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Abstract

Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent
improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of
neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system
to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To
probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional
connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the
neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time
resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz)
and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many
significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in
cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients,
and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of
network architecture from different brain regions. Crucially, because these differences between brain regions require
millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal
resolution recordings for the understanding of functional networks in neuronal systems.
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Introduction

Understanding the detailed circuitry of neuronal networks is

one of the major goals of neuroscience. Emergent properties at the

systems level only come through the coordinated activity of large

numbers of inter-connected neurons. Therefore, one must

understand connectivity among neurons. However, the term

‘connectivity’ has several meanings. For example, there is a

distinction between anatomical connectivity and functional

connectivity. Anatomical connectivity describes whether or not

neurons are physically (synaptically) connected; functional con-

nectivity describes whether or not neurons have correlated activity.

Even if neurons are anatomically connected with each other, if

they don’t fire together, they will not have functional connectivity.

Even if neurons do not share synapses, they could still be

functionally connected if they receive common modulatory input.

As a final distinction, the term ‘effective connectivity’ is also used

to differentiate mere correlation from directed causal influence

[1,2], but we will not distinguish these two terms and will instead

refer to them both as functional connectivity.

The analysis of network connectivity (network science) has been

successfully applied to networks of macroscopic brain regions [3–

5]. Studies of functional networks composed of individual neurons

(referred to as ‘‘microscopic’’ networks) have been limited until

recently by recording technology. Optical recording methods, such

as calcium imaging [6,7], and electrophysiological methods, such

as large-scale multielectrode-array technology [8–11], have made

it possible to simultaneously record the spiking activity from

hundreds of neurons, a number sufficient for the application of

graph-theoretic approaches.

There have been a few graph-theoretic studies of functional

networks among hundreds of neurons using calcium imaging as

reviewed in [2]. Based on these works, the network structure seems

to be scale-free in the hippocampus [12,13], or at least has small-

world attributes [14]. However, these studies were conducted at

relatively low temporal resolution (,50 ms) and thus the fine
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temporal structure of the correlations (,1 ms) has not yet been

investigated. Importantly, there are many studies that suggest that

brain networks may utilize rhythms at different frequencies, in

addition to the millisecond scale for synaptic communication [15].

For example, the gamma rhythm seems to play an important role

in perception and visual processing in cat cortex [16] and the beta

rhythm appears to play a significant role in visuomotor integration

[17]. Interestingly, the physiological mechanisms for generating

gamma rhythms and beta rhythms exist independently in

hippocampal CA1 circuitry [18]. Another study suggests that fast

gamma (,90 Hz) and slow gamma (,40 Hz) rhythms in the

hippocampal CA1 region segregate the input source by frequency

[19]. These synchronies in multiple frequency bands were

summarized in [20]. Neural recording with submillisecond

temporal resolution could therefore provide a detailed comparison

of functional network structure across different temporal scales or

(equivalently) frequency ranges.

To investigate functional connectivity across a wide range of

temporal scales, we used a 512-channel multielectrode array

system developed at the University of California, Santa Cruz [8].

This system provides 60 mm spatial resolution (60 mm electrode

spacing), and 50 ms temporal resolution (20 kHz sampling rate).

This temporal resolution is three orders of magnitude finer than

the ,50 ms resolution typically achieved with calcium imaging

[21]. In addition, the system records the spiking activity of

hundreds of individual neurons simultaneously [22,23].

Here we propose a novel method for analyzing functional

connectivity between neurons at different frequency ranges. In this

method, we analyzed cross-correlograms of spiking activity

between neuron pairs using a wavelet transform. The wavelet

transform revealed the different temporal structures in cross-

correlations, which allowed us to directly compare the functional

network structures of hundreds of neurons in organotypic cultures

of cortex and hippocampus.

Materials and Methods

Ethics Statement
All neural tissue from animals was prepared according to

guidelines from the National Institutes of Health and all animal

procedures were approved by the Indiana University Animal Care

and Use Committee (Protocol number: 12-015) as well as the

Animal Care and Use Committee at the University of California,

Santa Cruz (Protocol code: Litka 1105).

Organotypic Culture Preparation
Organotypic cultures were prepared as previously described

[22,23]. Briefly, brains from postnatal day 6 (P6)-P7 Black 6 mouse

pups of either sex were removed under a sterile hood and placed in

Gey’s balanced salt solution for 60 minutes at ice cold tempera-

ture. After 30 minutes, half the solution was changed. Brains were

next blocked into ,5 mm3 sections containing dorsal hippocam-

pus and somatosensory cortex. Blocks were then sliced to a

thickness of 400 mm using a vibrating blade microtome (Leica

VT1000 S). The angle of the sections was closest to that of a

coronal section, but the lateral side of the plane was advanced by

15 degrees in the anterior direction, so that both transverse

sections of hippocampus and somatosensory cortex were included

in the same tissue. These transverse sections are thought to

preserve more of the hippocampal synaptic connectivity within the

plane of the slice [24]. Each slice was put on a circular piece of

filter paper (,6 mm diameter), and grown in culture medium

(50% minimum essential medium, 25% horse serum, 25% Hank’s

balanced salt solution, 5 mg/ml D-glucose, 1 mM L-glutamine,

5 U/ml penicillin-streptomycin) in a heated (37uC), CO2 enriched

(5%) incubator for 2–4 weeks.

MEA Electrophysiology and spike-sorting
As mentioned above, all recordings were performed on a

custom-made 512-electrode array system [8]. The flat electrodes

were 5 mm in diameter and spaced 60 mm apart in a hexagonal

lattice. The recording area was a 0.9 mm by 1.9 mm rectangle.

Cultured brain tissues were gently placed on the electrode array

using tweezers to hold the filter paper such that the tissue side was

facing down and either the cortex or the hippocampus was

centered on the array. Typically, the cortex was larger than the

size of the array, and the short side (0.9 mm) of the array spanned

across 70–80% of the thickness of the cortex. The hippocampus

was smaller than the array, covering approximately ,70% of the

active area of the array. A small harp (,1.3 g) with fine mesh

(160 mm pore size) was placed on the filter paper on top of the

tissue in order to ensure better contact between the tissue and the

array. The tissue was perfused with oxygenated (95% O2/5%

CO2) culture medium at a flow rate of 3 ml/min. After waiting for

30 minutes to allow the tissue to develop stable spiking activity,

extracellular signals were recorded for 60 minutes on each of the

512 electrode channels at a sampling rate of 20 kHz. Raw

waveforms were then spike-sorted with a well-established method

developed by Litke et al. [8], with slight adjustment of the

parameters for cortical brain slices. Briefly, signals that crossed a

threshold of 8 SDs were marked, and the waveforms found at the

marked electrode and its six adjacent neighbors were projected

into five dimensional principal component space. A mixture of

Gaussians model was fit to the distribution of features based on an

expectation maximization algorithm. Duplicate neurons, neurons

that had refractory period violations, and neurons with too few

spikes (less than 100 spikes/hour) were excluded from further

analysis.

