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Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the
leading cause of neurological disability in young adults, affecting over two million people worldwide.
Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which
ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a
neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system
leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on
MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal
injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of
mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial
structural/functional changes.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Multiple sclerosis (MS) is a chronic, potentially highly disabling
disorder with considerable social impact and economic consequences.
Onset of MS typically occurs during early adulthood, making MS the
most common neurological disease affecting people under the age of
30. It is the major cause of non-traumatic disability in young adults.
The social costs associated with MS are high because of its early age of
onset, patients with MS experience an early loss in productivity, they
need assistance in performing activities of daily living, and they
require immunomodulatory treatments and multidisciplinary health
care. Currently, nearly 400,000 people are living withMS in the United
States, and in the 1990s, there were at least 250,000 patients with MS
in the United States [1].

The clinical presentation of MS is heterogeneous. Main symptoms
include impaired vision, extreme fatigue, spasms and paralysis of a
variety of muscle systems. In the majority of cases, MS develops in an
episodic fashion, with phases of clinical disease followed by recovery.
In this form of MS, called relapsing–remitting MS (RRMS), white
matter lesions can typically deteriorate to permanent tissue injury
that is associated with neural loss and clinical disability. Over time,
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RRMS patients may develop chronic lesions that promote irreversible
axonal injury, resulting in the conversion of RRMS to secondary
progressive MS (SPMS). SPMS is characterized by minimal or no
intermittent recovery of function [2,3]. Cognitive impairment is also
common in MS, occurring at all stages of disease progression.
Dysfunction in free recall from long-term memory, speed of informa-
tion processing, working memory, and abstract reasoning are
frequently observed in MS [4].

In recent years, basic research in MS has elucidated the mechan-
isms and processes underlying the disease, the development of
imaging techniques (such as magnetic resonance imaging: MRI), and
the development of immunomodulatory drugs which, for the first
time, are altering disease outcome [5]. However, basic research in MS
has not help explain many disorders associated with MS, such as
depression, which is the most frequent psychiatric disorder in MS
patients. The cause of depression is multifactorial and is likely
associated with psychosocial stress, focal demyelinating lesions, and
immune dysfunction. Early intervention in depression can prevent a
decline in quality of life that typically characterizes MS patients and
has even prevented suicide [6]. Despite advances in reducing clinical
symptoms in patients withMS through the use of immunomodulating
pharmacotherapy, not all respond well to these treatments, especially
when the patient is in SPMS, probably due to disease heterogeneity
and multi-local, multi-cell damage throughout not only the white
matter [7,8], but also the gray matter of the central nervous system
(CNS). Gray matter involvement has been detected in the earliest
stages of MS, and cortical gray matter atrophy has been found to occur
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at a faster rate than white matter atrophy early in disease progression
[9,10], suggesting that other mechanisms may be involved in MS
development and progression. This hypothesis challenges current
research on MS that has focused on white matter. To deny or confirm
this hypothesis, additional research is needed. It argues for the
development of new approaches and therapies.

The purpose of this article is 2-fold: 1) to review latest develop-
ments in MS research, particularly causal factors and therapeutic
approaches, and 2) to review the mechanisms of mitochondrial
function/dysfunction includingmitochondrial DNAdefects,mitochon-
drial structural and functional changes, mitochondrial DNA repair
events, and mitochondrial therapeutics that are involved in MS
patients and EAE mouse models.

2. Etiology and pathology of MS

To date, the exact cause of MS is still unclear, but it is believed to
result from an abnormal response of the immune system to one or
more myelin antigens that develops in genetically susceptible
individuals after their exposure to an as-yet undefined causal agent.
It has been characterized by an accumulation of macrophages
(microglia in the brain) and lymphocytes in the CNS (the white
matter and the graymatter), leading to demyelination and destruction
of axons [2,11–13]. Fig. 1 summarizes the possible causal factors of MS.

2.1. Genetics of MS

The identification and characterization of MS susceptibility genes
likely define the basic etiology of the disease, to improve risk
assessment, and to influence therapies. The past 10 years have seen
some progress in defining the genetic basis of MS.

