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Low-density lipoprotein receptor (LDLR) mediates clearance of plasma LDL

cholesterol, preventing the development of atherosclerosis. We previously

demonstrated that membrane type 1-matrix metalloproteinase (MT1-MMP)

cleaves LDLR and exacerbates the development of atherosclerosis. Here, we

investigated determinants in LDLR and MT1-MMP that were critical for MT1-

MMP-induced LDLR cleavage. We observed that deletion of various functional

domains in LDLR or removal of each of the five predicted cleavage sites

of MT1-MMP on LDLR did not affect MT1-MMP-induced cleavage of the

receptor. Removal of the hemopexin domain or the C-terminal cytoplasmic

tail of MT1-MMP also did not impair its ability to cleave LDLR. On the other

hand, mutant MT1-MMP, in which the catalytic domain or the MT-loop was

deleted, could not cleave LDLR. Further Ala-scanning analysis revealed an

important role for Ile at position 167 of the MT-loop in MT1-MMP’s action

on LDLR. Replacement of Ile167 with Ala, Thr, Glu, or Lys resulted in a marked

loss of the ability to cleave LDLR, whereas mutation of Ile167 to a non-polar

amino acid residue, including Leu, Val, Met, and Phe, had no effect. Therefore,

our studies indicate that MT1-MMP does not require a specific cleavage site

on LDLR. In contrast, an amino acid residue with a hydrophobic side chain at

position 167 in the MT-loop is critical for MT1-MMP-induced LDLR cleavage.
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Introduction

Plasma levels of low-density lipoprotein cholesterol (LDL-
C) are positively correlated to the risk of cardiovascular
disease. Hepatic LDL receptor (LDLR) is the main pathway
that clears plasma LDL. Mutations in LDLR cause familial
hypercholesterolemia (FH), characterized by elevated levels of
plasma LDL-C and increased risk of coronary heart disease
(1). Structurally, LDLR’s ectodomain consists of 7 ligand-
binding repeats (LR) at its N terminus region for binding
substrates, such as interacting with apolipoprotein (apo) B100
on LDL and apoE on lipoprotein remnants. LR is followed
by the epidermal growth factor precursor homology (EGF)
domain that is required for lipoprotein release in the endosome
and recycling of LDLR. Upon substrate binding, LDLR is
endocytosed into a clathrin-coated vesicle and then delivered
to the endosome. In the acidic environment of endosomes,
LDL is released from the receptor, and LDLR is recycled back
to the cell surface. LDL is then shuttled to the lysosome
for degradation. Further down in the primary sequence is
the clustered O-linked glycosylation region, whose function
is still elusive, followed by the transmembrane domain and
a cytoplasmic tail at the C terminus. The NPVY motif
within the C-terminus is critical for the internalization of
the receptor into clathrin-coated pits (2–4). Substitution of
Tyr807 to cysteine, otherwise known as the J.D. mutation
in FH, impairs LDLR endocytosis but does not affect LDLR
trafficking to the cell surface or the binding of LDL to the
receptor (3).

Currently, the primary lipid-lowering therapy is
statins, which inhibit 3-hydroxy-3-methyl-glutaryl-CoA
reductase (HMGCR), the rate-limiting enzyme in cholesterol
biosynthesis. Reduction in cellular cholesterol levels activates
the transcriptional activity of sterol regulatory element-binding
protein 2 (SREBP2), thereby increasing LDLR expression
and subsequent LDL-C clearance (1, 5, 6). However, the
efficiency of statin treatment is approximately 20–40%.
Furthermore, about 15% of people treated with statins
show intolerance to treatment and require alternative
therapies to lower LDL-C (7). One option is to target
proprotein convertase subtilisin/kexin type 9 (PCSK9),
which promotes LDLR degradation (8–12). While recently
approved PCSK9 inhibitors can effectively reduce plasma
LDL-C levels (13, 14), the treatment is expensive. PCSK9
siRNA therapy may be more affordable, but it is still too
financially unsustainable for all eligible patients to use in
primary prevention. Therefore, the search for alternative
treatments is necessary.

The ectodomain of LDLR can be cleaved by proteases
to generate a soluble form of LDLR (sLDLR), which
inactivates LDLR-mediated LDL clearance. It has been
reported that plasma levels of sLDLR are positively correlated
to circulating LDL-C levels (15–17). In our previous studies,

we found that membrane type 1-matrix metalloproteinase
(MT1-MMP) promotes ectodomain shedding of LDLR,
thereby increasing plasma LDL-C levels and exacerbating
the development of atherosclerosis in mice (18, 19).
Therefore, targeting MT1-MMP has the potential to be a
new lipid-lowering strategy.

MT1-MMP belongs to the MMP family that consists
of 23 zinc-dependent endopeptidases in humans. It plays
essential physiological roles in tissue remodeling and
development by cleaving extracellular matrix components
and non-matrix substrates (20–22). Structurally, MT1-MMP
contains an N-terminal signal peptide, a prodomain, and
then a catalytic domain with the conserved zinc-binding site
(HE240XGHXXGXXH). Next is a flexible hinge region, a
hemopexin (HPX) domain that links the catalytic domain,
a transmembrane domain that anchors the protein to cell
membranes, and a C-terminal cytoplasmic tail involved in
endocytosis of MT1-MMP (19, 23–25). The catalytic domain
is highly conserved among MMP family members (19,
24). Clinical trials of all broad-spectrum MMP inhibitors
that target the catalytic domain in oncology have failed
due to lack of inhibitor specificity (26). On the other
hand, exosites that are regions outside the catalytic core
domain of MMPs are less conserved and contribute to
substrate selection and binding (27–29). Therefore, drugs
targeting exosites have a great potential to be both MMP- and
substrate-specific.