Immunohistochemistry and imaging
After electrophysiological recording, the cultures were fixed in

4% paraformaldehyde for 20–30 minutes, then stored in phos-

phate buffered saline with 0.05% sodium azide at 4uC. Cultures

were washed three times with tris-buffered saline (TBS), then

immunostained free-floating, ensuring that the tissue side faced

upward (filter paper down). Cultures were blocked with 10%

normal goat serum and permeabilized with 0.5% Triton-X for 2

hours, then washed with TBS and incubated with primary

antibody (Neuronal nuclei (NeuN) – Chemicon Millipore (cat

#MAB377) mouse monoclonal IgG1 anti-NeuN 1:1000) over-

night at 4uC on an orbital shaker. Cultures were then washed with

TBS and incubated with secondary antibody (Molecular Probes

Alexa Fluor 555 goat anti-mouse IgG 1:1000) for 2 hours at room

temperature on an orbital shaker. Next, cultures were washed with

TBS, DAPI stained for 10 min (Invitrogen D21490/DAPI-Fluoro-

Pure Grade, 300 nM working solution), and washed again with

TBS. Tissues were mounted on superfrost/Plus slides, then

coverslipped using Fluoromount-G (Southern Biotech) and

allowed to dry overnight before imaging. Cultures were imaged

on a Leica Spot Scanning SP5 confocal microscope using a 20x/

0.5 objective lens; gain and offset were optimized to the z-plane of

highest-intensity staining for each culture. Brightfield and fluores-

cent overlaid images were tiled in order to capture the entire

hippocampus and filter paper marks, necessary to orient the

placement of the culture on the 512-electrode array.

High-Resolution Functional Networks in Cultures
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Identification of hippocampal neurons
Because the slice cultures contained portions of cortex and

hippocampus, we sometimes recorded neurons from both brain

regions. When slice cultures grow, the distinction between brain

regions can often become blurred under bright field microscopy,

but the gross structures of cortex and hippocampus are still

preserved and can be observed by immunohistology (Figure 1B).

In order to identify hippocampal neurons, we compared the

photographs of the cultures before and after they were incubated.

Photographs of the tissues were taken on the first day in vitro

(DIV1) and then 2–4 weeks later (DIV14-28) after recording with

the electrode array. The filter paper on which the tissue was placed

was marked by two small cuts (Figure 1A, blue arrows) to allow the

positions from the two photographs to be aligned. Aligned

photographs suggest that the structures, locations and dimensions

of hippocampal cell body layers (dentate gyrus (DG), CA3, and

CA1 as labeled in Figure 1C) were well preserved after more than

two weeks of the incubation period. The positions of the neurons

were then estimated by fitting two-dimensional Gaussian distri-

butions to the strength of the average signals on the electrodes

(electrophysiological images [8]). Estimated neuron positions were

then plotted on top of the DIV1 photographs (Figure 1A) to

compare with the underlying anatomical structures. Only neurons

that were within the hippocampal region on the photograph

(Figure 1A) were retained for further analysis of the hippocampal

network structure. Locations of the identified hippocampal

neurons matched well with the cell body layer of the stained

hippocampus (Figure 1D). For cortical recordings, we did not

categorize neurons because the cortex was large enough to cover

the entire array and there were no neurons from other structures

present.

Cross-correlation
Several different definitions of cross-correlation have been used

in the literature. We chose to use the cross-correlation histogram

(CCH), which is a histogram of time differences of spikes for a pair

of neurons. The CCH between neuron I and neuron J is defined

by the following equation:

CCH(t)~
X

t

i(t)j(t{t), ð1Þ

where i(t), j(t) were the binary states of neurons I and J at time t.
This binary state was defined to be 1 or 0, indicating a spike or no

spike, respectively, in a time bin of width 50 or 500 ms centered at

time t (see Table 1). Several methods for normalizing cross-

correlations have been proposed in the literature [25–27].

However the final results are independent of the choice of

normalization because we used a Monte-Carlo based method for

our significance test. The details are described below in the

‘Network Analysis’ section.

When two or more neurons are near the same electrode, their

spike waveforms can interfere with each other, and the overlapped

spikes are not sorted well. In such a situation, the cross-correlation

can have an artifactual trough near the origin. Less frequently,

when spikes from a neuron are recorded on multiple electrodes, a

small fraction of these spikes can be misidentified as originating

from another neuron. This creates a very sharp peak (,50–100 ms

width) in the cross-correlation near t= 0. To prevent these

artifacts from being identified as significant signals, we linearly

interpolated a 61 ms segment from the average cross-correlation

from 21.5 to 21.0 ms and from 1.0 to 1.5 ms when the physical

distance between neurons was closer than 180 mm (3 interelec-

trode distances).

Wavelet Transform
The wavelet transform is a widely accepted method for

analyzing time series data and is especially useful when there are

non-stationary oscillations [28]. In neuroscience, wavelets have

been used to analyze continuous signals such as local field

potentials (LFPs) and electro-encephalogram (EEG) recordings

[29–31]. The wavelet transform has not been widely used as a

method to analyze single unit spike trains (but see [32,33]). As far

as we know, no one has applied wavelet analysis to cross-

correlation functions to assess functional connections, making ours

a novel approach. We adopt the mathematical framework and

notation used by Torrence and Compo [28]. The continuous

wavelet transform is calculated by convolving a mother wavelet

function with the signal (here, the cross-correlogram). We have

chosen a complex Morlet function as the mother wavelet function:

y0(g)~p{1=4eiv0ge{g2=2, ð2Þ

where v0 is the non-dimensional frequency of the wavelet

function, here taken to be 4. An example of the wavelet function

is shown in Figure 2A. The wavelet transform of the cross-

correlogram is given by convolving a scaled, translated and

normalized version of this mother wavelet function with the cross-

correlogram:

Wn(s)~
XN{1

n0~0

CCHn0
dt

s

� �1
2
y�0

(n0{n)dt

s

� �
, ð3Þ

where the (*) indicates the complex conjugate, dt is the time step of

the CCH (we have summarized the parameters for the wavelet

transform in Table 1), and N is the number of time steps in the

cross-correlogram. As seen in equation (3), the wavelet transform is

given as a function of both scale (s; width of the wavelet function,

which corresponds to the Fourier period) and time (n). In order to

minimize the influence from the edge of the data, we padded both

ends of the data with the average of 100 bins at the edge of the

CCH such that the total number of bins is a power of 2. Only

limited segments of the wavelet transform are used in the following

analysis (Table 1), so these edges did not affect our results. The

wavelet power spectrum is calculated by taking the absolute square

of each point of the wavelet transform. The wavelet power

spectrum can be used for identification of both simple peaks and

oscillations. An illustrative example of peak identification is shown

in Figure 2B, C. Example cross-correlograms and their wavelet

power spectra from data are shown in Figure 3A–C. The same

framework can be used in different frequency ranges by merely

changing the binning size. Here we have used only 2 different

scales for our network analysis. The frequency bins were set to

equal size in log space.