The increased risk of occurrence within families indicates genetic
factors may play a role in MS etiology. MS is more likely to strike
siblings than the general population, and it is more likely to strike
monozygotic compared to dizygotic twins. Recently, whole genome
screens were conducted in different populations and identified
discrete chromosomal regions potentially harboring MS susceptibility
genes [14–20]. However, with the exception of the major histocom-
patibility complex (MHC) on 6p21, no single locus generated
overwhelming evidence of genetic linkage [21]. These results suggest
Fig. 1. The factors that may contribute to the development and progression of multiple
sclerosis. The precise causal factors of multiple sclerosis are unknown. However, it is
possible that multiple factors are involved in causing multiple sclerosis, including DNA
defects in nuclear and mitochondrial genomes, viral infection, hypoxia and oxidative
stress, lack of sunlight or sufficient levels of vitamin D, and increased macrophages and
lymphocytes in the brain.
a complex genetic etiology forMS, includingmultiple genes of small to
moderate effect and probable genetic heterogeneity. On the other
hand, the human leukocyte antigen (HLA) was found to control
immune response genes in MS, with HLA associations indicating the
involvement of autoimmunity. Further, MS was one of the first
diseases proven to be HLA-associated, primarily linked to HLA class II
factors [19,22]. The HLA-DRB1⁎1501 molecule may explain about 50%
of MS cases. Furthermore, CD45 or protein tyrosine phosphatase
receptor-type C (PTPRC) has been reported as a candidate in some
families with MS, 77C→G PTPRC polymorphism is present and
preferentially transmitted in a small subgroup of MS families, which
may only be detected with complementary methods of analysis [23].

Recently, large international research collaborations have provided
strong evidence for the involvement of the polymorphism of two
cytokine receptor genes inMS pathogenesis: the interleukin 7 receptor
alpha chain gene (IL7RA) on chromosome 5p13 and the interleukin 2
receptor alpha chain gene (IL2RA (=CD25)) on chromosome 10p15. It
is estimated that the C allele of a single-nucleotide polymorphism,
rs6897932, within the alternative spliced exon 6 of IL7RA is involved in
about 30% of MS cases. These investigations indicate that MS has a
strong genetic component [14–19]. Interestingly, some of these
findings (such as HLA-DRB1 and IL2RA) were confirmed by recent
pathway and network-based genome-wide association studies
(GWAS) [20]. In GWAS, neural pathways, namely axon guidance and
synaptic potentiation, were also over-represented in genes from MS
patients. In addition to identifying immunological pathways previously
identified, for the first time GWAS described the potential involvement
of neural pathways in MS susceptibility. For example, GWAS revealed
more comprehensive and extensive immune antigens, cell adhesion,
and signalingmolecules associatedwithMS, such as CD4, CD11b, CD58,
CD82, ITGB2, and STAT3, as well as glutamate receptors, multimeric
scaffold molecular DLG1, and DLG2. Using a pooling-based, genome-
wide approach, and high-density, single-nucleotide polymorphism
arrays, GWAS also identified a novel risk locus for MS on chromosome
13, in addition of the HLA class II genes (such as HLA-DRB1) [15].

2.2. Virus infections

A long-standing hypothesis about MS etiology is that MS is an
infectious disease by a micro-organism. However, after decades of
research, no specific infectious agents have been identified in MS, yet
many neurologists and researchers still remain open to an infectious
origin for MS. In particular, much interest has focused on a potential
role for the Epstein–Barr virus (EBV) [5,24–26]. Recent findings from a
population-based investigation support the implication of the EBV in
MS susceptibility. It has been reported that a clinical history of
infectiousmononucleosis conspicuously associated with increasedMS
susceptibility [27]. Other studies have of progressive MS cases found
the EBV present within B cells that infiltrate the meninges (mem-
branes that envelop the CNS) andwhitematter [28]— strong evidence
for the involvement of EBV in MS through B cells as triggers.

Another type of virus, corona viruses, has also been found in the
brains of MS patients. Corona viruses, important human and animal
pathogens of the order Nidovirales, usually cause respiratory and
gastrointestinal illnesses, including SARS (severe acute respiratory
syndrome). However, their locations in the brains of MS patients
indicate they may be a possible MS pathogen through their
neurotropism and immune system attack [29–31]. Viruses have
been found to induce demyelinating diseases in animals [32]. That
viruses can induce demyelinating diseases in animals strongly
supports the hypothesis that MS may have a viral origin.

