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a b s t r a c t

Hi-C and capture Hi-C have greatly advanced our understanding of the principles of higher-order
chromatin structure. In line with the evolution of the Hi-C protocols, there is a demand for an advanced
computational method that can be applied to the various forms of Hi-C protocols and effectively remove
innate biases. To resolve this issue, we developed an implicit normalization method named ‘‘covNorm”
and implemented it as an R package. The proposed method can perform a complete procedure of data
processing for Hi-C and its variants. Starting from the negative binomial model-based normalization
for DNA fragment coverages, removal of genomic distance-dependent background and calling of the sig-
nificant interactions can be applied sequentially. The performance evaluation of covNorm showed
enhanced or similar reproducibility in terms of HiC-spector score, correlation of compartment A/B pro-
files, and detection of reproducible significant long-range chromatin contacts compared to baseline
methods in the benchmark datasets. The developed method is powerful in terms of effective normaliza-
tion of Hi-C and capture Hi-C data, detection of long-range chromatin contacts, and readily extendibility
to the other derivative Hi-C protocols. The covNorm R package is freely available at GitHub: https://
github.com/kaistcbfg/covNormRpkg.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The combination of chromosome conformation capture–based
‘‘C” technologies with high-throughput sequencing has revolution-
ized the study on the 3D chromatin structure, revealing its hierar-
chical organization at various scales and functional implications
[1–5]. In these ‘‘C” technologies, each crosslinked protein-DNA
complex is digested by restriction enzymes and ligated back to a
single molecule to capture and sequence spatially proximal DNA
fragments. The spatial proximity between two genomic regions
can be represented by the number of ligated reads.

However, many experimental and intrinsic sequence-oriented
biases such as the number of restriction sites, digestion efficiency,
ligation efficiency, and genome mappability have been reported
[6]. These biases affect the probability that certain DNA fragments
are recognized, hindering precise quantification of spatial proxim-
ity based on the number of ligated reads.

Several computationalmethodshave beenproposed to eliminate
such biases. These methods mainly target Hi-C, which is the most
widely used ‘‘C” method as it can detect chromatin contacts in a
genome-wide unbiased manner. The method ‘‘HiCNorm” used a
parametricmodel toestimatebiases causedby theGCcontent, effec-
tive fragment length, and mappability [6,7]. In the case of ‘‘iterative
correction of Hi-C data” (ICE), an iterative correction approach was
applied based on the assumption that all loci should have equal vis-
ibilitywhenbiases are eliminated [8]. However, there is ample room
for improving these methods since not all bias factors cannot be
explicitly considered or operations under strong assumptions can-
not be easily applicable to various ‘‘C” technologies.

Here, we propose ‘‘covNorm”, a negative binomial model-based
implicit normalization approach that consists of bias removing
step and genomic distance-dependent background normalization
step. We hypothesized that the experimental and intrinsic biases
can be combined in the form of coverage, computed by the number
of ligated reads aligned to a given DNA fragment. Using generalized
linear model (GLM) fitting, we can estimate expected ligation fre-
quencies at given coverages of two DNA fragments, which can be
used to adjust the number of ligated reads to remove biases effec-
tively. The usage of weak assumptions and adaptation of flexible
and simple fitting process may allow the expanded application of
our method to many derivative Hi-C protocols such as DNase Hi-
C [9,10] and a modified Hi-C protocol combined with multiple
restriction enzymes [11]. In addition, targeted Hi-C methods
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including capture-C [12], capture Hi-C [13], and HiChIP [14] are
allowed as inputs with minor modifications. We have successfully
applied the preliminary forms of the proposed method in our pre-
vious studies [15–17] and the optimized code is arranged in the
form of an R package.

2. Materials and methods

2.1. Data collection and preparation of input data

We obtained published Hi-C experimental data of two lym-
phoblastoid cell lines (GM19204 and GM19240) [18] for the per-
formance measurement of covNorm (Table 1). The fastq files
were downloaded from Short Read Archive (SRA) using sra-
toolkit. Using BWA-mem [19] with default parameters, the fastq
files were aligned to the human reference genome 38 (hg38). The
generated SAM files for each fastq file were merged into a
paired-end BAM file after removing low-quality reads (MAPQ < 10).
Putative self-ligation reads were removed by deleting ligated reads
within a distance shorter than 15 kb. As we focus on the cis-
interactions (or intra-chromosomal interactions) only, inter-
chromosomal interactions were also filtered. A filtered BAM file
was processed by Picard MarkDuplicates software to remove PCR
duplicates. Coverage profiles of individual chromosomes at 40 kb
resolution were obtained by using BEDTools coverage [20]. Interac-
tion frequencies and coverage values between DNA fragments
were summarized into a desired input table format of the devel-
oped package (Table 2).