Connectivity analysis of the wavelet power spectrum
Once the wavelet power spectrum was calculated, it was

subjected to a significance test. The significance test was done by

comparing the value of the wavelet power of the data with the

value of the wavelet power from a noise distribution. To avoid

frequency dependent biases, we chose white noise as our noise

distribution, which has a flat power spectrum across all frequen-

cies. Although the analytical form for the wavelet power spectrum

is known for a Gaussian white noise time series [28], the equivalent

distribution for Poissonian white noise – the type of noise of our

cross-correlations – is not known. Therefore, for this study, the

High-Resolution Functional Networks in Cultures
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significance threshold was calculated with a Monte-Carlo method

by generating white noise cross-correlograms many times. The

threshold values were determined as a function of frequency and

the number of spikes in the cross-correlogram. Because it is

computationally infeasible to generate a threshold for every

possible number of spikes, we generated a look up table of

threshold values for different numbers of spikes at 10k, where

k = 0.0, 0.1, 0.2, … 6.0. We linearly interpolated the results

between these numbers. For each unique number of spikes,

random white noise cross-correlograms were generated by

Figure 1. Organotypic culture preparation and photo overlay. Photographs of cortico-hippocampal organotypic cultures. Tissues are grown
on a filter paper. A: A bright field image of an example organotypic culture at DIV1. The hippocampal structure is visible without staining. Blue arrows
indicate the location of markers. B: NeuN staining of the culture after data taking and tissue fixation at DIV16. There are missing neurons in CA3 as
consistent with a previous report (Zimmer and Gähwiler, 1984), but the overall layer structure is well conserved. C: Overlaid photograph of A and B.
Relative position is adjusted by aligning the two markers on the permeable filter paper. Positions and dimensions of the hippocampal structures are
well conserved during the incubation period. D: Overlaid photograph of B, the outline of the array (yellow rectangle), and the estimated locations of
the recorded neurons. Light blue circles are manually identified hippocampal neurons (see ‘Identification of hippocampal neurons’ subsection), and
red circles are neurons recorded outside the hippocampal structure. Locations of the recorded neurons match with the granule cell layer and the cell
body layer.
doi:10.1371/journal.pone.0105324.g001

Table 1. Parameters for wavelet transform.

Time
bin size

Transformed
Window
(time bin centers)

Number of
time bins

Window for
peak
identification

Covered
Frequency

Number of
frequency bins

Scale 1 50 ms 670 ms 2801 620 ms 20–1000 Hz 101

Scale 2 500 ms 6700 ms 2801 6200 ms 2–100 Hz 101

doi:10.1371/journal.pone.0105324.t001
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assigning random timing in the transformed window to each spike,

creating Poisson statistics at each bin. These cross-correlograms

were generated 105 times, and the wavelet power spectrum for

each of the correlograms was calculated. Then, the maximum

values of the wavelet power spectrum over time were evaluated at

each frequency. This produced a distribution of 105 maximum

values at each frequency. Finally, a p = 0.001 threshold was

enforced using the 100th highest maximum value at each

frequency.

When analyzing the wavelet transforms of the experimental

data, peaks (Figure 2C, green dot, arrowed) were defined as any

point that had a value greater than the 8 surrounding points (all

the pixels that surround one pixel in discrete 2-D space) and were

detected from the regions of the power spectrum where their value

exceeded the threshold. Thus each cross-correlogram could have

multiple peaks at different frequencies and times. If the peaks

occurred in different frequency ranges, they were treated as

different connections. In this manner, functional connections

between neurons could be evaluated at any desired frequency

band. The directionality of the connection depended on the time

offset of the correlogram peaks. If the peak position was more than

1/4 of the full Fourier period away from the center of the cross-

correlogram, the connectivity was considered as delayed; other-

wise, we considered it non-delayed. The shift of 1/4 of the full

Fourier period is where the primary peak of the real part of the

wavelet function does not overlap with t = 0 (Figure 2A). For

example, a simple Gaussian peak is considered as a delayed

connection when the time offset of the Gaussian is more than

,2.2s, because of the relationship between the Fourier period

and the Gaussian width (Figure 2C, caption). Delayed correlo-

grams were regarded as cases of unidirectional functional

connectivity; non-delayed correlograms were considered to be

cases of bidirectional connectivity.

Network analysis
The strength of wavelet analysis lies in its ability to categorize

neuronal correlation across different frequency ranges. Based on

the distribution of the observed wavelet power peaks (see Figure 3

in the Results section), we chose 4 different frequency ranges in

our work (Table 2). The first category was high-frequency

connectivity (HFC), which we considered to be from 100 Hz to

1000 Hz. In most cases, peaks in correlograms with less than 5 ms

width fell into this category. There were a number of neuron pairs

that showed cross-correlations that produced HFC (See Results).

The second category was gamma-frequency connectivity (GFC),

which we considered to be from 30 Hz to 80 Hz. Both

hippocampus and cortex are known to produce gamma rhythms

in LFPs [34–39]. Even though we do not record LFPs, spikes of

the neurons can synchronize through them. The third category

was beta-frequency connectivity (BFC), which we considered to be

from 12 Hz to 30 Hz. This rhythm has also been widely reported

in the literature [39–41], although the beta oscillations in mouse

hippocampus might be limited to in-vitro preparations [42]. The

fourth category was the theta-frequency connectivity (TFC) (4–

12 Hz) – another well-known rhythm in both cortex and

hippocampus in the literature [15,43,44]. The results from the

TFC largely overlapped with those from BFC, except for the decay

length of the connectivity density. We report the results from the

theta frequency range in the subsections where we observed

differences from BFC.