2.3. Gender differences and other factors in MS susceptibility

Females, Caucasians, and people of northern European ancestry are
at an increased risk for MS. The incidence of MS in persons of any of
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these 3 ancestries has considerably increased over the last century,
with the increase greatest in women [33]. A large multicenter clinical
trial of glatiramer acetate in primary progressive multiple sclerosis
indicates that there exist differences in the rates of clinical diseases
betweenmen andwomenwithMS [34]. Sex dimorphism inMSmaybe
explained by the effects of sex chromosomes and of sex steroid
hormones on the immune system, blood–brain barrier, and parench-
ymal CNS cells [35]. Both clinical and experimental studies have found
that sex steroid supplementation may be beneficial in MS patients in
order to reduce symptoms. Interestingly, beneficial neuroprotective
effects of MS were noted in clinical studies for elevated levels of
hormones in both female and male hormones (estrogens, progester-
one, and androgen), an elevation that could be related to anti-
inflammatory actions on the immune system or the CNS or related to
direct neuroprotective properties [35–37]. It should bementioned that
these actions can also be seen in estrogen receptor regulators in animal
model [38]. These observations may further stimulate current clinical
studies to determine the efficacy of and tolerance to sex steroid
therapeutic approaches for MS as well as other related diseases.

Interestingly, a gender-based method that uses sex-specific and
genotype-specific primary cultures was recently established [39,40].
Astrocytes, a main type of glial cells, showed sex differences against
oxygen-glucose deprivation (OGD). Wild-type female astrocytes were
more resistant to OGD than were wild-type male cells, but this sex
difference disappeared in aromatase knockout cells. In combination,
these data suggest a critical role of the androgen-aromatase-estrogen
network in protecting cells under stress conditions. However, sex
differences in oligodendrocyte, another glial cell and the original
target of MS, has not been reported. Therefore, a sex-specific
oligodendrocyte study may help further our understanding of the
role of gender difference in MS etiology and in MS therapeutics.

The prevalence of MS was higher in Scandinavia, Iceland, the
British Isles, and North America (1–2 per 1000) than in southern
Europe (with the notable exception of Sardinia) [41,42]. According to
some observers, this geographical distribution implicates an environ-
mental disease pathogen that may not be ubiquitously distributed.
However, the geographic distribution of MS might also be explained,
at least in part, by regional variations in genetic risk factors [22].
Interestingly, residential or occupational exposure of MS patients to
sunlight may be associated with a lower mortality rate from MS
slower progression with vitamin D mediating this effect [43]. Since
ultraviolet radiation is the principal catalyst for endogenous vitamin
D3 synthesis in humans, and low levels of vitamin D3 are more
common at northern latitudes than at southern latitudes, this may be
another reason for persons in southern European countries having
lower rates of MS.

2.4. MS pathophysiology

2.4.1. Autoimmune attacks, preactive lesions, and MS lesions
Pro-inflammatory cytokines, such as interferon and tumor necrosis

factor beta releasedbyactivatedTh1cellsmayupregulate the expression
of cell-surface molecules on neighboring lymphocytes and antigen-
presenting cells (APCs). The bindingof putativeMS antigensmay trigger
an enhanced immune response against the bound antigens [44]. Such
putative MS antigens include components of myelin, such as myelin
basic protein (MBP), myelin-associated basic glycoprotein, myelin
oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP),
and others in the trimolecular complex, the T cell receptor, and major
histocompatibility complex class IImolecules onAPCsmay trigger either
an enhanced immune response against the bound antigens [44].

In addition to the autoimmune response, oligodendrocyte death,
axon damage, and even neuronal loss have also been associated with
MS inflammatory attacks on the CNS [7]. However, the reason for
these attacks is largely unknown, although genetic factors may
influence immune-mediated inflammation as well as neuronal and
glial survival by modulating the MS phenotype [45]. Therefore,
autoreactive T cells are thought to be generated in response to the
interplay of (environmental) triggers and genetic susceptibility
factors. Differentiation of such CD4+ T cells results in pro-inflamma-
tory Th1, Th17 cells and/or regulatory Th2 cells, all of which produce
cytokines such as interferon-gamma, IL-17, IL-4 and IL-10. After
activation, myelin-specific T cells are able to cross the blood–brain
barrier via interaction of adhesion molecules, such as vascular cell
adhesion molecule-1. In the CNS, including the cerebral cortex,
reactivation of these T cells involves local APCs. These APCs initiate a
detrimental cascade that typically involves the attraction of microglia,
macrophages, CD8+ T cells, and plasma cells, which produce myelin-
specific antibodies. It may be that, in MS, these tiered mechanisms in
combination may lead to mitochondrial dysfunction, neuronal
demyelination, and irreversible tissue damage characterized by axonal
loss and gliosis [46–48]. Recent evidence showed that myelin-specific
T cells also recognize neuronal autoantigen in a mouse model of MS,
further indicating that multiple autoantigens may be involved in
spontaneously developing human MS disease [49].