In this study, we investigated the regions in LDLR
and MT1-MMP required for MT1-MMP-induced LDLR
cleavage. We found that deletion of the MT-loop (amino
acids 163-170) within the catalytic domain of MT1-
MMP impaired its ability to cleave LDLR. Alanine
scanning revealed that Ile at position 167 within the MT-
loop played an important role in MT1-MMP-promoted
LDLR degradation. Given that the MT-loop is specific
for MT1-MMP, our findings provide a foundation for
the future design of inhibitors that can specifically target
MT1-MMP’s action on LDLR.

Materials and methods

Materials

Cell culture medium, fetal bovine serum (FBS),
Lipofectamine 3000, GeneJet and PureLinkTM

Hipure plasmid miniprep kit were obtained from
ThermoFisher Scientific. Complete EDTA-free protease
inhibitors were purchased from Roche. All other
reagents were obtained from Fisher Scientific unless
otherwise indicated.

The following antibodies were used: HL-1, a mouse
monoclonal anti-the linker sequence between ligand binding
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repeat (LR) 4 and LR5 of LDLR antibody (30, 31); a rabbit
anti-MT1-MMP monoclonal antibody (Abcam, ab51074); a
mouse anti-MT1-MMP monoclonal antibody (EMD Millipore,
MAB3329); a rabbit anti-HA polyclonal antibody (ProteinTech,
51064-2-AP); a mouse anti-HA monoclonal antibody
(ProteinTech, 66006-2-lg); a DylightTM 680-conjugated
rabbit anti-HA antibody (Rockland, 600-444-384); a DylightTM

800-conjugated rabbit anti-HA antibody (Rockland, 600-445-
384); a mouse anti-actin monoclonal antibody (ProteinTech,
66009-1-Ig); a mouse anti-Na + /K + -ATPase antibody (BD
Biosciences, 610993); and a mouse anti-transferrin receptor
monoclonal antibody (BD Biosciences, 612125).

Site-directed mutagenesis

Plasmid containing cDNA of the full-length human MT1-
MMP (NM_004995) with an HA-tag between Asp115 and
Glu116 (a kind gift from Dr. Weiss, University of Michigan) was
used as the template to generate the mutant form of MT1-MMP.
Plasmid pBudCE4.1 containing cDNA of the full-length human
LDLR (NM_000527) with an N-terminal HA-tag was used to
create the mutant forms of LDLR. Mutagenesis was performed
using QuickChange Lightning site-directed mutagenesis kit
(Agilent Technologies) as described in our previous studies (32–
34). LDLR deletions were generated as described previously (31,
35). To make the catalytic deletion of MT1-MMP (1CAT), an
AgeI site was introduced at Tyr112 and Pro312, respectively. To
delete the hemopexin-like repeats in MT1-MMP (1HPX), an
AgeI site was introduced at Pro312 and Gly535, respectively. The
resulting construct was digested with AgeI (FastDigest BshTI,
Thermo Scientific) and ligated using the Quick Ligation Kit
(New England Biolabs). To remove the C-terminal cytoplasmic
region of MT1-MMP, a stop codon was introduced at Arg563.
The sequences of the oligonucleotides containing the residues
to be mutated were synthesized by IDT (Coralville, IA) and
listed in Table 1. The presence of the desired mutation and the
integrity of each construct were verified by DNA sequencing.
cDNA of human MT1-MMP and human LDLR is consistent
with DNA sequence in NCBI database, human MT1-MMP:
NM_004995; human LDLR: NM_000527.

Cell culture, transfection, and
immunoblotting

HEK293 cells were maintained in DMEM (high glucose)
containing 10% (v/v) FBS at 37◦C in a 5% CO2 humidified
incubator. Plasmid DNA was introduced into cells using
polyethylenimine (PEI, Mw 25000; DNA:PEI = 1:3) or
LipofectamineTM 3000 as described (36). 48 h after treatment,
whole cell lysate was prepared using a lysis buffer (1% Triton
X-100, 150 mM NaCl, 50 mM Tris, pH 7.4) containing

1 × Complete EDTA-free protease inhibitors as described
in our previous studies (37). Protein concentrations were
determined by the BCA protein assay. Equal amount of whole
cell lysate was subjected to SDS-PAGE and transferred to
nitrocellulose membranes by electroblotting. Immunoblotting
was performed using antibodies as indicated. Antibody binding
was detected using IRDye-labeled goat anti-mouse or anti-rabbit
IgG antibody (Li-Cor). The signals were detected and quantified
on a Li-Cor Odyssey Infrared Imaging System (Li-Cor).

Biotinylation

HEK293 cells in 6-well plates were transfected with plasmids
containing cDNAs for wild type or mutant LDLR and/or wild
type or mutant MT1-MMP using Lipofectamine 3000. After
48 h, cell surface proteins were biotinylated with Sulfo-NHS-
LC-Biotin for 20 min at room temperature exactly as described
(33, 37). After quenching in 1 x PBS containing 100 mM glycine
and washing in 1 x PBS, the cells were lysed in 200 µl of lysis
buffer and then subjected to centrifugation at 15,000 rpm for
5 min. The supernatant was incubated with Neutravidin agarose
(Pierce, 30 µl of 50% slurry). The mixture was rotated overnight
at 4◦C. After washing in lysis buffer three times, the cell surface
proteins were eluted from the beads and then analyzed by
SDS-PAGE and immunoblotting.