We assigned the names of these frequency ranges based on

common oscillations observed in continuous waveform data such

as EEG or LFP recordings. The oscillatory shapes that were

observed in Figure 3B, C could be correlated with such oscillatory

electric fields. Examples of phase-locking between spikes and fields

have been observed in many regions of the brain including cat

visual cortex [38] and hippocampus [45]. However, this does not

mean our wavelet peaks in these frequency ranges are always

associated with field oscillations. Our analysis found simple peaks

and troughs, as well as other non-oscillatory shapes, in both

gamma and beta ranges (Figure 3), which may not be related to

gamma and beta rhythms. If we also recorded LFPs, we could

potentially study the relationship between the LFPs and the spikes.

However, the relationship between the extracellular LFPs and

spiking activity is still an active area of study [46,47]. Our primary

focus in the present study is to construct and evaluate networks of

individual neurons. Thus we did not try to assess the relationship

between the constructed networks and the extracellular LFPs.

Previous work has shown that there is a hidden bias that

produces potentially misleading results in network measures when

the networks have different numbers of nodes (neurons) and edges

(connections), as described in [48]. In an attempt to mitigate this

problem, we randomly subsampled 100 neurons from each tissue,

and evaluated each network measure as a function of connectivity

density. (Connectivity density is the fraction of connected pairs of

neurons among all possible pairs of detected neurons.) In this way,

we can compare networks with similar numbers of nodes and

edges. We repeated subsampling with 100 different sets of

randomly-chosen neurons, and calculated the mean and root

mean square of each network measure as a representative value,

and its associated error, for that one tissue. The tissues that had

Figure 2. Example of a wavelet function and peak identifica-
tion. A: An example of a complex Morlet function. The solid blue line is
the real part; the dashed cyan line is the imaginary part. T is the Fourier
period of the wavelet function. B: A zero-centered Gaussian peak with
s= 1 ms (black line) and the real part of the wavelet function that gives
the maximum power (green line). The Fourier frequency and the delay
time of the wavelet function were given by the peak in the wavelet
power spectrum (C, arrowed green dot). C: Wavelet power spectrum of
the Gaussian function defined in B. The wavelet power spectrum has a
peak at time = 0 and frequency ,116 Hz. This gives the approximate
relation between the Fourier period and the Gaussian width: T ,8.6s.
doi:10.1371/journal.pone.0105324.g002
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less than 100 neurons were excluded from the analysis (18/34 in

hippocampus and 2/24 in cortex). Connections were ordered by

significance, which was the ratio of the actual power of the peak to

the threshold power. Then we evaluated the network properties as

a function of the connectivity density from 0.5 to 2.0%.

Once the connections were selected, they were treated as binary

connections (connected or not connected). We used connectivity

densities up to 2%, although there is previous work that suggests a

higher connectivity density (28.8%) is present for adjacent neurons

in hippocampal culture [14]. There are several reasons why we

expect significantly lower connectivity density in our preparations.

First, we collected neurons from a large area (0.9 mm61.9 mm).

Therefore, many of the neurons were physically separated by large

distances. Indeed, we observed higher connectivity density when

the inter-neuron distance was short (see Results). Second, we

measured functional connectivity from the cross-correlation of the

Figure 3. Examples of cross-correlations and their wavelet transforms. A–C: Six example cross-correlations and their wavelet transforms
from each frequency range. Top of each panel is the cross-correlations of neurons. All these types of structures in the cross-correlation plots are
observed both in cortex and hippocampus. The wavelet power spectrum of each pair is shown right below the cross-correlation. Hot colors indicate
stronger power and cool colors indicate weaker power. White contours in the power spectrum indicate significance thresholds (See Materials and
Methods). Note the wide variety of shapes that can be observed in each frequency range. A: Examples from high frequency connectivity. Typically, a
single peak in cross-correlation was observed. Multiple peaks and oscillatory shapes were observed less frequently. Many connections showed a peak
offset from zero (also see D, E). B: Examples from gamma frequency connections. Single peaks and troughs, and oscillatory shapes were the most
common. C: Examples from beta frequency connections. Single peaks and troughs, and oscillatory shapes were found. Signs of inhibition on one of
the sides also can be found (red arrows). D–G: The distribution of the delay and the frequency of the peaks of wavelet power spectra from cortex (D,
F) and hippocampus (E, G) in scale 1 (D, E) and scale 2 (F, G). Examined frequency ranges were bounded by colored dashed lines. The right panel on
each plot is the connectivity density at each frequency. Solid green curves indicate 1/4 of the Fourier period of the wavelet function. At this time
delay, the primary peak of the wavelet function does not overlap with t = 0 (Figure 2A). If the delay is larger than this value, the connection is
considered as ‘directed (delayed)’. Broadly tuned clusters of connections were observed in both scale 1 and scale 2 (yellow arrows), which motivated
us to set three frequency ranges: high frequency (100–1000 Hz), gamma (30–80 Hz) and beta (12–30 Hz). A peak in the theta band (4–12 Hz) was
observed in the cortex (F, blue arrow), but not in hippocampus (G) (see the ‘Cross-correlations and wavelet transforms’ subsection).
doi:10.1371/journal.pone.0105324.g003
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spikes. Due to reduced statistics, it is possible that we were not able

to detect as statistically significant the connections with limited

strength. Indeed, sometimes we had tissues that had low

connectivity; 13% of the subsampled networks had less than 1%

connectivity density; 30% had less than 2%. Even if the

subsampled networks had smaller connectivity density than

required, we included those networks in the analysis (i.e. the data

point for 2% connectivity density includes 30% of networks with

connectivity density smaller than 2%. The connectivity density

value specified in the figure should be understood as an upper limit

of the connectivity density.). When the connectivity density for a

given frequency range and data set was less than the specified

value, the connectivity densities of the other frequency ranges for

the same data set were adjusted to the connectivity density of the

frequency range with the lowest connectivity density value in order

to avoid a bias due to different connectivity densities in different

frequency ranges. We did not simply reject subsampled networks

with smaller connectivity density because doing so would cause a

bias towards the inclusion of high-degree nodes.

We also measured the connectivity density as a function of

distance between the neurons. We measured the distance between

a pair of neurons from the estimated locations of the cell bodies

(see ‘Identification of Hippocampal Neurons’). We counted the

number of pairs as a function of inter-neuron distance in 50 mm

bins, and then calculated the probability to observe connected

pairs in each bin. Results were averaged over all the cultures, and

the mean and the SEM were calculated. We fit the following

exponential function with a constant baseline to the resulting

probability function:

P(d)~Ae
{d

l
zC, ð4Þ

where A, l, and C were fit parameters, and d is the physical

distance between the neuron pair. Fitting and evaluation of the

confidence interval of the fit parameters were performed using the

method of least squares in the Matlab Statistics Toolbox.