These features of tissue damage were found in brain and spinal
cord tissue from classic MS lesions, termed reactive lesions. However,
recently a new concept, termed preactive lesions, has been used to
refer to early pathological changes that occur before the actual
development of the reactive (active, demyelinating) lesion [13].

Indeed, focal disorder has been documented in normal-appearing
white matter of MS patients months to years before the appearance of
gadolinium-enhancing lesions. Clusters of activated microglia cells
have been identified in these lesions through MRI and immunohis-
tochemistry, notably in the absence of demyelination and clear
leukocyte infiltration; distinguishing them from the traditional
demyelinating active lesions and chronic active lesions [13,50–52].
Preactive lesions can also be seen in the gray matter, particularly in
this part there may be variable degrees of demyelination, along with
regions that will eventually become overtly lesion containing and
areas of remyelination [10,53].

The activated state of microglia cells was also reflected by
increased expression of human leukocyte antigen-DR (HLA-DR) and
CD68. In addition, foamy macrophages were occasionally found in
some of the clusters. Together, these features strongly suggested that
the progression of MSmay include a stage that actually precedes what
has been termed the traditional reactive MS lesion. Although events
that give rise to preactive lesions are still to be identified,
oligodendrocyte abnormalities appear to be crucially involved [13].
Importantly, preactive lesions do not always develop into demyelinat-
ing lesions. Therefore, preactive lesions in MS may represent
early stages in the development of MS lesions. As many of them
spontaneously resolve, they are expected to hold important clues to
halt the inflammatory demyelinating process in MS [13]. While the
activation of pro-inflammatory mechanisms in microglia may favour
disease progression, the upregulation of genes involved in anti-
inflammatory and antioxidative mechanisms driven by oligodendro-
cytes and astrocytes may protect the CNS environment and thus limit
lesion formation [52,54,55]. Interestingly, a dysfunction of mitochon-
dria in lesions as well as in the normal-appearing white and gray
matter is increasingly recognized in MS and could be an important
determinant of axonal dysfunction and degeneration [56]. Together,
these observations indicate that mitochondria and mitochondrial-
targeted antioxidant agents may have the potential for the disease, in
addition to anti-inflammatory.

2.4.2. Cellular ionic imbalance
Intracellular environments, especially ionic balance, are critical for

maintaining neuronal functions. Ionic imbalance has been hypothe-
sized to be a key mechanism of MS pathophysiology [12,57,58]. In
the progression of MS, inflammatory mediators, including cytokines,
oxidants, and nitric oxide, are released by microglia or are generated
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by hypoxia, which is secondary to tissue damage andwhich is believed
to result in amalfunction of oxidativemetabolism in the demyelinated
axon [12,46,58]. These mediators deplete ATP and perturb mitochon-
drial function, causing failure of the Na+–K+ ATPase, the enzyme that
is responsible for rapidly correcting Na+ and K+ levels and for
extruding Na+ from the axon and preventing a pathological influx of
Na+ in both resting and active axons [59].

Hypoxia is considered to be a physiological stress that induces a
replication-associated DNA damage response [60]. It has been shown
that hypoxia can inhibit Na+–K+ ATPase activity and ROS increases
Na+–K+ ATPase degradation [61,62]. Even in normal-appearing white
matter in MS, microarray analysis revealed that transcription factor
HIF-1alpha, a key regulator of hypoxia-induced gene regulation, and
its downstream genes were significantly and consistently upregulated
[52,54], indicating a hypoxia condition in this area. As shown in
studies of anoxia, the high intra-axonal Na+ concentration that results
from this failure will cause increased activity of the Na+–Ca2+

exchange channel, with the efflux of Na+ requiring a higher degree of
Ca2+ influx [63]. This, in turn, activates intra-axonal proteases,
resulting in neurofilament fragmentation and perturbation of axon
transport and integrity, ultimately leading to neuronal degeneration
[12,57]. In fact, Na+–K+ ATPase enzymatic activity and distribution
were reduced or undetectable in chronic MS patients [64–66]. It
appears that chronically demyelinated axons that lack Na+–K+

ATPase cannot exchange axoplasmic Na+ for K+ and are incapable
of nerve transmission. Therefore loss of axonal Na+–K+ ATPase is
likely to be a major contributor to continuous neurological decline in
chronic stages of MS.