Migration assay

The experiment was carried out using the transwell
migration assay (38). HEK293 cells were seeded on a 6-well
cell culture plate, and then transfected with empty plasmid or
plasmid containing the wild-type or mutant MT1-MMP using
LipofectamineTM 3000. 24 h later, cells were trypsinized and
counted. Equal numbers of cells in 500 µl of serum-free DMEM
medium were placed on a cell culture insert pre-coated with
collagen type I (8 µm). 500 µl of DMEM containing 20% FBS
was placed below the insert. 48 h after, the insert was rinsed
briefly in 1X PBS, then fixed and stained with crystal violet in
20% methanol. Cells on the top of the insert were removed with a
cotton swab. Cells on the bottom of the insert were imaged on an
OMAX M837ZL-C140U3 microscope and counted (10 images
per insert). Relative cell numbers were calculated by dividing
the average cell numbers by the image area that was measured
with OMAX ToupView.

Immunofluorescence

Confocal microscopy was carried out as described
previously (37, 39, 40). Briefly, HEK293 cells cultured on
a coverslip were transfected with empty vector or plasmid
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TABLE 1 Primers.

MT1-MMP

E240A: 5′- GGT GGC TGT GCA CGC GCT GGG CCA TGC CC -3′ ; Y112-AgeI: 5′-GTT CGA AGG AAG CGC ACC GGT ATC CAG GGT CTC-3′ ; P312-AgeI: 5′-GAT
AAA CCC AAA AAC ACC GGT TAT GGG CCC AAC-3′ ; Gly535-AgeI: 5′-GAC GAG GAG GGC ACC GGT GCG GTG AGC GCG G-3′ ; Arg563-Stop: 5′-CAG TCT
TCT TCT TCT GAC GCC ATG GGA C -3′ ; MT-loop deletion: 5′- CCA CTG CGC TTC CGC GAG GTG CAT GAG AAG CAG GCC GAC ATC ATG ATC -3′ ; Pro163:
5′-CTT CCG CGA GGT GGC CTA TGC CTA CAT C-3′ ; Y164-A: 5′-CCG CGA GGT GCC CGC TGC CTA CAT CCG TG-3′ ; Y166-A: 5′-GAG GTG CCC TAT GCC
GCC ATC CGT GAG GGC-3′ ; I167-A: 5′-GTG CCC TAT GCC TAC GCC CGT GAG GGC CAT G-3′ ; R168-A: 5′-CCC TAT GCC TAC ATC GCT GAG GGC CAT
GAG-3′ ; E169-A: 5′-CTA TGC CTA CAT CCG TGC GGG CCA TGA GAA G-3′ ; G170-A: 5′-GCC TAC ATC CGT GAG GCC CAT GAG AAG CAG-3′ ; I167-L: 5′-GTG
CCC TAT GCC TAC CTC CGT GAG GGC CAT G-3′ ; I167-V: 5′-GTG CCC TAT GCC TAC GTC CGT GAG GGC CAT G-3′ ; I167-M: 5′-GTG CCC TAT GCC TAC ATG
CGT GAG GGC CAT G-3′ ; I167-F: 5′-GTG CCC TAT GCC TAC TTC CGT GAG GGC CAT G-3′ ; I167-E: 5′-GTG CCC TAT GCC TAC GAA CGT GAG GGC CAT
GAG-3′ ; I167-K: 5′-GTG CCC TAT GCC TAC AAG CGT GAG GGC CAT GAG-3′ ; I167-T: 5′-GTG CCC TAT GCC TAC ACC CGT GAG GGC CAT G-3′ ; V162-A: 5′-G
CGC TTC CGC GAG GCG CCC TAT GCC TAC ATC-3′

LDLR
A521V: 5′-CTC CAA GCC AAG GGT CAT CGT GGT GGA T-3′ ; G529V: Forward-5′-GTG GAT CCT GTT CAT GTC TTC ATG TAC TGG-3′ ; I566AT567A: CAG TGG
CCC AAT GGC GCC GCC CTA GAT CTC CTC AGT; N645V: 5′-AAC TTG TTG GCT GAA GTC CTA CTG TCC CCA-3′ ; A789V: 5′-CAG TAG CGT GAG GGT TCT
GTC CAT TGT C-3′

containing the wild-type or mutant HA-MT1-MMP cDNA.
48 h later, cells were fixed with 3% paraformaldehyde in
PBS, and then permeabilized using ice-cold methanol. After
blocking, the cells were incubated with an anti-HA polyclonal
antibody (1:100) and an anti-Na+/K+-ATPase monoclonal
antibody (1:100). Antibody binding was detected using Alexa
Fluor 488 goat anti-rabbit IgG and Alexa Fluor 568 goat
anti-mouse IgG. Nuclei were stained with 4′, 6-diamidino-2-
phenylindole (DAPI, ThermoFisher). Coverslips were mounted
on the slides with ProLong Diamond Antifade Mountant
(ThermoFisher). Localization of MT1-MMP in the transfected
cells was determined using a Leica SP5 laser scanning confocal
microscope (filters: 405 nm for DAPI, 488 nm for Fluor 488,
594 nm for Fluor 568).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
version 9.0 (GraphPad Software). The significant difference
between two groups was determined via Student’s t-test and
defined as ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and
∗∗∗∗p < 0.0001. p > 0.05 was defined as no significance.
Values of all data, unless otherwise indicated, were depicted as
mean± S.D. All experiments, unless indicated, were repeated at
least three times.