Once the connections are defined, we measured the network

topology of our recorded neurons. ‘‘Network topology’’ refers to

the arrangement of the elements – nodes and edges – of a given

network. Various network measures were proposed to evaluate

network properties as summarized in Box 2 of [49]. Among these

measures, we chose relatively simple measures that could be easily

compared across different frequency ranges and brain regions: the

degree distribution, clustering coefficients, efficiency, and assorta-

tivity. These measures were evaluated as a function of connectivity

density using the Brain Connectivity Toolbox [50]. Because of the

complexity of the comparison across different frequency ranges

and brain regions, a thorough analysis of motif structures, module

structures, and identification of hubs was beyond the scope of this

paper. Here are descriptions of the network measures we used:

Degree distribution. The degree distribution of the nodes –

the probability distribution of the number of connections per

neuron – was calculated from subsampled networks of 100

neurons with a 1% connectivity density, which was in the middle

of the range of the connectivity densities we investigated. We will

only report our results for output degree, as we achieved the same

basic results for the input degree (data not shown). With regard to

subsampling, it should be mentioned that scale-free networks are

known to not produce a scale-free degree distribution when

subsampled [51]. In order to simulate this effect, a subsampled

scale-free degree distribution was calculated by subsampling 100

neurons from a 1000 neuron Barabasi-Albert scale-free network

produced by preferential attachment at the same 1% connectivity

density. [52]. The Barabasi-Albert networks were generated 1000

times and, for each network, the subsampling process was repeated

100 times. We also tried subsampling from 500 neurons and 10000

neurons instead of 1000 neurons; the resulting distributions were

the same (data not shown). The degree distribution for the random

network was given by the binomial distribution [53], and an

exponential probability density distribution was used to create the

degree distribution for the exponential network. The parameters

for these three networks can be uniquely determined if the number

of neurons and the connectivity density are known. The equations

and parameters used to generate model degree distributions are

summarized in Table 3. Also, we measured the number of

disconnected nodes (nodes with zero input and output degrees).

Clustering coefficient. The clustering coefficient measures

the tendency of connections among network nodes to cluster

together locally. If the neighbors of a node (those nodes connected

to a given node) are themselves connected together, the clustering

coefficient is high. The mathematical definition of the local

clustering coefficient is as follows.

Ci~
Number of connections in Ni

ki(ki{1)
ð5Þ

where Ni is a subnetwork consisting of neighbors connected to

neuron i (but does not include neuron i) and ki is the number of

neurons in subnetwork Ni. The local clustering coefficient is

calculated for the neurons that have ki$2. A global clustering

coefficient is calculated by averaging the local clustering coeffi-

cients of the neurons that have ki$2. We used only the global

clustering coefficient in our analysis.

Efficiency. The efficiency of the network is defined as an

average of the inverse of the shortest path length. Here, the path

length is defined as the number of edges that must be traversed to

go from one neuron to another, not the physical distance between

neurons. The average shortest path length is also a widely used

measure, but the efficiency, the mean of the reciprocal of the path

length, is not divergent in the case of disconnected nodes. (The

path length of a disconnected pair is defined as infinity.) While it is

true that this problem can be avoided by considering only

Table 2. Parameters for the connectivity analysis.

Type of connectivity Taken from Frequency range

High frequency (HFC) Scale 1 100–1000 Hz

Gamma (GFC) Scale 2 30–80 Hz

Beta (BFC) Scale 2 12–30 Hz

Theta (TFC) Scale 2 4–12 Hz

doi:10.1371/journal.pone.0105324.t002
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‘connected’ parts of the network, this approach would throw away

a large number of nodes when the connectivity density is low. This

measure is strongly dependent on the connectivity density, and

thus it is quite important to compare at the same connectivity

density, as we have attempted to do.

Assortativity. Assortativity measures the tendency of nodes

to connect to other nodes that have a similar degree. (The degree

of a node is its number of connections.) If high degree nodes

preferentially connected to other high degree nodes, the

assortativity is positive. Many social networks have positive

assortativity, and many technological and biological networks

have negative assortativity [54]. Assortativity is defined as the

Pearson correlation coefficient of degree for connected nodes. The

most convenient form of the assortativity is:

r~
M{1

P
i jiki{ M{1

P
i

1
2

(jizki)
� �2

M{1
P

i
1
2

(j2
i zk2

i ){ M{1
P

i
1
2

(jizki)
� �2 , ð6Þ

where ji, ki are the degrees of the vertices at the end of the ith edge,

M is the number of edges, and i = 1, …, M [54].

The significance tests for the comparisons of these network

measures were done by two-tailed Student’s t-test. The network

measures were checked prior to the application of the t-test to

ensure they were roughly Gaussian (data not shown).

Data sharing
We welcome enquiries concerning data sharing of our neural

spiking activity data.

Results

Electrophysiological properties of the cultures
In total, 59 cortico-hippocampal tissues were used for record-

ings. 25 tissues were used for cortical recordings; 34 tissues were

used for hippocampal recordings. The average number of neurons

found in each tissue of cortex and hippocampus was 3156127 and

118651, respectively. The firing rate distribution is shown in

Figure 4C. The firing rate for all the neurons in cortex and

hippocampus were 1020.1660.64 Hz and 1020.4460.68 Hz, respec-

tively. Cortical neurons had a higher average firing rate, and also a

larger number of neurons were found in cortical recordings than

hippocampal recordings. This smaller number of neurons in

hippocampal recordings could be explained by the fact that the

hippocampi were not large enough to cover the entire recording

array (0.9 mm61.9 mm); on average the hippocampus covered

,70% of the array. The tissues that had less than 100 neurons (2

in cortex, 18 in hippocampus) were excluded from further analysis

because they had too few neurons for meaningful network analysis.

Non-stationary synchronous activity (so-called ‘network bursts’

[55,56]) were seen in all the tissues in our recordings (Figure 4A).

One cortical tissue that showed unusual network bursts that lasted

,100 seconds was excluded from further analysis. Various types

of bursts are summarized in [57]. In summary, 22 cortical

recordings and 16 hippocampal recordings were used for further

analysis.

Cross-correlations and wavelet transforms
Representative cross-correlations and their wavelet-transforms

are shown in Figure 3A–C. The example pairs were selected from

the significant cross-correlations of both hippocampus and cortex.