To demonstrate the application of the developed method to Hi-
C protocol variants, the normalization of promoter capture Hi-C
was also included in the benchmark. In the case of promoter cap-
ture Hi-C (pcHi-C), preprocessed input data of published
GM12878 and GM19240 pcHi-C results [16] were offered by the
author and used for the normalization.

2.2. Preprocessing of Hi-C input data

Hi-C contact map is a sparse matrix, and frequent zero-valued
bins can lead to incorrect results in the generalized linear model
fitting. Thus, the zero-valued DNA fragment pairs were removed
from the demonstrated input data in this study. We further filtered
the DNA fragments with low coverage, which mostly reside in
repeat regions, centromeres, or telomeres. The default coverage
cut-off threshold was selected as 200 at 40 kb resolution, but the
user can define this threshold according to the resolution and
sequencing depth of user input. Before the normalization process,
50% of the fragment 1 and 20s coverage values were shuffled to pre-
vent potential biases caused by the sorted order of the input data
during the fitting.

2.3. Preprocessing of promoter capture Hi-C input data

For the pcHi-C data normalization, we added three different
preprocessing steps to the Hi-C data: (1) separated processing
and filtration of promoter-promoter (P-P) and promoter-other (P-
O) interactions, (2) no coverage shuffling used, and (3) selecting
Table 1
Details of used Hi-C dataset for reproducibility measurement.

Cell line # of reads SRA id

GM19204 143,123,334 SRR11935528
203,469,737 SRR11935527
19,765,759 SRR11935526

GM19240 294,731,559 SRR11935549
126,469,899 SRR11935548
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promoter-centered long-range interactions over 15 kb and within
2 Mb (default 2 Mb, user-adjustable). As capture probes were
designed to target promoter regions in pcHi-C, the captured pro-
moter regions are expected to have higher coverage values than
the ‘‘other” regions, thus separated analysis and filtering threshold
are required to avoid capture-dependent biased results. The pro-
vided example used 200 as a promoter side threshold but a value
of 50 was used to filter the ‘‘other” side coverage. The first frag-
ment is fixed as promoter side in P-O interaction normalization,
so no shuffling of coverage values between the fragment 1 and 2
was performed.

2.4. Removing biases based on coverage values of DNA fragments

Let raw ligation frequency between twoDNA fragments i and j as
Yij, which is assumed to follow the negative binomial distribution
(Yij ~ NB) with mean of m and variance m + am2 (a > 0,
over-dispersion parameter). The expected frequency of two DNA
fragments based on the coverage Ci and Cj were obtained by fitting
a generalized linear model log(uij) = b0 + b1Ci + b2Cj. Here b0 is the
intercept term. b1 and b2 represent the fragment i coverage bias
and fragment j coverage bias, respectively.Wefit this negative bino-
mialmodel, estimating corresponding parameters b0, b1, and b2. The
residual Rij = Yij / exp(b0 + b1Ci + b2Cj) was defined as a bias-removed
ligation frequency. The fitting was implemented by using the R
‘‘MASS::glm.nb” function.

2.5. Normalization against genomic distance-dependent background
signal

The Hi-C contact probability decreases along with the genomic
distance between DNA fragments due to the polymer nature of
chromatin. Thus, another normalization step against genomic
distance-dependent background signal is required to precisely
identify biologically meaningful chromatin contacts such as
enhancer-promoter interactions. To this end, similar to the cover-
age normalization, the model log(uij) = b0 + b1Dij was used to esti-
mate Ed which is the expected ligation frequency at distance d. The
Dij is the genomic distance between two DNA fragments. Given the
residual Rij, the final distance-dependent background removed sig-
nal was obtained by computing (Rij + avg(Rij) / (Ed + avg(Rij)) where
avg(Rij) is a pseudocount parameter.