Results

Specific sites on low-density
lipoprotein receptor for
MT1-MMP-induced cleavage

We have previously reported that MT1-MMP mediates
shedding of LDLR and regulates plasma LDL-C metabolism

(18). Here, we sought to identify the specific sites on LDLR for
MT1-MMP-induced cleavage. LDLR has five distinct regions,
each playing different critical roles in the functionality of the
protein. To determine if any of these regions were important for
MT1-MMP-mediated LDLR shedding, we made various LDLR
mutants with deletions of different LDLR function domains,
including the ligand binding repeat deletion (1R1-R7), EGF-
like domain deletion (1EGF), O-Linked glycosylation domain
(1O-Link), and C-terminal domain (1812) (Figure 1A).
In addition, to test if endocytosis of LDLR plays a role
in MT1-MMP-mediated LDLR cleavage, we generated the
J.D. mutant LDLR, where the Tyr in the NPVY motif is
mutated to Cys (Y807C). The J.D. mutant (JD-Mut) is a
naturally occurring mutation that impairs LDLR endocytosis
and consequently results in FH. However, the mutation does
not affect trafficking of LDLR to plasma membrane (3).
Each mutation was co-transfected with an equal amount of
empty or the wild-type MT1-MMP-containing plasmid into
HEK293 cells using PEI. MT1-MMP has a HA-tag in the
HPX region (41). MT1-MMP and LDLR were detected by
a rabbit anti-HA polyclonal antibody and a rabbit anti-
LDLR antibody, 3143 that recognizes the C-terminal region
of LDLR (31, 42), respectively. A IRDye-680 labeled goat
anti-rabbit IgG recognizes both LDLR and MT1-MMP. LDLR
is a glycosylated protein, and glycosylation starts in the
endoplasmic reticulum (ER) and is matured in the Golgi.
The wild-type and mutant LDLR, except for the 1R1-R7
mutant, displayed well-separated premature (p) and mature
(m) forms; top one was the fully glycosylated mature form
(indicated by white arrows), while the bottom band was
the under glycosylated premature form (indicated by ∗). We
did not observe the premature form of the 1R1-R7 mutant
(lanes 5 and 6), which is consistent with our previous study
(35). The mature form of the 1EGF mutant showed a
smeared pattern possibly due to altered glycosylation (lane
7), while the mature form of the 1O-Link mutant was
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FIGURE 1

Effects of mutations in low-density lipoprotein receptor (LDLR)
on MT1-MMP-induced LDLR cleavage (A) Diagram of the
functional domains of LDLR. LR, ligand binding region. EGF, the
epidermal growth factor precursor homology domain. O-linked,
the O-linked sugar domain. TM, transmembrane domain. JD,
the J.D. mutation (Y807C) identified in a FH patient. C-tail, the
C-terminal cytoplasmic tail. (B) Immunoblotting and (C)
quantification. Equal amount of plasmid DNA containing the
wild-type (WT) or mutant LDLR deletion cDNA and empty (-) or
plasmid containing the wild-type MT1-MMP (MT1) were
transfected into HEK293 cells using PEI. 48 h later, whole cell
lysate was prepared, and equal amount of total proteins in whole
cell lysates was applied to SDS-PAGE and immunoblotting with
antibodies as indicated. HA-tagged MT1-MMP and LDLR were
detected by a Dylight 680-conjugated rabbit anti-HA antibody
(Rockland, 600-444-384) and 3143, respectively. The mature
and premature forms of the wild type and mutant LDLR were
indicated by white arrows and *, respectively. MT1-MMP was
indicated by a gray arrow. Actin was detected by a mouse
anti-actin monoclonal antibody. (D–F) Biotinylation. HEK293
cells were co-transfected with the WT or mutant LDLR and
empty (-) or WT MT1-MMP (MT1) using Lipofectamine 3000.
48 h after, the cells were subjected to biotinylation. Samples
were heated at 85 (D,E) or 37◦C (F) to elude proteins from

(Continued)

FIGURE 1 (Continued)

Neutravidin beads and then subjected to immunoblotting using
a mouse anti-LDLR (HL-1) (D,F), or a rabbit anti EGFA of LDLR
(E). Actin was detected with a mouse anti-actin antibody. Similar
results were observed in three different experiments.
Representative images were shown (B,D–F). Densitometry was
determined by a Li-Cor Odyssey Infrared Imaging System.
Relative densitometry was defined as the ratio of the
densitometry of the mature form of wild-type or mutant LDLR to
that of Actin at the same condition (C). Values were mean ± S.D.
of ≥3 experiments. Significance was defined as the mature form
of LDLR in the presence of MT1-MMP vs. the mature form of
LDLR in the absence of MT1-MMP. ***p < 0.001, ****p < 0.0001.

weak and very close to its premature form since LDLR
is primarily O-glycosylated at the side chain of Ser and
Thr residues in the O-Linked glycosylation domain (43,
44). Nevertheless, the mature form of the wild-type LDLR,
all deletion mutants, and the JD mutant was significantly
reduced by MT1-MMP (Figures 1B,C). We also performed
a biotinylation experiment to monitor cell surface proteins.
LDLR was detected by a mouse monoclonal antibody, HL-
1 that recognizes the linker between ligand-binding repeat
4 and 5. We could detect LDLR but not actin in the
biotinylation experiment (Figure 1D), indicating biotinylation
of cell surface proteins. We observed that the cell surface wild-
type and mutant LDLR, including 1O-Link, 1812 and JD
mutation, were markedly reduced in cells expressing MT1-
MMP (Figures 1D). 1R1-R7 cannot be recognized by HL-
1. When the membrane was blotted with a rabbit anti-
EGFA of LDLR antibody, we found that MT1-MMP promoted
degradation of cell surface 1R1-R7 [Figure 1E, lane 2 vs.
1)]. On the other hand, we observed that the majority
of biotinylated 1EGF, unlike 1EGF in whole cell lysate
(Figure 1B), was aggregated with a small portion of smeared
protein bands above the 100 kDa marker even though the
samples were heated at 37◦C for 5 min (Figure 1F, lane
3), while no heating could not elude biotinylated 1EGF
from NeutrAvidin beads (data not shown). However, all these
signals were markedly reduced in cells expressing MT1-MMP
(Figure 1F, lane 4 vs. 3), indicating that MT1-MMP reduced
cell surface 1EGF. Therefore, each of these regions and
endocytosis of LDLR are not required for MT1-MMP’s action
on the receptor.

