
λ f 2/(ω2/

√
1+η′−ω1)ω1−cnω1

− 1

− (1+η′)cn
ω2

√
κ2ω1/cnω2

2√
λ f 2/(ω2−ω1)ω1−cnω1

− 1
(26)

Substituting Equation (26) into Equation (24) yields the following:

e =
∣∣∣∣η′error

η′

∣∣∣∣× 100% (27)

Figure 13 shows the variation of the detection error under different quality factors.
It was found that the damping is crucial to the accuracy of mass detection. When the
damping is very small, the error function is negligible. As the damping increases, the
value of the error function increases. The theoretical prediction results are obtained by
Equation (27), and the numerical studies are obtained by long-time integration. It was
found that they agree with each other. Thus, the quality factor of the resonator is the key to
improving the accuracy of mass detection.
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The parameter identification method solves the influence of voltage fluctuation on
bifurcation frequency and improves the resolution of the sensor by using frequency sta-
bilization and the bifurcation jump phenomenon, which is beneficial to the development
of the nonlinear sensor. The added mass can be detected without considering the effect
of the driving voltage in the nonlinear regime. This method is suitable for the coupled
resonant structure with frequency stabilization. Improving quality factor is the key to
improving the accuracy of sensor. It should be noted that this method is not applicable to
the single-degree-of-freedom nonlinear structure. Its natural frequency is determined by
the added mass and the driving voltage together, and the influence of the driving force
needs to be considered. In addition, advantages and disadvantages of recently developed
sensors are given in Table 3.

Table 3. Comparison of advantages and disadvantages of recently developed sensors.

Sensor Detection Principle Nonlinear Factor Advantages Disadvantages

Mass sensor reported
by Ekinci et al. [50]

The resonance
frequency shifts

induced by the added
mass

Ignoring nonlinearity The operation is simple
The influence of

nonlinear factors is not
considered

Accelerometer sensor
reported by Peng et al.

[51]

A change of modal
amplitude ratio due to
the mode localization

Ignoring nonlinearity The sensitivity of the
sensor is improved

The influence of
nonlinear factors is not

considered

Mass sensor reported
by Nguyen et al. [44]

The bifurcation
jumping induced by

the added mass
Utilizing nonlinearity

Nonlinear jump can
improve the sensitivity

and resolution

Nonlinearity results in
dependence of

bifurcation frequency
on amplitude

This work

The bifurcation
frequency shifts

induced by the added
mass

Utilizing nonlinear
coupled mode

vibration

The dependence of
bifurcation frequency
on driving voltage is

solved

High quality factors are
needed

6. Conclusions

In the present work, a mechanically coupled resonant structure was designed to
realize frequency stabilization by coupling a clamped–clamped microbeam and a cantilever
microbeam. The nonlinear dynamic behaviors of a mechanically coupled resonant structure
due to added mass were investigated. The following conclusions can be summarized.

(1) The physical conditions for frequency stabilization were presented when operating a
MEMS in a nonlinear regime. It was found that improving quality factor is the key
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to achieving frequency stabilization. When the quality factor of the system is high
enough, the effect of the driving voltage on the peak frequency can be ignored.

(2) Considering the voltage fluctuation, we analyzed the stochastic dynamic behavior of
the coupled resonator under different driving voltages, and it was proven that the
coupled resonator can overcome the influence of voltage noise on resonance frequency
in the nonlinear regime and improve the robustness of the sensor.

(3) A very simple parameter identification formula was proposed to establish the rela-
tionship between resonance frequency and detection mass. Bifurcation and frequency
stabilization were introduced to improve the accuracy and sensitivity of the sensor.
The numerical results show that the mass identification method based on bifurcation
frequency stabilization can make mass sensors work in a nonlinear vibration range
and avoid resonance frequency shifts caused by driving voltage. The detection error
function is presented to explain the difference between the detection results and the
real results. It was noted that the mass detection method requires the MEMS resonator
to have a high enough quality factor.

It is worth mentioning that the proposed concepts of coupled resonance sensors
discussed in this paper need to be investigated for their stability to external disturbances.
Periodic saddle bifurcation occurs near the resonance peak frequency. Hence, the stability
of operation prior to mass detection must be ensured to prevent accidental bifurcation
jump phenomenon due to noises or disturbances. This can be studied by conducting a
global dynamic analysis to track the basin of attraction of the stable solution. In addition,
subsequent experimental research can be carried out based on the above theoretical results
on threshold expression and robustness analysis.
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Appendix A

To simplify Equations (1) and (2), nondimensional variables are introduced:

w1 =
ŵ1

d
, w2 =

ŵ2

d
, x =

x̂
L

, t = t̂

√
EI

ρAL4

Then, Equations (1) and (2) can be written as the following nondimensional equations:

∂2w1
∂t2 + wiv

1 + c1n
∂w1
∂t − (α1

∫ 1
0 w′1

2dx)w′′1
= α2

V2
dc

(1−w1)
2 − α2

V2
dc

(1+w1)
2 + α2

2VdcVac cos Ωt+(Vac cos Ωt)2

(1−w1)
2 + k′(w2 − w1)δ(x− l1)

(A1)

(1 + η)
∂2w2

∂t2 + wiv
2 + c2n

∂w2

∂t
= k′(w1 − w2)δ(x− l1) (A2)

with the following boundary conditions:

w1(0, t) = w′1(0, t) = w1(1, t) = w′1(1, t) = 0

w2(0, t) = w′2(0, t) = w′′ 2(l′, t) = w′′′ 2(l′, t) = 0
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The parameters appearing in Equations (A1) and (A2) are as follows:

α1 = 6× (
d
h
)

2
, α2 =

6ε0L4

Ed3h3 , η =
δ(x− L2/L)m

ρAL
, k′ =

12L3k
Ebh3 , l1 =

L1

L
, l′ =

L′

L

Li et al. [48] found that the initial point of the system was stable when the driving
force was small. The electrostatic force can be written as a Taylor series near the origin.

α2
V2

dc
(1−w1)

2 − α2
V2

dc
(1+w1)

2 + α2
2VdcVac cos Ωt+(Vac cos Ωt)2

(1−w1)
2

= α2V2
dc(4w1 + 8w3

1 + 12w5
1 + . . .) + 2α2VdcVac cos Ωt(1 + 2w1 + 3w2

1 + . . .)
+(Vac cos Ωt)2(1 + 2w1 + 3w2

1 + . . .)

(A3)

High-order nonlinearity, the parametric excitation term, and the square term of AC
voltage can be ignored when the system oscillates slightly near the origin [52,53]. Equation
(A1) can be rewritten as

∂2w1
∂t2 + wiv

1 + c1n
∂w1
∂t − (α1

∫ 1
0 w′1

2dx)w′′1
= α2V2

dc(4w1 + 8w3
1) + 2α2VdcVac cos Ωt + k′(w2 − w1)δ(x− l1)

(A4)

Here, the solutions of Equations (A2) and (A4) can be expressed as w1(x, t) =
∞
∑

i=1
u1,i(t)φ1,i(x) and w2(x, t) =

∞
∑

i=1
u2,i(t)φ2,i(x), where φ1,i and φ2,i are the i-th linear

undamped mode shape of microbeams 1 and 2. Then, the linear undamped eigenvalue
equations are obtained:

φiv
1,i = β2

1,iφ1,i + 4α2V2
dcφ1,i

φ1,i(0) = φ1,i(1) = φ′1,i(0) = φ′1,i(1) = 0
(A5)

φiv
2,i = β2

2,iφ2,i
φ2,i(0) = φ

′′
2,i(l

′) = φ′2,i(0) = φ
′′′
2,i(l

′) = 0
(A6)

By substituting Equations (A5) and (A6) into the resulting Equations (A2) and (A4),
multiplying by φ2,i, φ1,i, and integrating the outcome from x=0 to l′, x=0 to 1 [48], we obtain

d2u1,n
dt2 + c1n

du1,n
dt + β2

1,nu1,n −
M
∑

i,j,k=1
[α1
∫ 1

0 φ′1,iφ
′
1,jdx

∫ 1
0 φ

′′
1,kφ1,ndx + 8α2V2

dc

∫ 1
0 φ1,iφ1,jφ1,kφ1,ndx]u1,iu1,ju1,k

= 2α2VdcVac cos Ωt
∫ 1

0 φ1,ndx + k′[u2,nφ2,n(l1)φ1,n(l1)− u1,nφ2
1,n(l1)]

(A7)

(1 + η′)
d2u2,n

dt2 + c2n
du2,n

dt
+ β2

2,nu2,n = k′[u1,nφ2,n(l1)φ1(l1)− u2,nφ2
2,n(l1)] (A8)

where η′ = φ2
2,n(L2/L)m/ρAL.

In this paper, we mainly focus on the coupled dynamic behaviors near the fundamental
frequency. Thus, we take n = 1 and obtain two-degree-of-freedom dynamical equations.

d2u1
dt2 + c1n

du1
dt + β2

1u1 − [α1
∫ 1

0 φ′1
2dx
∫ 1

0 φ
′′
1 φ1dx + 8α2V2

dc

∫ 1
0 φ4

1dx]u3
1

= 2α2VdcVac
∫ 1

0 φ1dx cos Ωt + k′[u2φ2(l1)φ1(l1)− u1φ2
1(l1)]

(A9)

(1 + η′)
d2u2

dt2 + c2n
du2

dt
+ β2

2u2 = k′[u1φ2(l1)φ1(l1)− u2φ2
2(l1)] (A10)

Here, to simplify the equation, u1,1, u2,1, φ1,1, φ2,1 β1,1 and β2,1 are replaced by u1, u2,
φ1, φ2 β1 and β2.