2.6. Identification of significant long-range chromatin contacts

Next, the significance of the chromatin contact was measured
by fitting distance-normalized interaction frequencies to the
three-parameter (3P-) Weibull distribution. The preliminary forms
of covNorm used all distance-dependent background normalized
data for the fitting process. In this version, only normalized values
within 2-fold of the expected values were used as background dis-
tribution to properly calculate the statistical significance of
extraordinarily high interaction frequencies. This was inspired by
a two-step spline strategy used in the ‘‘Fit-Hi-C” method [21] to
calculate proper p-values of outliers. The three parameters (loca-
tion, shape, and scale) were obtained by using the R ‘‘propagate::
fitDistr” function. The p-value of each chromatin contact was com-
puted by the R ‘‘FAdist::pweibull3” function, using the obtained
three parameters. The false discovery rate (FDR) was also obtained
by the R ‘‘p.adjust” function with the ‘‘fdr” method option.

2.7. Performance evaluation metrics and baseline methods

In the case of Hi-C, the performance was evaluated by the
reproducibility between two biological replicates after normaliza-
tion, which was measured by the Hi-C contact map reproducibility,



Table 2
Example of required input format.

frag1 frag2 cov_frag1 cov_frag2 freq dist

chr17.140000.160000 chr17.83160000.83180000 2296 2304 1 83020000
chr17.140000.160000 chr17.83180000.83200000 2296 2072 2 83040000
chr17.140000.160000 chr17.83200000.83220000 2296 778 2 83060000
. . . . . . . . . . . . . . . . . .

chr17.160000.180000 chr17.200000.220000 2119 2253 12 40000

Note: ‘frag1’ and ‘frag2’: dot (‘.’) spliced chromosome, start coordinate, end coordinate of the first/second DNA fragment. ‘cov_frag1’ and ‘cov_frag2’: coverage values of frag1/2
bins. ‘freq’: raw interaction frequency between two bins. ‘dist’: the genomic distance between two bins.
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correlations of compartment A/B profiles, and identification of the
reproducible significant interactions. For the contact map repro-
ducibility measurement, HiC-spector [22] was used. The ‘‘run_rep
roducibility_v2.py” script was downloaded from the software
repository (https://github.com/gersteinlab/HiC-spector) and
applied to each chromosome pair from chromosome 1 to chromo-
some X. The ‘‘get_reproducibility” function with the ‘‘num_evec”
parameter of 20 (default) was used to obtain the HiC-spector score.
For the compartment A/B calling, in-house scripts were used to
apply Principal Component Analysis (PCA) to the distance-
normalized Hi-C contact maps. The sign of the first principal com-
ponent (PC1) was corrected based on gene density where bins with
higher gene density were assigned to compartment A. The com-
partment A/B profiles of chromosome 1 to X in 40 kb resolution
were obtained, and the Pearson correlation coefficient and Spear-
man’s rank correlation (q) were computed between the biological
replicates.

The results of HiC-spector and compartment A/B correlation
were compared with ICE, Knight-Ruiz (KR) [23] sequential compo-
nent normalization (SCN) [24] and raw Hi-C contact maps. Python
‘‘iced” package (https://github.com/hiclib/iced) was used to run ICE
and SCN normalization on the prepared Hi-C contact maps. In the
case of KR, ‘‘HiCcompare::KRnorm” function of ‘‘HiCcompare” R
package was used [25].

To evaluate the significant interaction calls of covNorm, the
ability to identifying reproducible significant interactions from
the biological replicates were examined. In the case of Hi-C data,
Fit-Hi-C was used as the baseline method. The Hi-C data was pro-
cessed by the Fit-Hi-C using 40 kb resolution/2Mb distance as the
running parameters. The q-value output from Fit-Hi-C was used as
a significance threshold.

The reproducibility of significant interactions between two bio-
logical replicates was also used to evaluate the performance of cov-
Norm in pcHi-C data, which was compared with ‘‘CHiCAGO” [26].
The P-O cis-interactions within 2 Mb distance were collected from
CHiCAGO output, and "score" was used as a significance threshold.
The statistical significance of the overlapping ratio between two
replicates or methods was measured by using R ‘‘phyper” function.
3. Results and discussion

3.1. Effective elimination of various sources of bias

The step-by-step normalization results of the developed pack-
age are shown in Fig. 1. The two-dimensional density plot demon-
strates that raw interaction frequencies are strongly proportional
to the coverages of aligned ligated-reads (Fig. 1A left). The negative
binomial regression model well estimated the expected interaction
frequencies for given coverages (Fig. 1A middle). The final normal-
ization result demonstrates the elimination of such dependencies
(Fig. 1A right), validating the removal of experimental and intrinsic
biases. Next, we applied the distance-dependent background nor-
malization step, which mitigates the skewed ligation frequencies
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at shorter genomic distances as a result of the polymer nature of
chromatin (Fig. 1B).