We then used the software CleavePredict to predict the
cleavage sites of MT1-MMP on LDLR. CleavePredict is a
validated free access web server for predicting the substrate
cleavage pattern by matrix metalloproteinases (MMP). It
employs MMP specific position weight matrices, which is
derived from statistical analysis of high-throughput phage
display experimental cleavage results of metalloproteinases (45).
The software predicts 22 putative MT1-MMP cleavage sites
on LDLR, with a spread across all its extracellular domain
(Table 2). Based on the position weight matrix score and
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proximity to the transmembrane domain, which has been
suggested to be the cleavage region of MT1-MMP on LDL
receptor related protein 1 (LRP1) (46), we selected 5 locations
A521, G529, G565, and N645 within the YWTD region and
A789 within the transmembrane domain near the outer layer
of plasma membrane. The key residue at positions 521, 529,
645, and 789 was individually replaced with Val and I566 and
T567 were replaced with Ala to disrupt each of the putative
cleavage sites as confirmed by CleavePredict. We then co-
expressed the mutant LDLR with the wild-type MT1-MMP
in HEK293 cells. As shown in Figures 2A,B, the mature
form of all mutant LDLR tested was effectively reduced by
MT1-MMP. MT1-MMP also reduced the levels of the mature
form of mutant I556AT567A (Figure 2C, lane 8 vs. 7). To
determine whether the loss of one predicted cleavage site was
compensated by the remaining predicted cleavage sites, we made
a sextuple (Sext.) mutation to remove all the five predicted sites
(A521V, G529V, I556A, T567A, G565, and N645), a quadruple
(Quad.) mutation (A521V, G529V, G565, and N645), and a
double mutation A521V/G529V (AV/GV). We observed the
premature but not the mature form of all these mutations, and,
as expected, the premature form was not affected by MT1-
MMP (Figure 2C, lanes 6 vs. 5, 10 vs. 9, and 12 vs. 11).
These observations indicate that these mutations appeared to
impair LDLR trafficking to the plasma membrane. Given that
MT1-MMP promotes cleavage of the mature form of LDLR,
the impact of these mutations on MT1-MMP-induced LDLR
cleavage cannot be determined. Therefore, it is possible that
none or more than one of these predicted sites are involved
in MT1-MMP-induced LDLR cleavage. The loss of each of the
predicted cleavage sites may be compensated by the remaining
predicted sites. Nevertheless, our findings suggest that none of
the five predicted cleavage points individually is necessary for
MT1-MMP-induced LDLR cleavage.

The requirement of domains in
MT1-MMP for low-density lipoprotein
receptor shedding

Next, we determined which functional domains in MT1-
MMP were critical for its ability to cleave LDLR. Thus,
we deleted the C-terminal cytoplasmic region (1C-Term),
the hemopexin-like repeats (1HPX), the catalytic domain
(1CAT), and the MT-loop within the catalytic domain
(1163-170) (Figure 3A). The wild-type or mutant MT1-
MMP was co-expressed with the wild-type LDLR in HEK293
cells. The expression of the wild-type and mutant MT1-
MMP except for 1HPX that did not have the HA-tag,
was confirmed by an anti-HA antibody, while a mouse
anti-MT1-MMP monoclonal antibody that recognizes the
catalytic domain revealed the wild-type, 1C-Term, 1HPX,
and 1163-170 but not 1CAT MT1-MMP (Figure 3B). We

TABLE 2 Predicted MT1-MMP cleavage site on LDLR as determined by
the online CleavePredict software, showing cleavage positions,
residues and position weight matrix score.

P1 cleavage positions Residues PWMˆScore

14 WTVAL-LLAAA 0.54

86 CIPQF-WRCDG 1.94

152 CGPAS-FQCNS 5.51

186 QRCRG-LYVFQ 2.87

397 KAVGS-IAYLF 1.14

400 GSIAY-LFFTN 3.05

421 SEYTS-LIPNL 2.97

425 SLIPN-LRNVV 2.30

521 SKPRA-IVVDP 4.90

529 DPVHG-FMYWT 5.37

541 GTPAK-IKKGG 1.95

554 VDIYS-LVTEN 1.17

565 QWPNG-ITLDL 5.36

584 SKLHS-ISSID 3.26

608 RLAHP-FSLAV 2.38

610 AHPFS-LAVFE 1.45

645 LLAEN-LLSPE 5.96

657 VLFHN-LTQPR 4.07

685 CLPAP-QINPH 2.54

701 ACPDG-MLLAR 0.81

707 LLARD-MRSCL 1.93

789 SSVRA-LSIVL 7.55

Selected positions were highlighted in bold.

found that removal of the C-terminal cytoplasmic region
(1C-Term) and the hemopexin-like repeats (1HPX) did
not significantly impair MT1-MMP-induced reduction in
the mature form of LDLR (Figures 3B,C). Interestingly,
1HPX appeared to reduce the abundance of the mature
form of LDLR more significantly than the wild-type MT1-
MMP (lane 8 vs. 4) even though its expression was
lower than the wild-type protein (indicated by an arrow
in lanes 7 and 8). On the other hand, the cleavage
property was lost in the 1CAT mutant, reinforcing the
importance of the catalytic activity of the proteinase for
LDLR cleavage and consistent with our previous finding
that the catalytically dead E240A mutant of MT1-MMP
cannot cleave LDLR (18). Furthermore, deletion of the MT-
loop essentially abolished MT1-MMP’s ability to cleave LDLR
(lane 12 vs. 4). These findings indicate that the catalytic
activity and the MT-loop are essential for MT1-MMP-
promoted LDLR shedding.