We measured the delay and the frequency of the peaks of the

wavelet power spectra, and determined whether the correlations

occur at specific delay or frequency ranges (Figure 3D–G). Large

numbers of directed (delayed) connections were observed in the

frequency range above 100 Hz in both cortex and hippocampus

(Figure 3D, E; connections to the right of the green lines). In the

scale with lower frequencies, we could observe peaks in the non-

directed (non-delayed) connections at ,40 Hz and ,20 Hz both

in cortex and hippocampus (Figure 3F, G; connections to the left

of the green lines; peaks indicated by the yellow arrows). Another

peak at ,9 Hz, which falls in the theta frequency range (8–

12 Hz), was observed in cortex (Figure 3F; blue arrow), but not

hippocampus. It is known that hippocampal theta rhythm is

dependent on afferent input [43,58]. Presumably, the reason why

we do not see the prominent theta rhythm of the hippocampus is

the lack of afferent input in our organotypic cultures. The

observed peak structures in Figure 3D–G motivated us to separate

the frequencies into the 4 ranges (High Frequency, Gamma, Beta

and Theta) described in ‘Network analysis’ in the ‘Materials and

Methods’ section. We next describe the characteristics of the

identified connectivity in each frequency range (except for TFC,

which was similar to BFC).

Connections in the HFC (100–1000 Hz) range had very

temporally precise cross-correlation. Peaks that had a time offset

from zero were the most common in this frequency range (62%

directed and 38% non-directed at 1% connectivity density).

Troughs and oscillatory shapes were rarely observed in this

frequency range.

Connections in the GFC (30–80 Hz) range had relatively more

pairs that had zero-centered cross-correlation. Single peaks or

single peaks with a little trough on the side were the most common

cross-correlations. However, compared to HFC, more troughs and

oscillatory shapes were observed. At this frequency range non-

directed connections were the most common (24% directed and

76% non-directed at 1% connectivity density).

Connections in the BFC (12–30 Hz) range had even larger

temporal structure. The properties of connectivity here were

similar to GFC; peaks, troughs, and oscillatory shapes were all

observed in this frequency range as well. One notable difference

Table 3. Probability density functions for the model degree distributions.

Type of model network Probability density function

Random (binomial) N

k

0
@

1
Apk ( 1 { p) N { k

Exponential exp( { ak)P
k

exp( { ak)
, a~ ln( 2=Np)

Scale-free (Barabasi-Albert) N/A (see Materials and Methods)

k is the degree, N is the size of the network (the number of neurons; N = 100, in our networks). p is the connectivity density (p = 0.01 for Figure 7).
doi:10.1371/journal.pone.0105324.t003
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was that sometimes inhibition with relatively long duration from

one neuron to another was observed in this frequency range.

(Figure 3C, red arrows) Directed connections were found even less

often in this frequency range. (17% directed and 83% non-

directed at 1% connectivity density).

As mentioned in the ‘Network analysis’ subsection in Materials

and Methods, we observe simple peaks and troughs in both the

gamma and beta frequency ranges, which may not be related to

field oscillations.

Given these three frequency ranges, we can construct three

different neural connectivity networks per recording. Example

connectivity maps from both cortex and hippocampus are

presented in Figure 5. This figure illustrates features of different

structures in different frequency ranges and in different brain

regions. For example, the differences of the degree distribution

and shorter connectivity range in high frequency cortex compared

to high frequency hippocampus are visible. These observed

features are better quantified in the following section.

Network structure differences across frequency ranges
The decay of the connectivity density over distance is presented

in Figure 6. Exponential decay with a constant baseline fit well the

experimental measurements, and the decay constant was estimat-

ed for each frequency range. Although the data are not presented

in the figure, the decay lengths of the theta frequency range (4–

12 Hz) networks were 301643 mm and 237630 mm in cortex and

hippocampus, respectively. In cortex, we observed faster decay in

the high frequency network and slower decay in the theta

frequency network, but such differences were not observed in

hippocampus. This measure in cortex was the only measure that

showed differences between the beta networks and the theta

networks.

Degree distributions of 100 subsampled networks are shown in

Figure 7. The degree distributions of the model networks (random,

exponential, scale-free) were also shown. None of the distributions

from the data showed an acceptable match (.5% confidence level)

to the model distributions. The closest match was the cortical HFC

network to the exponential distribution (x2
red = 2.0, ,1% confi-

dence level), but the others did not match at all (x2
red.10, ,

10215% confidence level). The cortical HFC network showed a

different degree distribution from that produced by GFC and

BFC. It was the only network that had a shorter tail of the degree

distribution than that produced by the simulated scale-free

network. (Recall that this scale-free network degree distribution

does not appear as a straight line because it contains 100 nodes

that are subsampled from a 1000 node scale-free network [51], as

described in Materials and Methods.) On the other hand, in

hippocampus, all the frequency ranges showed similar degree

distributions. The networks produced by all the frequency ranges

examined had longer tails than those produced by the scale-free

network.

Multiple network topology measures showed differences in

different frequency ranges and brain regions (Figure 8). The

number of disconnected neurons (out of the subsampled networks

of 100 neurons) was smaller for HFC both in cortex and

hippocampus, but the number in cortex HFC was even smaller

than in hippocampal HFC. Having a large number of discon-

nected nodes increases the effective connectivity density of the

‘connected’ part (neurons with any connections) of the network.

The clustering coefficient was low for HFC compared to GFC and

BFC for cortex, but there were no differences for hippocampus.

There was not much difference observed in the efficiency across

frequencies both in cortex and hippocampus. Assortativity was

significantly different across frequency scales in cortex. For cortex

HFC, assortativity had a consistently positive value, and in the

other two scales it had negative values. Again, there were no

differences across frequency ranges in hippocampus.

Simulation of low resolution recordings
In order to simulate low time resolution recordings, we jittered

the spike time data by a Gaussian distribution with a sigma of

50 ms. We used the same data sets as in Figure 5 as an example.

The connectivity maps of the jittered data are shown in Figure 9.

The significant threshold was the same as that of Figure 5. Most of

the connections in HFC and GFC were lost by the jittering.