2.4.3. Dysfunction of cellular clearance systems
In experimental models of demyelinating disease in aged animals,

as well as inmultiple sclerosis, oligodendrocyte precursor cells (OPCs)
differentiation appears to be impaired. This is due, at least in part, to
changes in environmental signals governing remyelination. In
particular, myelin debris within lesions appears to contain powerful
inhibitors of precursor cell differentiation [67,68]. It has been shown
that the glycosaminoglycan hyaluronan (HA) accumulates in demye-
linated lesions from patients with MS and in mice with EAE, and that
HA can prevent remyelination by inhibiting OPC maturation [69].
Efficient removal of such molecules and myelin debris by macro-
phages (microglia) and other functional systems may thus facilitate
OPCs differentiation and permit successful remyelination of damaged
axons. Interestingly, the elimination of myelin debris is extremely
efficient in young animals, whereas old animals show very poor
clearance of myelin debris [70]. Systemic progesterone administration
could reverse partially this age-associated decline in CNS remyelina-
tion in male rats [71]. These observations indicate that the inhibitors
of remyelination are increased and/or clearance systems are not
efficient in aged animals and steroid hormones and tissue/neuro-
trophic factors may be involved in this process. Further identifying
signaling molecules in this network (the myelin sheath and myelin
debris) probably represents very promising therapeutic targets for
pharmacological strategies aimed at enhancing remyelination.

Autophagy is a newly recognized cellular functional system that
delivers cytoplasmic materials to lysosomes for degradation. The
formation of autophagosomes is controlled by a specific set of
autophagy-related genes, called atg genes [72]. Autophagy is thought
to be a major, evolutionarily conserved response to nutrient and
bioenergetic stresses. Autophagy has been hypothesized to remove
aggregated proteins and damaged organelles, such as mitochondria
[72,73]. Recent studies have provided evidence that autophagy is
another mechanism of programmed cell death, termed autophagic
programmed cell death or secondary programmed cell death to
distinguish from apoptosis [74,75], thereby possessing important
housekeeping and quality-control functions that contribute to health
and longevity.
Autophagy also plays a role in innate and adaptive immunity,
apoptosis, neurodegeneration, and aging, as well as the prevention of
cancer. However, excessive or imbalanced induction of autophagic
recycling can actively contribute to neuronal atrophy, neurite
degeneration, and cell death [72,73,76].

The role of autophagy in T cells was recently examined in mouse
CD4+ T cells [77]. Interestingly, resting naive CD4+ T cells do not
contain detectable autophagosomes. Autophagy can be observed in
activated CD4+ T cells upon TCR stimulation, cytokine culturing, and
prolonged serum starvation. Induction of autophagy in T cells requires
JNK and the class III PI3K. Autophagy is inhibited by caspases and
mammalian target of rapamycin in T cells and more Th2 cells than Th1
cells undergo autophagy. Th2 cells become more resistant to growth
factor-withdrawal cell death when autophagy is blocked using either
chemical inhibitors 3-methyladenine, or by RNA interference knock-
down of Atg7 and beclin. Therefore, autophagy is an important
mechanism that controls homeostasis of CD4+ T cells [78].

Very recently, Alirezaei et al. examined the expression of Atg5
genes in T cells using both a mouse model of autoimmune
demyelination as well as blood and brain tissues from MS patients.
Quantitative real-time PCR analysis of RNA isolated from blood
samples of the experimental autoimmune encephalitis (EAE) mice
revealed a strong correlation between Atg5 expression and clinical
disability. Analysis of protein extracted from the Tcells confirmed both
the upregulation and post-translational modification of Atg5 genes,
the latter of which was positively correlated with EAE severity.
Analysis of RNA extracted from T cells isolated by negative selection
indicated that Atg5 expression was significantly elevated in patients
with active RRMS compared to non-diseased controls. Brain tissue
sections from RRMS patients, examined by immunofluorescent
histochemistry, suggested that encephalitogenic T cells may be a
source of Atg5 expression in MS brains. Together, these data suggest
that increased T cell expression of Atg5 may contribute to inflamma-
tory demyelination in MS [79].