Mutational analysis of the MT-loop

The MT-loop consists of seven amino acid residues and is
present in all four membrane type MMPs ( MT1-, MT2-, MT3-,
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FIGURE 2

Mutations of predicted MT1-MMP cleavage sites on LDLR (A,C) immunoblotting and (B) quantification. HEK293 cells were co-transfected with
an equal amount of the wild-type (WT) or mutant LDLR and empty (-) or the wild type MT1-MMP (MT1) plasmid using PEI. 48 h later, whole cell
lysate was isolated and applied to immunoblotting. After transfer, the membrane was cut into halves above the 75 kDa protein marker.
HA-tagged LDLR on the top membrane was detected with a DylightTM 680-conjugated rabbit anti-HA antibody (Rockland, 600-444-384). m:
mature form of LDLR; p: premature form of LDLR. MT1-MMP on the bottom was detected by a DylightTM 800-conjugated rabbit anti-HA
antibody (Rockland, 600-445-384). Similar results were observed in three different experiments. Representative images were shown in (A,C).
Densitometry was determined by a Li-Cor Odyssey Infrared Imaging System. Relative densitometry was defined as the ratio of the densitometry
of the mature form of wild-type or mutant LDLR to that of Actin at the same condition (B). Values were mean ± S.D. of ≥3 experiments.
Significance was defined as the mature form of LDLR in the presence of MT1-MMP vs. the mature form of LDLR in the absence of MT1-MMP.
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3

Effects of mutations in MT1-MMP on its ability to cleave LDLR (A) Diagram of the functional domains of MT1-MMP. SP, signal peptide. PRO,
prodomain. CAT, the catalytic domain. HPX, the hemopexin domain. TM, transmembrane domain. C-Tail, the C-terminal cytoplasmic tail. (B)
Immunoblotting and (C) quantification. Equal amount of plasmid DNA containing the wild-type or mutant MT1-MMP and empty plasmid (-) or
the wild-type LDLR-containing plasmid were co-transfected into HEK293 cells using PEI. 48 h later, whole cell lysate was prepared, and equal
amount of total proteins in whole cell lysate was applied to immunoblotting. After transfer, the membrane was cut into halves above the 75 kDa
protein marker. The top membrane was blotted with a DylightTM 800-conjugated rabbit anti-HA antibody to recognize HA-LDLR. m: mature
form of LDLR; p: premature form of LDLR. The bottom membrane was blotted with a DylightTM 680-conjugated rabbit anti-HA antibody to
detect HA-MT1-MMP (HA-MT1). The bottom part was also blotted with a mouse anti-MT1-MMP antibody to detect MT1-MMP (MT1) (EMD
Millipore, MAB3329). TFR, transferrin receptor (TFR). Representative images were shown (B). Densitometry was determined by a Li-Cor Odyssey
Infrared Imaging System. Relative densitometry was defined as the ratio of the densitometry of the mature form (m) of LDLR to that of TFR at
the same condition (C). Values were mean ± S.D. of ≥3 experiments. Significance was defined as the mature form of LDLR in the presence of
the wild-type or mutant MT1-MMP vs. the mature form of LDLR in the absence of MT1-MMP (Empty). ns (vs. Empty), no significance, p > 0.05.
**** (vs. Empty), p < 0.0001. ### [1HPX vs. wild type MT1-MMP (WT)], p < 0.001.

and MT5-MMP), except the two glycosyl phosphatidylinositol-
anchored membrane-associated MMPs (MT4- and MT6-
MMP) (Figure 4A). Pro163 and Tyr164 in the MT-loop
are completely conserved. We then performed alanine-
scanning to determine the contribution of each of these

amino acid residues to MT1-MMP’s action on LDLR. The
mutant MT1-MMP and the wild-type LDLR were transfected
into HEK293 cells using LipofectamineTM 3000. A mouse
monoclonal anti-LDLR (HL-1) detected the mature form of
LDLR (Figures 4B,C). A rabbit anti-MT1-MMP monoclonal

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2022.917238
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-917238 August 19, 2022 Time: 15:19 # 9

Wang et al. 10.3389/fcvm.2022.917238

antibody was used to detect MT1-MMP. The antibody can
recognize the full-length and self-cleaved MT1-MMP, consistent
with a previous report (47). The levels of the catalytic dead
mutation E240A were much higher than that of the wild-
type and other mutant MT1-MMP since it loses the self-
cleavage activity. We found that substitution of Ile167 with
Ala (MT1-MMPI167A), like E240A, significantly impaired MT1-
MMP’s ability to promote LDLR degradation, while mutation
of other amino acid residues had no significant impact.
Consistently, biotinylation experiments showed that I167A
and E240A could not effectively reduce the levels of the
mature form of LDLR when compared to the wild-type and
other mutant MT1-MMP (Figure 4D). Taken together, our
findings indicate the important role of Ile167 in MT1-MMP-
promoted LDLR cleavage.

We then performed confocal microscopy to assess whether
mutation I167A affected the trafficking of MT1-MMP. As
shown in Figure 5A, in cells transfected with empty vector
(Control), MT1-MMP was undetectable by an anti-HA antibody
that recognizes HA-tagged MT1-MMP. Both the wild-type
MT1-MMP and MT1-MMPI167A displayed a similar pattern,
residing on the cell periphery and the intracellular space
(green fluorescence in the top panel). We observed partial
co-localization of the wild-type and mutant MT1-MMP
with a plasma membrane marker, Na+/K+-ATPase (yellow
fluorescence in the bottom panel). Next, we employed a
transwell migration assay to assess the impact of mutation I167A
on MT1-MMP-promoted cell migration. We observed that the
relative cell numbers migrated through collagen type I-coated
inserts were comparable in cells transfected with the wild-type
MT1-MMP and MT1-MMPI167A; both significantly promoted
cell migration compared to the control (Figure 5B). Therefore,
substitution of Ile167 with Ala does not appear to affect MT1-
MMP trafficking or its ability to promote cell migration.