Unlike other Hi-C normalization methods, covNorm also pro-
vides a list of significant interactions. An example of significant
interaction calling process based on the 3P-Weibull distribution
is shown in Fig. 1C. Regression parameters of background distribu-
tion using normalized values < 2-fold of expected values were
obtained (Fig. 1C, left). After that, the parameters were applied to
fit all values to the distribution and calculate the statistical signif-
icance (Fig. 1C right). As exemplified for the GM19240 Hi-C result,
the proposed procedure generates a uniform-like distribution of p-
values (Fig. 1D left), which leads to the acquisition of a proper FDR
value profile (Fig. 1D right). The median distance of identified sig-
nificant interactions (FDR < 1%) was 400 kb and the frequency of
significant interactions gradually decrease along with the genomic
distances as expected (Fig. 1E).

The efficiency of the coverage and distance normalization can
be quantified by measuring the Pearson’s correlation coefficient
between the ligation frequency and coverage/distance, which
should decrease after normalization. The developed package pro-
vides visualization functions that can plot the correlation between
the normalization factors (Fig. 2) for easier quality control, includ-
ing coverage sorted heatmaps and distance-interaction frequency
plots on Fig. 1A and B.

In the case of tumor or cancer cell line Hi-C data which is
expected to have a highly rearranged genome, it is not appropriate
to apply the distance normalization and significant interaction call-
ing since covNorm uses the genomic distance based on the refer-
ence genome. However, the effect of copy number alterations is
theoretically neglectable in covNorm through coverage normaliza-
tion. Inter-chromosomal or trans-interactions cannot be used for
distance normalization as the genomic distance between DNA frag-
ments is undefinable.
3.2. Performance evaluation of covNorm normalization

We tested reproducibility between the biological replicates as a
performance evaluation of covNorm normalization. Using pub-
lished in situ Hi-C data of lymphoblastoid cell lines GM19204
and GM19240 [16,18], the reproducibility of 40 kb-resolution Hi-
C contact maps and compartment A/B profiles derived from the
contact maps were compared.

In terms of the contact map reproducibility between two tested
lymphoblastoid cell lines, the baseline methods and covNorm’s
median HiC-spector score increased compared to the raw Hi-C
contact maps (Fig. 3A). The HiC-spector score sets of covNorm sig-
nificantly changed against the raw data’s score set (paired t-test,
p-value = 0.019). High similarity between the KR and ICE’s
HiC-spector scores were observed, and SCN recorded the highest
upper quartile (75th percentile or Q3) value in the benchmark
datasets. While none of the examined methods showed signifi-
cantly high HiC-spector scores than the other methods (paired t-
test, p-values > 0.05), covNorm recorded the highest median value.

https://github.com/gersteinlab/HiC-spector
https://github.com/hiclib/iced


Fig. 1. Visualization of normalization results A. Heatmaps showing correlations between fragment 1 (x-axis) and 2 (y-axis) coverages and interaction frequencies (color
scale). Before normalization (left), computed expectation (middle), and after normalization (right) are shown. The coverage-dependent biased ligation frequencies were
removed after normalization. B. Scatter plots showing distant-dependent intensity (color scale) before the distance normalization (top) and after the distance normalization
(bottom). Concentrated interactions at shorter distances decreased after distance normalization. Blue lines indicate the loess regression result of each scatter plot. C.
Examples from GM19240 chromosome 4 showing the fitting of the normalized values to three-parameter Weibull distribution. Left blue histogram indicates fitting with
values �2-fold of expectation, and right purple histogram indicates the application of fitted parameters to all data points. D. Histograms showing the distribution of raw p-
values (left) and false discovery rate (FDR) < 100% (right) in GM19240 Hi-C data. E. A histogram showing the distribution of the genomic distance between fragments in
identified significant interactions (FDR < 1%) in GM19240. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The preservation of inferred information can be more meaning-
ful than the simple resemblance of the Hi-C contact matrices. In
the correlation measurement of compartment A/B profile, cov-
Norm recorded the best correlation coefficient values in both Pear-
son’s correlation coefficient and Spearman’s q. Again, highly
similar compartment A/B score correlation values between KR
and ICE were observed. However, SCN which showed the best Q3
score at the contact map reproducibility measurement demon-
strated the lowest correlation. The raw Hi-C contact map presented
3152
a remarkably low correlation compared to the normalized data
even though such trend was not observed in HiC-spector score.