Another clearance machinery is the ubiquitin–proteasome system
(UPS). The destruction of proteins is as important as their synthesis
for the maintenance of protein homeostasis in cells. In eukaryotes, the
ubiquitin–proteasome system is responsible for most protein degra-
dation: the small protein ubiquitin acts as a death warrant, tagging
and targeting other proteins to the large proteolytic chamber of the
proteasome. It is now known that ubiquitin-mediated destruction
plays a crucial part in many basic cell functions. Given the central role
of UPS in diverse cellular processes, it is not surprising that its
dysfunction contributes to neurodegenerative and immunological
disorders, either as a primary cause or secondary consequence [80,81].
Importantly the proteolysis system is ATP-dependent [82,83].
Recently it has been shown that assembly of the proteasome base is
a rapid yet highly orchestrated process, and proteasome regulatory
particle is chaperone-mediated [84,85].

The autoimmune process of PLP139–151-induced relapsing experi-
mental autoimmune encephalomyelitis is regulated, in part, by the
transcription factor nuclear factor (NF)-kappaB, which is activated via
the UPS. Administration of PS-519, a selective inhibitor of the
ubiquitin–proteasome pathway, during the remission phase of MS
following an acute attack was effective in significantly reducing the
incidence of clinical relapses, CNS histopathology, and T cell responses
to both the initiating and the relapse-associated PLP epitopes. The
inhibition of clinical disease was dependent on a continuous
administration of PS-519 in that recovery of T cell function and
onset of disease relapses developed within 10–14 days of drug
withdrawal [86]. The data indicated that UPS is involved in relapsing
EAE, and they suggested that targeting the UPS, in particular the NF-
kappaB, may offer a novel and efficacious approach for decreasing
progressive autoimmune diseases, including MS.

Some proteinases may be involved in the proteolysis of immune
antigens and may be involved in the progression of MS. It is generally
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accepted that the processing of MHC 1 antigens is mediated by UPS
pathway [87]. In addition, matrix metalloproteinase proteolysis plays
a significant role in the fragmentation of MBP. The classic MBP
isoforms are predominantly expressed in the oligodendrocytes of the
CNS. A recent in vitro cleavage study determined that MBP, and its
splice variants, are highly sensitive to redundant matrix metallopro-
teinases proteolysis. MT6-MMP (initially called leukolysin), however,
was superior over all of the other MMPs in cleaving the MBP isoforms.
This study demonstrated that matrix metalloproteinase proteolysis of
the MBP and its isoforms is a source of immunogenic peptides in
autoimmune MS [88]. If this is the case in vivo, in some cases matrix
metalloproteinase proteolysis may directly destroy MBP and initiate
demyelination in MS or EAE.

Protease-activated receptors are G protein-coupled receptors that
regulate the cellular response to extracellular serine proteases. The
PAR family consists of four members: PAR-1, -3, and -4 as thrombin
receptors, and PAR-2 as the trypsin/tryptase receptor. These four
members are abundantly expressed in the brain throughout develop-
ment of MS. The expression of PARs in the brain is differentially
upregulated or downregulated under pathological conditions in
neurodegenerative disorders, including MS [89]. Noorbakhsh et al.
[90] found that PAR2 expression was significantly increased on
astrocytes and infiltrating macrophages in human MS and murine
EAE CNSwhitematter. Indeed, PAR2wild-typemice showedmarkedly
greater microglial activation and T lymphocyte infiltration accom-
panied by worsened demyelination and axonal injury in the CNS
compared to their PAR2 knockout littermates. Enhanced neuropatho-
logical changes were associated with a more severe, progressive
relapsing disease phenotype inwild-typemice. These studies revealed
pathogenic interactions between CNS PAR2 expression and neuroin-
flammation with ensuing demyelination and axonal injury [90].
Therefore, PARs are capable of mediating either neurodegeneration
or neuroprotection in MS as well as other neurodegenerative
disorders, and they represent attractive therapeutic targets for
treatment of these diseases.