Detailed mutational analysis of Ile167

Ile within the MT-loop of MT1-MMP is highly conserved
in different species except for alligators and turtles. Instead of
Ile, they have another hydrophobic residue, valine. Therefore,
we investigated how specific the requirement was for Ile167 to
contribute to MT1-MMP’s ability to promote LDLR cleavage.
To assess whether another non-polar residue at position 167
could substitute for Ile, we replaced Ilel167 with a hydrophobic
amino acid residue, including Leu, Val, Met, and Phe. We also
mutated Ile167 to a polar residue, including Glu, Lys, and Thr,
which has a negatively charged, a positively charged, and a
polar side chain, respectively. Each of these mutant MT1-MMP
was then co-expressed with the wild-type LDLR in HEK293
cells using Lipofectamine 3000. As shown in Figures 6A,B, like
I167A, mutations I167E, I167K and I167T significantly impaired
MT1-MMP-induced LDLR cleavage, whereas substitution of Ile

with a hydrophobic residue (mutations I167V, I167L, I167M,
and I167F) retained the ability to cleave LDLR. These findings
indicate that a hydrophobic residue at position 167 within the
MT-loop is required for MT1-MMP-promoted LDLR cleavage.

Discussion

Our previous study demonstrates that hepatic MT1-MMP
stimulates LDLR shedding, thereby increasing plasma LDL-
C levels and the development of atherosclerosis (18). In
addition, it has been reported that macrophage MT1-MMP
degrades collagen in atherosclerotic plaques and consequently
increases plaque vulnerability (48). On the other hand, MT1-
MMP in vascular smooth muscle cells (VSMC) regulates
extracellular matrix homeostasis and plays an important role
in maintaining normal VSMC function (49). Deficiency of
VSMC MT1-MMP increases the development of proliferative
atherosclerotic lesions. Therefore, MT1-MMP appears to
affect the development of atherosclerosis in a cell type-
dependent manner, indicating the need for tissue/cell type-
specific targeting of MT1-MMP to avoid undesired side
effects. Specific targeting hepatocytes can be archived using
N-acetylgalactosamine (GalNAc)-conjugation, such as GalNAc-
siRNA or antisense oligonucleotides (ASOs) (50–52), which has
been successfully used to silence hepatic PCSK9 expression in
a clinical trial (51). GalNAc can mediate rapid hepatic uptake of
conjugated targets via binding to the asialoglycoprotein receptor
on hepatocytes (50). Thus, we can use GalNAc-siRNA or ASO
to selectively target MT1-MMP in hepatocytes to inhibit LDLR
shedding, thereby increasing clearance of plasma LDL-C and
reducing the development of atherosclerosis.

The MMP family consists of 23 members, each with
different physiological functions. To avoid potential off-target
effects, a specific and selective MT1-MMP inhibitor is needed.
This requires an in-depth understanding of the specificity
of the protease cleavage site on their substrates. While no
consensus cleavage site for MMPs has been identified, it is
believed that MMPs preferentially cleave specific substrates at
certain locations containing specific amino acid residues (53).
Therefore, we first sought to identify the cleavage site of MT1-
MMP on LDLR. However, our findings indicate that MT1-MMP
does not need a specific cleavage site in the receptor.

It is of note that the catalytic core region is highly
conserved among 23 MMP family members, which makes it
very challenging to specifically inhibit the proteolytic activity of
MT1-MMP by targeting this functional domain. Exosites have
been shown to be a promising target for the development of
specific MMP inhibitors. MT1-MMP contains several functional
domains. The HPX domain contributes to the interaction of
MT1-MMP with its substrates, such as CD44 and collagen
(54–57). Targeting HPX with a small inhibitor can selectively
inhibit MT1-MMP activity and suppress cancer cell growth (58).
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FIGURE 4

Mutational analysis of the MT-loop (A) Alignment of partial sequence of different MT-MMPs. The alignment was performed using Multiple
Alignment (Fast Fourier Transform (MAFFT) FFT-NS-I, v7.429). MT1-MMP: NP_004986; MT2-MMP: NP_002419.1; MT3-MMP: NP_005932;
MT5-MMP: NP_006681. MT4-MMP: NP_057239. MT6-MMP: NP_071913. The MT-loop was underlined. (B) Immunoblotting and (C)
quantification. Plasmid DNA containing the wild-type LDLR was co-transfected with an equal amount of empty vector (Con), the wild-type, or
mutant MT1-MMP into HEK293 cells using Lipofectamine 3000. 48 h later, whole cell lysate was prepared and applied to immunoblotting. LDLR
and MT1-MMP were detected by a mouse monoclonal anti-LDLR antibody, HL-1, and a rabbit monoclonal anti-MT1-MMP antibody (abcam,
ab51074), respectively. TFR, transferrin receptor (TFR), was recognized by a mouse anti-TFR monoclonal antibody. (D) Biotinylation. HEK293
cells were co-transfected with WT LDLR and WT or mutant MT1-MMP using Lipofectamine 3000. 48 h after, the cells were subjected to
biotinylation and then immunoblotting using a mouse anti-LDLR (HL-1) and a mouse anti-actin antibody. Similar results were observed in three
different experiments. Representative images were shown (B and D). Densitometry was determined by a Li-Cor Odyssey Infrared Imaging
System. Relative densitometry was defined as the ratio of the densitometry of LDLR to that of TFR at the same condition. Values were
mean ± S.D. of ≥3 experiments. The significant difference between two groups (wild type or mutant MT1-MMP vs. the Control) were
determined via Student’s t-test. ns (no significance), p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5