We also tested the methods’ robustness by measuring contact
map reproducibility after applying the random downsampling
(use sampled data only) to the Hi-C data and comparing the nor-
malization result with that of original data. The sampling ratios
from 15% to 50% at 5% intervals were applied to the GM19204
(~100 M usable cis reads) and used as an input for each method.
All methods’ HiC-spector score decreased in proportion to the
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Fig. 2. Correlation matrices between interaction frequencies and normalization factors. The color indicates the correlation value (Pearson’s correlation coefficient) where the
eccentricity of the ellipse shows absolute magnitude and direction corresponds to positive/negative correlation (tilted right: positive correlation, tilted left: negative
correlation). A. Correlation between interaction frequencies and coverages before and after normalization. Before coverage normalization, a weak positive correlation
between the interaction frequencies and coverages exists (translucent blue) but dropped to near zero after normalization (translucent yellow). B. Correlation between
interaction frequencies and fragment distance before and after normalization. There is a negative correlation between the interaction frequencies and distance (translucent
blue) but weakened after normalization (translucent yellow). The reduced correlation for the factor to be normalized illustrates that normalization processes were properly
performed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sampling ratio, but covNorm maintained the highest average HiC-
spector score at all sampling ratios (Fig. 3C). In the comparison of
HiC-spector score to the normalization result after 50% (Fig. 3D
left) and 30% downsampling (Fig. 3D right), covNorm showed the
lowest reduction rate of HiC-spector score (paired t-test,
p-values > 0.05) than the baseline methods.

Collectively, we examined the normalization efficiency of cov-
Norm in various metrics, demonstrating that covNorm has compa-
rable or enhanced performance than the other baseline methods.
Fig. 3. Evaluation of Hi-C contact map normalization. (Light cyan: raw Hi-C contact m
spector measured reproducibility scores of Hi-C contact maps between two biological rep
HiC-spector score compared to the raw data (paired t-test, p-value = 0.019). Normalizatio
Bar plots showing Pearson’s correlation coefficient (left bars, no face pattern) and Spe
GM19240 40 kb compartment A/B profile before and after normalization. The proposed
plot showing reproducibility (average of 23 chromosome pairs’ HiC-spector score) betwe
method. The sampling ratio is at 5% intervals from 15% to 50%. The results of ICE and K
score difference between the original-50% downsampled (left) and original-30% downsam
the box represents the interquartile range (IQR) and the whiskers correspond to the high
in this figure legend, the reader is referred to the web version of this article.)
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3.3. Identification of significant long-range chromatin contacts

Unlike previously developed Hi-C normalization methods, cov-
Norm provides a unique integrative analysis pipeline for comput-
ing long-range significant chromatin contacts after the
normalization of biases. The identification of reproducible signifi-
cant interactions between the biological replicates was measured
and compared with the results of Fit-Hi-C (Hi-C data) and CHi-
CAGO (pcHi-C data). For the comparison between covNorm and
aps, Light blue: baseline methods, Dark blue: covNorm) A. Boxplots showing HiC-
licates (GM19204 and GM19240). The proposed method showed significantly higher
n methods did not show significant differences (paired t-test, p-value > 0.05, NS). B.
arman’s rank correlation (right bars, dashed face pattern) between GM19204 and
method showed the highest correlation between two biological replicates. C. A line
en the original and downsampled Hi-C data of GM19204. Line colors indicate each
R overlapped. D. Boxplots showing the chromosome-wise contact map HiC-spector
pled (right) GM19204 Hi-C data (paired t-test, p-value > 0.05, NS). For the boxplots,
est and lowest points within 1.5 � IQR. (For interpretation of the references to color