3. Experimental autoimmune encephalitis model of MS

Currently there are no genetically engineered mouse models
available to study MS progression in mice. However, several induced
mouse models have been generated, particularly EAE in mouse. The
EAE can be induced by immunization of susceptible animals with a
number of myelin antigens including myelin basic protein [91], PLP
[92], and MOG [93]. The origins of EAE date back to the 1920s, when
Koritschoner and Schweinburg induced spinal cord inflammation in
rabbits by inoculating with tissue from a human spinal cord [94]. Since
then, EAE has been developed in many different species, including
rodents and primates. EAE is an animal model of MS that exhibits the
functional characteristics of human immune molecules in vivo. The
‘humanized’ MS animal models allow the functional characterization
of human immune molecules in vivo [95,96]. We emphasized that
MOG although a minor component of the myelin sheath, is a potent
encephalitogenic protein that induces EAE inmany strains and species
of experimental animals, particularly monkey model of MS that may
closely mimic human disease, may provide a unique experimental
platform to understand themechanisms of disease process, and also to
develop therapeutic strategies for MS [97–99].

It is clear that EAE can mimic many of the clinical, neuropatho-
logical, and immunological aspects of MS [95,96,99]. In particular, EAE
appears to mimic most closely the disability-related axonal loss seen
in MS and may provide a convenient opportunity to study axon-
damaging mechanisms of relevance to MS [100–102]. More impor-
tantly, EAE has led directly to the development of three therapies
approved for use in MS: glatiramer acetate (copaxone), mitoxantrone,
and natalizumab [103]. Several new approaches to studying MS in
clinical trials have also been based on preclinical work relying on EAE.
There are a few limitations in using EAE as a researchmodel forMS.
First, MS is a spontaneous disease, while EAE is induced by active
sensitizationwith brain tissue antigens and strong immune adjuvants.
Second, genetic heterogeneity of MS in the human populations. To
understand the disease progression and pathology of MS in mice, it is
important to study multiple mouse models of EAE that may provide
more human MS features [94]. Therefore, when used appropriately,
the EAE model provides a crucial tool for improving our under-
standing of and treatment of MS.

In contrast, the compelling MS in vitro model has not been
developed thus far. However, a few related systems were reported for
the MS/EAE mechanism study in some degree using oligodendrocyte
or neuron co-culture with microglial cells [102,104,105].

4. Multiple sclerosis/experimental autoimmune encephalitis is a
neurodegenerative disorder

Axonal loss occurs in MS and is responsible for the permanent
disability characterizing the later chronic progressive stages of the
disease. Immunohistochemistry of brain tissues showed that the
expression of amyloid precursor protein, a sensitive marker of axonal
damage, occurs in axons within acute MS lesions and in the active
borders of less acute lesions that had not been identified as MS [106].
Recently, evidence for widespread axonal damage even at the earliest
clinical stages of MS has been reported [51,107], leading to the
hypothesis that MS is a neurodegenerative disorder in which axonal
injury, neuronal loss, and atrophy of the CNS begin in the earliest
stages of the disease and then intensify over time [108–110], even
axonal loss could be found in normal-appearing white matter in a
patient with acute MS [111]. Such evidence has called into question
the previously long-held hypothesis that axonal pathology is the end-
stage result of repeated inflammatory events in MS and argues
strongly in favor of early neuroprotective intervention [112,113].

Axon loss has also been found in animal models of MS, especially in
the EAE model, and has been found to correlate with permanent
neurological disability in the animal models [101,102]. This chronic-
relapsing EAE model provides an excellent platform for two critical
research objectives: determining mechanisms of axon loss in MS and
evaluating the efficacy of neuroprotective therapies.

5. Mitochondria dysfunction and ROS as causes of neuronal
degeneration in MS

5.1. Mitochondria, neurodegenerative diseases and MS

Fig. 2 summarizes the involvement of mitochondrial abnormalities
in patients with MS and EAE mouse models. As shown, current
research revealed that the following mitochondrial abnormalities are
involved in the development and progression of multiple sclerosis:
1) mitochondrial DNA defects, 2) abnormal mitochondrial gene
expression, 3) defective mitochondrial enzyme activities, 4) deficient
mitochondrial DNA repair activity 5) and mitochondrial dysfunction.
We propose that abnormal mitochondrial dynamics (increased fission
and decreased fusion in neurons affected by MS). Further, we also
propose that mitochondrial abnormalities and mitochondrial energy
failure may impact other cellular pathways, including increased
demyelination and inflammation in neurons and tissues that are
affected by multiple sclerosis. The details are given below.