Effects of I167A on MT1-MMP trafficking and cell migration (A) Confocal microscopy. HEK293 cells transfected with empty plasmid (Control) or
plasmid containing the HA-tagged wild-type or I167A mutant MT1-MMP were subjected to confocal microscopy. MT1-MMP was detected with
a rabbit anti-HA polyclonal antibody (Proteintech, 51064-2-AP) and showed in green fluorescence (top and bottom panels). Na+/K+-ATPase
was detected by a mouse monoclonal antibody and showed in red fluorescence (middle and bottom panels). Nuclei were visualized with DAPI
(blue). An x-y optical section of the cells illustrates the distribution of the wild-type and mutant proteins (magnification: 325X). (B) Transwell
assay. HEK293 cells were transfected with empty plasmid (Control) or plasmid containing the HA-tagged wild-type or I167A mutant MT1-MMP
using Lipofectamine 3000 and then placed on a collagen type I-coated insert. 48 h after, cells were stained with crystal violet. Cells on the
bottom of the insert were imaged, counted, and then divided by the image area. Relative cell numbers were the ratio of the cell numbers of
cells transfected with the wild-type or I167A MT1-MMP to that of cells transfected with the empty vector (control), which was defined as 1.
Representative images were shown. Values were mean ± S.D. of 3 experiments. The significant difference between two groups (wild type or
mutant MT1-MMP vs. the Control) were determined via Student’s t-test. ns (no significance), p > 0.05, **p < 0.01.

However, deletion of the HPX domain did not impair MT1-
MMP-induced LDLR degradation. Conversely, the mutant
appeared to promote LDLR degradation more strongly than
the wild-type MT1-MMP (Figure 3). The exact underlying
mechanism is unclear. The HPX domain is required for MT1-
MMP binding to CD44 and collagen. These substrates may
compete with LDLR for MT1-MMP binding. Therefore, it
is possible that the deletion mutant can target LDLR more
effectively than the wild-type MT1-MMP because it loses the
ability to bind to other substrates.

The cytoplasmic tail of MT1-MMP plays an important role
in endocytosis of MT1-MMP and the localization of MT1-
MMP on the specific microdomains in the plasma membrane

(19, 23–25). Deletion of the cytoplasmic tail did not affect
the trafficking of MT1-MMP to the plasma membrane nor its
ability to activate proMMP2, but the mutant proteins displayed
a different distribution pattern on the cell surface and an
impaired ability to mediate cell invasion compared to the wild-
type protein (59, 60). However, removal of the C-terminal
cytoplasmic tail of MT1-MMP did not significantly impair its
ability to cleave LDLR. A similar phenotype was observed in
the JD mutation that disrupts LDLR endocytosis. Therefore,
MT1-MMP does not appear to induce LDLR cleavage during the
endocytosis process.

Our previous study demonstrates that the catalytic activity
of MT1-MMP is required for LDLR shedding (18). Consistently,
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FIGURE 6

Mutational analysis of I167 (A) Immunoblotting and (B) quantification. Plasmid DNA containing wild-type LDLR was co-transfected with an equal
amount of the wild-type or mutant MT1-MMP into HEK293 cells using Lipofectamine 3000. 48 h later, whole cell lysate was isolated and
applied to immunoblotting with antibodies as described in the legend to Figure 5. TFR, transferrin receptor. Representative images were shown
(A). Densitometry was determined by a Li-Cor Odyssey Infrared Imaging System. Relative densitometry was defined as the ratio of the
densitometry of LDLR to that of TFR at the same condition (B). Values were mean ± S.D. of ≥3 experiments. The significant difference between
two groups (mutations vs. I167A) were determined via Student’s t-test. ns (no significance), p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 7

Structure of MT1-MMP (A) and enlarged view of the MT-loop (B) The structure was adopted from AlphaFold
(https://alphafold.ebi.ac.uk/search/text/MT1-MMP) (68). The model confidence scores of Ile167 are very high (94.33). The side chain of Ile167 is
pointed to the inside of the MT-loop (orange arrow in panel B).
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we found that deletion of the catalytic domain of MT1-MMP
virtually abolished its ability to cleave LDLR. Furthermore, our
data indicate the requirement of a hydrophobic side chain at
position 167 for MT1-MMP-induced LDLR cleavage. The MT-
loop is flexible and only present in the four membrane type
MMPs, but the conformation of the MT-loop is different in each
membrane type MMP (61) and in MT1-MMP complexed with
or without TIMPs (62–64). The crystallographic structure of the
catalytic domain of MT1-MMP and the predicted structure of
the full-length protein by AlphaFold reveal that the MT-loop
protrudes from the main structure. Ile167 is situated in the
middle of a small α-helix in the MT-loop with its hydrophobic
side chain positioning inside the loop (Figure 7). How it
contributes to MT1-MMP-induced LDLR cleavage is unclear.
Weaver et al. reported that the MT-loop, together with the
hemopexin domain, is required for the translocation of MT1-
MMP from the apical to the basal membrane in polarized
epithelial cells during tubulogenesis (65), but deletion of the
entire MT-loop has no significant effect on the expression,
trafficking, processing, or the proteolytic activity of MT1-MMP
(61, 66). We also did not observe a significant difference in
cell migration and MT1-MMP trafficking between the wild-
type and I167A mutant MT1-MMP. These strongly suggest that
I167A does not cause a major perturbation of the structure of
the protein. However, we cannot exclude the possibility that
I167A may result in a subtle structural change in the MT-
loop. Nevertheless, the MT-loop represents a potential target
for the development of selective MT1-MMP inhibitors due
to its specificity and structurally easy accessibility. Indeed, an
antibody specifically against the MT-loop has been developed
and can block binding of pro-MMP2 to MT1-MMP and inhibit
pro-MMP2 activation (67). It would be of interest to see if
this antibody can block MT1-MMP-induced LDLR cleavage. In
summary, although we did not find a specific cleavage site of
MT1-MMP on LDLR, our findings on the role of the MT-loop
in MT1-MMP’s action on LDLR provide critical information
for the future design of highly sensitive and specific MT1-
MMP inhibitors.
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