Fig. 4. Evaluation of significant interaction calling from Hi-C and pcHi-C. A. Venn diagrams showing the fraction of reproducible significant interactions between GM19204
and GM19240 Hi-C data (Hypergeometric p-values ~0). B. ROC plots showing the accuracy of the covNorm and Fit-Hi-C for discovering GM192040s significant interactions
(n = 17300, nearest integer to the actual value) in the GM19240. C. Venn diagrams showing the fraction of reproducible significant interactions between GM12878 and
GM19240 pcHi-C data (Hypergeometric p-values ~0). D. ROC plots showing the accuracy of the covNorm and CHiCAGO for discovering GM192400s significant interactions
(n = 83000, nearest integer to the actual value) in the GM12878. E. A stacked barplot showing the number of called interactions between covNorm (fixed threshold: FDR < 1%)
and CHiCAGO (score � 1 to 5, x-axis). Intersections between the two methods are marked with orange. F. A Venn diagram showing similar number of significance interaction
call of covNorm (FDR < 1%) and CHiCAGO (score � 3.5) in GM12878 pcHi-C data (Hypergeometric p-value ~0). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the baseline methods, (1) the fraction of reproducible long-range
significant chromatin contacts between replicates, (2) ROC curve
assuming that the replicate with a smaller number of significant
interactions as a true set, and (3) difference of called interactions
between covNorm and baseline method for the same replicate
were measured.

Both covNorm and Fit-Hi-C showed a high fraction of repro-
ducible long-range significant chromatin contacts between repli-
cates (over 65%, Fig. 4A). Both methods also presented the high
area under curve (AUC) value in the ROC plots which were less
than 1% difference (Fig. 4B), indicating that the uniquely identified
interactions in one replicate actually present strong chromatin
contacts in other replicates. Under the various adjusted p-value
threshold conditions, Fit-Hi-C generated more interaction calls
3155
than covNorm; however, the called significant interactions showed
a high consensus between the two methods. When the FDR < 1%
threshold was used for covNorm, the ratio of two methods’ inter-
section maintained more than 80% even if the q-value of Fit-Hi-C
was adjusted from 10% to 0.0001% (data not shown).

In the case of pcHi-C data, the difference between replicates
was more significant than that of Hi-C. The fraction of reproducible
long-range significant chromatin contacts between replicates was
lower (~30%) in both covNorm and CHiCAGO (Fig. 4C). The AUC
value of the ROC curve were about 85% for both methods
(Fig. 4D). Unlike Fit-Hi-C, which consistently made more
interaction calls than covNorm under various cutoffs, CHiCAGO
called a smaller number of interactions when the ‘‘score” threshold
of �4 was used (Fig. 4E). Also, the portion of method-specific



Fig. 5. Different properties of method-specific significant interactions. A. Venn diagrams showing the fraction of overlaps of the unique promoter (left) and promoter-
interacting region (right) between two methods’ specific significant interaction sets (Hypergeometric p-values > 0.05 for the promoter and < 9.56e-231 for the other regions).
B. Histograms showing genomic distance distribution of method-specific significant interactions (Left: covNorm, right: CHiCAGO). C. Boxplots showing enriched chromatin
signatures (H3K27ac, H3K4me3, H3K27me3, and TF cluster in series) at the promoter regions specifically associated with method-specific significant long-range chromatin
contacts. The y-axis indicates the peak inclusion ratio compared to the promoter side fragment of random non-significant interactions. (Asterisks indicate significance, two-
sided Komologv-Sminorv test, p-values of 4.807e-14, 0.01581, < 2.2e-16, and 1.071e-06 in series) D. Boxplots showing enriched chromatin signatures (H3K27ac, H3K4me1,
H3K9me3, and TF cluster in series) of method-specific promoter-interacting region sets. The y-axis indicates the peak inclusion ratio compared to the promoter-interacting
region side fragment of random non-significant interactions (Asterisks indicate significance, two-sided KS-test, p-value < 2.2e-16 for all boxplots). For the boxplots, the box
represents the interquartile range (IQR) and the whiskers correspond to the highest and lowest points within 1.5 � IQR.
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results increased as the CHiCAGO’s score threshold increases (cov-
Norm FDR threshold fixed to < 1%). Both methods report a similar
number of significant interactions when we use CHiCAGO score
over 3.5, but 56% and 52% of significant interactions were uniquely
reported by covNorm and CHiCAGO, respectively (Fig. 4F).