Appendix B

The response of the mechanically coupled resonant structure with small amplitude
vibration is studied by using the method of multiple scales. Based on the perturbation
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principle, ε is introduced as a small nondimensional bookkeeping parameter [54]. Here, the
electrostatic force term f = O(ε) is assumed. Meanwhile, the magnitude of the dissipative
terms should be consistent with that of the external excitation. Then, Equation (10) can be
rewritten as

d2u1

dt2 + εc′
du1

dt
+ ω2

nu1 + k1au3
1 = ε f cos Ωt (A11)

To describe the nearness of the primary resonance, a detuning parameter σ is intro-
duced and defined by

Ω = ωn + εσ (A12)

The approximate solution of Equation (A11) can be written as

u1 = y1(T0, T1) + εy2(T0, T1) (A13)

where Tn = εnt.
Substituting Equations (A12) and (A13) into Equation (A11) and equating coefficients

of like powers of ε yields the following:

O(ε0) : D2
0y1 + ω2

ny1 = 0 (A14)

O(ε1) : D2
0y2 + ω2

ny2 = −2D0D1y1 − c′D0y1 − k1ay3
1 + f cos(ωnT0 + σT1) (A15)

where Dn = ∂
∂Tn

.
The solution of Equation (A14) can be written as y1(T0, T1) = A(T1)eiωnT0 + A(T1)e−iωnT0 .
To eliminate the secular term, we obtain

− 2iωn
∂A
∂T1

= 0 (A16)

Then, we express A in the polar form:

A =
1
2

aeiθ + cc (A17)

Substituting Equations (A16) and (A17) into Equation (A15) and separating the imagi-
nary and real parts yields the following:

da
dT1

= −1
2

c′a +
1
2

f
ωn

sin ϕ (A18)

a
dϕ

dT1
= σa− λ

ωn
a3 +

1
2

f
ωn

cos ϕ (A19)

where ϕ = σT1 − θ, λ = 3k1a/8.

Appendix C

Taking the square root of both sides of Equation (19), we can obtain√
λ f 2/(Ω−ω1)ω1 − cnω1 =

κ2cnω1

(cnΩ)2 + (ω2
2 −Ω2 − η′Ω2)

2 (A20)

Then, the Equation (A20) can be rewritten as

(ω2
2 −Ω2 − η′Ω2)

2
=

κ2cnω1√
λ f 2/(Ω−ω1)ω1 − cnω1

− (cnΩ)2 (A21)
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From Equation (A21), peak frequency Ω can be obtained:

Ω2 =
ω2

2
1 + η′

± 1
1 + η′

√
κ2cnω1√

λ f 2/(Ω−ω1)ω1 − cnω1
− (cnΩ)2 (A22)

We consider that the drive frequency is near the natural frequency of microbeam 2.
Then, the drive frequency can be expressed as

Ω =
ω2√
1 + η′

+ ε (A23)

where ε represents the disturbance term (ε << ω2/
√

1 + η′).
Equation (A23) can be rewritten as

Ω2 =
ω2

2
1 + η′

+
2ω2√
1 + η′

ε (A24)

Substituting Equation (A24) into Equation (A22) yields the following:

ε = ± 1
2ω2

√
1 + η′

√
κ2cnω1√

λ f 2/(Ω−ω1)ω1 − cnω1
− (cnΩ)2 (A25)

Then, substituting Equation (A25) into Equation (A23) yields the following:

Ω =
ω2√
1 + η′

± 1
2
√

1 + η′ω2

√
κ2cnω1√

λ f 2/(Ω−ω1)ω1 − cnω1
− (cnΩ)2 (A26)

When the quality factor is sufficiently large, we can replace Ω on the right hand
of Equation (A26) with ω2/

√
1 + η′ [16]. Finally, the expression of peak frequency can

be obtained:

Ω =
ω2√
1 + η′

± cn

2(1 + η′)

√√√√ (1 + η′)κ2ω1/cnω2
2√

λ f 2/(ω2/
√

1 + η′ −ω1)ω1 − cnω1

− 1 (A27)

To prove our derivation, we calculated the numerical solutions of Equation (A20) and
Equation (A27) with MATLAB, respectively. It was found that they agree with each other.
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