Connections in BFC were largely different from the original

Figure 4. Raster plot, spike waveform, and firing rate distribution of a representative hippocampal recording. A: An example raster
plot from one of the hippocampal tissues. There were events during which many of the neurons synchronously raise their firing rates (Red arrows, so
called ‘network bursts’. See ‘Electrophysiological properties of the cultures’). These events typically lasted for seconds, and were observed in all of the
hippocampal and cortical recordings. B: A representative extracellular spike waveform recorded with our system. The full width at half max was
,0.3 ms. C: The firing rate distribution of the tissue in A.
doi:10.1371/journal.pone.0105324.g004
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connections shown in Figure 5. These results underscore the

importance of high temporal resolution recordings.
Discussion

Summary of findings
We have shown that the wavelet transform can categorize

pairwise neuronal cross-correlations into different frequency

ranges. Some cross-correlation patterns suggested synaptic com-

Figure 5. Example connectivity maps. Connectivity maps of one of the tissues from cortex (A–C) and hippocampus (D–F) at three different
frequency ranges: high frequency (A, D), gamma (B, E), and beta (C, F). The locations of the red circles indicate the estimated locations of the neurons.
The size of a circle indicates the number of functional connections (degree) of the associated neuron with other neurons. Lines with a color gradient
from blue to red indicate directed (delayed) connectivity that goes from the blue end to the red end; solid cyan lines indicate non-directed (non-
delayed) connectivity. The threshold value for delayed connections was set to 1/4 of the Fourier period of the wavelet function (see Materials and
Method). Larger numbers of directed connections were observed in high frequency networks (A, D). One can see features such as the absence of high
degree nodes and a shorter connectivity range in the high frequency cortex network (A), which are better quantified later.
doi:10.1371/journal.pone.0105324.g005

Figure 6. Decay of connectivity density over distance. A: Connectivity density as a function of distance. The distance was binned in 50 mm
bins, and the connectivity density was evaluated at each distance. Error bars are SEM of all the cultures. Different colors represented different
frequency ranges. Solid lines are exponential function fits to the data (see Materials and Methods). In the legend, the decay lengths of the function fits
are displayed. Inset is the same figure plotted in semi-log space. Exponential functions fit the data nicely, and give us the decay length l. Consistent
with other network properties, we observed differences in different frequency ranges in cortex, but not in hippocampus. B: Results of significance
tests for the decay length l. The tests were done among different scales in the same structure, and different structures at the same scales (black
lines). The significance was evaluated from the standard deviations of l, assuming a normal distribution. One star signifies p,0.05 significance; two
stars are p,0.01 significance. While we saw no significant differences in hippocampus, the high frequency range in cortex was significantly different
from the other two frequencies.
doi:10.1371/journal.pone.0105324.g006
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munication and some implied correlation due to other mecha-

nisms, such as common drives, gamma/beta/theta rhythms, and

long-term inhibitions. We have also shown that correlations were

observed in 4 frequency ranges (HFC, GFC, BFC, TFC), and they

can show different network structures. Among all the networks, the

cortex HFC networks were the most different. They had positive

assortativity, a smaller decay length, and a shorter tail of the

degree distribution. The hippocampal networks at different

frequency ranges showed less diversity. These results suggest that

measurements of functional connectivity at multiple frequency

ranges, especially with high temporal resolution recordings, are

important to illustrate the differences of functional networks.

Functional connectivity and anatomical connectivity
We have introduced a new method to obtain functional

connectivity in different frequency ranges. What do these different

frequency ranges say about the underlying synaptic connectivity in

these tissues? It is difficult to determine from cross-correlation

alone whether a pair of neurons is synaptically connected.

However, because synaptic connectivity is known to have temporal

scales of a few milliseconds, some researchers have argued that

cross-correlograms with sharp peaks at short delays may indicate

direct synaptic connections [59,60]. In the present work, the

majority of connections in this class would fall into the HFC

category because of its temporal sharpness. Indeed such examples

can be observed in HFC in Figure 3A. On the other hand, it is less

likely that we can associate lower frequency range connectivity

with direct synaptic connections because most of them were non-

delayed. Again, we did not try to assess whether or not HFC was

mostly due to monosynaptic connectivity, but it is reasonable to

think that the functional network structure presented by HFC was

closer to the structural synaptic connectivity than were the

functional networks presented at the lower frequency ranges.

Degree distribution in cortex and hippocampus
There are a few reports about the degree distribution of

neuronal networks. In rat and mouse hippocampus, the degree

distribution of the functional connections is scale-free [12]

(calcium imaging; acute slices; cross-correlation connectivity;

thousands of neurons; 50–150 ms time bins). In rat cortex, the

degree distribution falls as fast as random networks [61]

(simultaneous patch clamp; acute slices; monosynaptic connectiv-

ity; 6 pyramidal neurons). In cat visual cortex, the degree

distribution also falls as fast as a random network [62]

(extracellular electrophysiology; in-vivo under visual stimulation;

maximum entropy connectivity; 10 neurons; 2 ms time bins).

In our preparations we measured the degree-distribution in 100-

neuron networks. The degree-distributions of all the networks had

longer tails than that of random networks (Figure 7). Cortex HFC

had a relatively shorter tail compared to other networks, and was

closest to the degree distribution of an exponential network. All the

other networks had longer tails than all the model networks

including a subsampled scale-free network. Differences between

cortex and hippocampus were observed clearly in HFC. The

degree distribution in cortex HFC (exponential) does not match

with the previous reports (random). However, it is difficult to

directly compare our results with these previous results due to

differences of animal species and preparations, limitations of the

number of neurons or temporal resolution, and definitions of

connectivity. We are also uncertain whether we are able to expect

that a simple model distribution matches our data without

distinguishing different cell types, as different cell types may have

different connectivity patterns.

We note that because the possible number of connections

between neuron pairs is proportional to the number of neurons

squared, our MEA, which has 512 electrodes, was able to collect a

great amount of cross-correlation data. Thus, this detailed

evaluation of the degree distribution is a new result that utilized

the advantage of the large-scale multielectrode-array. We also note

that MEAs with an even greater number of electrodes have

recently become available [9,10]. Brain slice experiments

performed with these very-large-scale MEAs may potentially

benefit from the computational methods described herein.