3.4. Enriched chromatin signatures of covNorm-specific significant
long-range chromatin contacts

Further analysis was conducted to find out the cause of different
results between covNorm and CHiCAGO. We firstly investigated
the uniqueness of the promoters and promoter-interacting other
genomic regions. The results shown in Fig. 5 illustrate the overlap-
ping ratio of interacting elements associated with the unique
significant interactions between the two methods. The promoters
involved in the interactions showed moderate consensus as 64%
3156
of the two sets matched in terms of the smaller number set
(Fig. 5A left). The promoter-interacting regions (Fig. 5A right) pre-
sented a greater difference as the overlap ratio decreased to 14%,
indicating that many of covNorm-specific significant interactions
are originated from the unique promoter-interacting regions re-
gions rather than promoters.

The distance distribution profiles of unique significant interac-
tions were also investigated. While covNorm’s unique significant
interactions followed an expected profile that exponentially
decreases as genomic distance increases (Fig. 5B right), CHiCAGO’s
unique significant interactions showed another peak at 250 kb
regions (Fig. 5B left). This suggests that the ways to incorporate
genomic distance dependent background model may cause the
method-specific preference.

We further hypothesized that the different chromatin states of
the interacting loci resulted in method-specific results since the



Fig. 6. Visualization of CD44 gene-centered significant long-range interactions in GM19240 Hi-C data A. Normalized Hi-C contact map (chr11:33,120,000–37,120,000) of
GM19240 cell line and CD44 gene loci (translucent orange box). Scale bar indicates 500 kb distance. B. Genome tracks showing coverage normalized, distance-dependent
signal normalized, interaction p-value, and false discovery rate (FDR) of CD44 gene-centered Hi-C interactions. Dashed lines indicate -log10(p-value) > 2 and -log10(FDR) > 2
threshold. C. Genome tracks showing H3K27ac, H3K4me3, H3K4me1, H3K9me3, and H3K27me3 level. D. Genome track showing location of GM12878 transcription factor
clusters. E. Arcs indicating the significant interactions under different thresholds (blue: -log10(p-value) > 2 and purple: -log10(FDR) > 2). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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higher-order chromatin structure is lhighly correlateswith the chro-
matin states. To this end,we tested the enrichmentof chromatin sig-
natures at the loci of the method-specific promoter or promoter-
interacting regions. The lists of peaked regions for individual ChIP-
seq results ofGM12878cell lineweredownloaded fromtheENCODE
data portal [27]. The H3K27ac (active enhancer), H3K4me3 (active
promoter), H3K4me1 (poised enhancer), H3K9me3 (constitutive
heterochromatin), and H3K27me3 (silencer, bivalent promoter,
and facultative heterochromatin) ChIP-seq results were selected as
3157
these histone modifications are well-known markers of the chro-
matin state. We also included a list of transcription factor (TF) clus-
ters, which were highly involved in long-range chromatin
interactions [16]. The ratios of ChIP-seq peak/TF cluster inclusion
(whether each fragment contains the ChIP-seq peak or not) compare
to the100 control sets (promoter fromthe randompromoter regions
and promoter-interacting region from the random non-significant
interactions) were measured.



Fig. 7. Performance evaluation by parameter fitting with subsampled data A. Boxplots showing computation time for coverage-normalization of GM19204 chr17 (left) and
GM19240 chr1 (right) Hi-C data at the multiple sampling ratio (n = 10). B. Boxplots showing changes of the fitting parameter (intercept) of GM19204 chr17 (left) and
GM19240 chr1 (right) Hi-C data at the multiple sampling ratio (n = 10). C. Hi-C contact map reproducibility boxplot (left), compartment A/B correlation barplot (middle), and
replicate-consensus significant interaction Venn diagram (right) generated by the subsampled GM19240 Hi-C (sampling ratio of 30%) data and the original data. The boxplots
showed no significant differences (paired t-test, p-value = 0.18, NS). Hypergeometric test on the Venn diagram showed p-value ~0. For the boxplots, the box represents the
interquartile range (IQR) and the whiskers correspond to the highest and lowest points within 1.5 � IQR.
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The enrichment test results of the promoter side (Fig. 5C)
showed that all ChIP-seq peaks and TF clusters were enriched
below compared to the random promoter regions (1 equals the
expected enrichment at the promoter regions). This result indi-
cates that the promoters uniquely associated with
method-specific significant chromatin contacts tend to possess
weak promoter signatures. Despite such weak promoter signals,
we observed that the significantly higher enrichment of H3K27ac
in CHiCAGO (two-sided Kolomogov-Smirnov test, p-
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value = 4.807e-14) while covNorm showed significant enrichment
of H3K27me3 and TF cluster (two-sided KS-test, p-values < 2.2e-16
and 1.1e-06, respectively). In the case of H3K4me3, covNorm has
higher dispersion and maximum values while CHiCAGO has a
slightly higher median value (two-sided KS-test, p-value = 0.016).

Unlike the promoter regions, the promoter-interacting region
side (Fig. 5D) had significant enrichment of covNorm in H3K4me1
and H3K9me3 (two-sided KS-test, p-values < 2.2e-16) while
CHiCAGO had higher enrichment at H3K27ac and TF cluster
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(two-sided KS-test, p-values < 2.2e-16) compared to the random
expectation. The distinct enrichments of ChIP-seq peaks demon-
strate that the unique interactions of the covNormwere more asso-
ciatedwith the genomic regions corresponding to silencer or poised
enhancer signatures, while CHiCAGO’s interactions were highly
related with the active enhancers. The H3K27me3 was also tested;
however, the data was excluded as the enrichment level results of
both methods showed no difference compared to the random
control.

Interaction frequencies are expected to be different depending
on the loci’s chromatin state. For example, chromatins in the differ-
ent compartment are expected to have distinct characteristics in
the established long-range chromatin interactions. Such features
might be differently processed by the covNorm and CHiCAGO
and contribute to the differences of the results. Also, the results
indicate that there is still ample room for the advancing significant
interaction calling techniques. Different significant interactions are
called depending on the genome feature; however, none of the
methods currently considers chromatin state for calling significant
interactions.

Even though covNorm was not made only for significant
interaction calling, it showed similar or enhanced performance
to other dedicated software in some criteria. An example of
promoter-centered significant interactions from the GM19204
Hi-C data which shows the interactions between the TF clusters
and loci with multiple chromatin signatures is provided in
Fig. 6.

3.5. Fitting parameter acquisition by subsampled data for scalability

The advance of cost-effective high-throughput sequencing tech-
nologies allows the rapid increase of the high sequencing depth Hi-
C data. In this aspect, the scalability of the method to keep up with
increasing data volumes is critical. The fitting-based normalization
provides many advantages such as handling data from the variant
protocol or simplicity of implementation; however, computational
and time burden for the fitting increase as input data size
increases. To address this issue in covNorm, we hypothesized that
if the data size is large enough, the parameters obtained by fitting
the sampled data will remain unaffected. The functions for ‘‘fitting
by subsampled data” with user-adjustable sampling ratio were
implemented in covNorm. Note that this procedure differs from
the ‘‘downsampling” mentioned in the previous section. In this
procedure, the GLM fitting uses sampled data only, but all input
data are processed by the obtained parameters after fitting instead
of discarding the unsampled data. By doing so, we expected that
the time and resources required for fitting are reduced, but the
regression model of subsampled data remains similar to the origi-
nal model.

For the evaluation of the proposed idea, we measured the time/-
parameter changes at the various sampling ratio conditions (90%,
70%, 50%, and 30%) when fitting small (GM19204 chr17, ~2M
usable cis- reads) and large (GM19240 chr1, ~18 M usable cis-
reads) data. The time required for the fitting linearly decreases as
the data used for the fitting decrease by subsampling (Fig. 7A).
The obtained parameter after fitting (intercept in this case) showed
a larger variance as less portion of the original data used (Fig. 7B).
As expected, the sample with the low depth had a higher variance
of estimated parameters as the sampling ratio decreases. Despite
such variations, surprisingly, the Hi-C contact map similarity
(Fig. 7C left), compartment A/B correlation (Fig. 7C middle), and
reproducible significant interactions between replicates (Fig. 7C
right) showed almost the same results or non-significant changes
(paired t-test, p-value = 0.18) with the original analysis even
though only 30% of the GM19240 (~222 M usable cis reads in total)
data were used. The scalable architecture of covNorm enabled
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users to efficiently normalize and identify significant interactions
with high-depth Hi-C data.

4. Conclusion

In summary, we developed covNorm, an accurate method that
is applicable to the normalization of Hi-C and capture Hi-C. Unlike
previously developed methods that focus on either normalization
of Hi-C contact map [6–8] or detection of long-range chromatin
contacts [21] covNorm supports both functions together. covNorm,
featured by flexible architecture and simple prerequisites, is
expected to be highly useful for analyzing various Hi-C protocols.
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