Figure 7. Degree distribution. Average degree distribution of all frequency ranges for networks set at 1% connectivity density. The thin lines are
the degree distributions of simulated model networks (scale-free, exponential, and random networks). The degree distribution of the scale-free
network was achieved by randomly subsampling 100 nodes from a 1000 neuron scale-free network. Because of the subsampling effect, the result
from the scale-free network does not appear as a straight line in this log-log plot (see Materials and Methods). Error bars indicate the SEM of 25 and
22 data sets in hippocampus and cortex, respectively. A: Degree distributions of cortical networks. Gamma and beta networks had longer tails than a
scale-free network, but the high-frequency network had a shorter tail than the other two. B: Degree distribution of hippocampal networks. All the
frequency ranges had similar degree distributions, which had longer tails than a scale-free network.
doi:10.1371/journal.pone.0105324.g007
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Figure 8. Graph theoretic measures in 3 different frequency ranges. A: Various network measures were determined for networks in different
frequency ranges as a function of connectivity density. Error bars indicate SEM of 22 and 16 data sets in cortex and hippocampus, respectively.
Number of disconnected neurons: These are the number of neurons with zero input and output degrees, in subsampled networks of 100 neurons. Both
in cortex and hippocampus, high-frequency networks had a smaller number of disconnected neurons. The high-frequency cortical networks had a
significantly smaller number than the hippocampal networks. The number of disconnected nodes may affect other network measures through
changing the effective size of the networks (see Results). Global clustering coefficient: All the frequency ranges in hippocampus showed similar values.
Note that the high-frequency cortical networks had lower values than all the other networks. Network efficiency: There were no differences with p,
0.01 significance in this measure (see B). The values grew monotonically with connectivity density. Assortativity: Hippocampal networks showed
slightly negative values in all the frequency ranges. The low frequency networks showed lower assortativity. In cortex, the values were significantly
different in each frequency range. The high-frequency networks showed positive assortativity unlike all the other networks. B: Results of significance
tests (two tailed Student’s t-test) of network measures at 1% connectivity density. The tests were done among different scales in the same structure,
and different structures at the same scales (black lines). One star represents p,0.05 significance, and two stars represent p,0.01 significance. Note
that significant differences were observed in different scales in cortex, and between cortex and hippocampus especially at the high frequency range,
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Positive assortativity in cortex HFC
When Newman proposed ‘assortativity’ for the first time, he

found that technological and biological networks typically show

slightly negative assortativity while social networks show positive

assortativity [54,63]. Later on, examples of positive biological

networks were found in macroscopic human brain studies [64,65].

One study suggested that networks with negative assortativity

enhance stability of synchronization [66]; other studies suggested

positive assortativity enhances resilience to targeted attacks [54],

and robustness to noise [67]. Another study suggests that the

network will naturally evolve to have slightly negative assortativity

unless there is a specific mechanism for making positive

assortativity [68].

In our results, the cortex HFC networks showed positive

assortativity, while all the other networks showed negative

assortativity. However, there are no comparable measurements

of assortativity in neural networks based on individual neurons.

Given our unique results, it will be worth carrying out comparable

measurements in other preparations, including acute slices and

in vivo, to further explore these results.

Wavelet transform and alternative methods
Besides cross-correlation, there are various methods for

inferring connectivity based on neuronal activity, including the

generalized linear models [69,70], Granger causality [71–74], and

transfer entropy and its extensions [25,75–80]. We chose cross-

correlation for its simplicity, and we applied wavelet transform to

the cross-correlations because we were especially interested in the

temporal structure of the neuronal interaction. The wavelet

transform is widely used in neuroscience for analyzing continuous

signals such as field potentials and for waveform identification in

spike sorting [81,82]. Application of the wavelet analysis to spiking

activity is not common, but see [33]. As far as we know, this is the

first application of the wavelet transform to cross-correlations of

spiking activity. Also, we are currently trying to expand our

description of network connectivity to an information theoretic

approach by employing transfer entropy [83,84] (Timme et al.

2013, SfN Indianapolis Chapter Meeting, poster presentation).

Organotypic cultures
The present study was conducted using organotypic cultures

[85]. It is known that the gross anatomy of these cultures resembles

the general structure found in the original neuronal systems [86–

88] as well as some detailed structures including neuronal

morphology [89], cytoarchitecture [90,91], and precise intracor-

tical connectivity [92]. There are also similarities to the in-vivo

system in physiological aspects: intrinsic physiological properties

[93], precisely timed responses [94], UP states [95], oscillations

[96,97], synchrony [96,98], waves [99], repeating activity patterns

[98,100] and neuronal avalanches [101]. However, there are also

several known differences from in-vivo brains such as exuberant

innervation of the CA1 region of hippocampus [88], exaggerated

excitatory postsynaptic potential (EPSP) [87], aberrant arboriza-

tion of hippocampal neurons [102], and disrupted layer structure

in cortex [103]. Because of these reported differences, we need to

cautiously interpret whether or not the results presented here can

be carried over to acute slices and in-vivo preparations. However,

it should be noted that new biological features such as avalanches

were first observed in organotypic cultures and confirmed later in

other preparations [101]. It would be interesting to look for the

features presented in this paper also in acute slices and in-vivo

preparations by using, for example, the computational methods

that we developed for the present study.

The significance of this research in the field
In 2013, a significant US national project in neuroscience called

the ‘BRAIN Initiative’ was announced. One of the three goals of

this project is ‘‘to understand circuit function’’ [104]. Obviously,

this goal requires non-trivial development of data analysis methods

and tools. In this paper, we demonstrated that high temporal

resolution is an essential key to understand neuronal correlations.

Optical methods are indeed useful for recording large numbers of

but fewer significant differences were observed between the different scales in hippocampus.
doi:10.1371/journal.pone.0105324.g008

Figure 9. Connectivity maps with 50 ms jittering. The same threshold values as Figure 5 were applied to each connectivity map of the same
data sets. Most of the connections in HFC and GFC were lost (A, B, D, E). Connections in the Beta frequency range (C, F) were different from the
original connectivity maps (Figure 5C, F).
doi:10.1371/journal.pone.0105324.g009
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neurons, but their typical temporal resolution for large populations

is limited to ,50 ms. With this temporal resolution, any functional

connections above ,10 Hz (Nyquist frequency of 50 ms resolu-

tion) will not be observable as we have seen in Figure 9. Even in

the best of circumstances, the temporal resolution of calcium

imaging is ,10 ms (e.g., see Figure 2d and 3f of [105]), with

Nyquist frequency ,50 Hz; it is still out of our putative ‘‘synaptic’’

correlation frequency range (HFC). Electrophysiology can achieve

much higher temporal resolution.

We have developed a methodological framework to compare

network structure of neuronal networks at multiple frequency

ranges. This framework can be applied to any neuronal system as

long as recordings of ,100 neurons with high temporal resolution

are possible. Therefore, this same method can be applied to in-

vivo and in vitro acute brain slice data as well as to the

organotypic cultured brain slice data presented in this paper. It

can be applied to different brain regions, with or without genetic

modifications and/or pharmacological modifications. Given all

these possibilities, this method can serve as a general tool for

examining the microscopic functional networks of the brain.
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42. Buzsáki G, Buhl DL, Harris KD, Csicsvari J, Czéh B, et al. (2003)
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