Mitochondria contain the respiratory chain where energy in the
form of ATP is most efficiently produced. The mitochondrial
respiratory chain is located in the inner mitochondrial membrane
and consists of five complexes (complexes I–V); the fifth complex is
directly involved in ATP synthesis [114–116]. The complexes of the
mitochondrial respiratory chain are made up of multiple subunits,
and all contain proteins encoded by nuclear DNA and mtDNA, except
for complex II, which is entirely encoded by nuclear DNA [117,118].



Fig. 2. Mitochondrial abnormalities in patients with multiple sclerosis and EAE mouse
models. Based on current research, we propose that mitochondrial abnormalities are
involved in the development and progression of multiple sclerosis, including
mitochondrial DNA defects, abnormal mitochondrial gene expression, defective
mitochondrial enzyme activities, abnormal or deficient mitochondrial DNA repair
mechanisms, and mitochondrial dysfunction. We propose that abnormal mitochondrial
dynamics (imbalance in mitochondrial fission and fusion) plays a key role in tissues
affected by multiple sclerosis. We also propose that mitochondrial abnormalities and
mitochondrial energy failure may impact other cellular pathways including increased
demyelination and inflammation in neurons and tissues that are affected by multiple
sclerosis.
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Neurons are highly dependent on oxidative energymetabolism. Axons,
in particular, consume significant amounts of ATP, which it uses
primarily to fuel the sodium/potassium ATPase, or sodium pump that
functions to remove the sodium ions that enter the axon during
impulse activity. Mitochondria are not only the energy factory for cells
but also the seat of a number of important cellular functions, including
essential pathways of intermediate metabolism, amino acid biosynth-
esis, fatty acid oxidation, steroid metabolism, calcium handling and
apoptosis [56,114,116,117]. Of key importance is the role of mitochon-
dria in oxidative energy metabolism. Oxidative phosphorylation
generatesmost of the cell's ATP, and any impairment of the organelle's
ability to produce energy can have catastrophic consequences, not only
due to the primary loss of ATP, but also due to indirect impairment of
downstream events. Moreover, the production of superoxide occurs
mostly within the mitochondria, mainly in complexes I and III, TCA
cycle and conditionally in complex II [115,118–121].

Deficient mitochondrial metabolism may generate more reactive
oxygen species (ROS) that can wreak havoc in the cell. Therefore,
mitochondrial dysfunction is an attractive candidate for neuronal
degeneration [119,122]. Impairment of mitochondrial energy meta-
bolism is the key pathogenic factor in a number of neurodegenerative
disorders, such as Alzheimer's disease and Parkinson's disease
[116,119,122,123]. Hence, therapeutic approaches targeting mitochon-
drial dysfunction and oxidative damage in neurodegenerative dis-
eases, including MS have great promise [56,116,124].

Recently, several lines of evidence suggests that mitochondrial
dysfunction is present in patients with MS. Mitochondrial DNA
alterations, mitochondrial structural changes, defective mitochondrial
DNA repair events, abnormal mitochondrial enzyme activities,
mitochondrial gene expressions, increased free radical production
and oxidative damage have been reported in patients with MS and
EAE mouse models (Fig. 2).

5.2. Mitochondrial DNA alternations in MS

Age-related decline of mtDNA copy number is associated with late-
onset MS [125]. mtDNA mutations may increase the risk of MS
[126–128]. SNP analysis has shown that genetic variants of complex
I genes may influence the response of tissues to inflammation in
the CNS [129]. Further, genetic alterations in uncoupling proteins
are reported to be implicated in patients with MS. Uncoupling
protein 2 (UCP2) is a member of the mitochondrial proton
transport family that uncouples proton entry to the mitochondria
from ATP synthesis. Vogler et al. reported that the UCP2 common
−866G/A promoter polymorphism is associated with susceptibility
to MS in a German population. In a study of 1097 MS patients and
462 control subjects, they found the common G allele associated
with disease susceptibility (P=0.0015). The UCP2 −866G allele
was correlated with lower levels of UCP2 expression in vitro and in
vivo. Thus, UCP2 may contribute to MS susceptibility by regulating
the level of UCP2 protein in the CNS and/or in the immune system
[130].

Defects in mtDNA have been associated with late-onset MS. Ban
et al. [127] sequenced the mtDNA from 159 patients with MS and
completed a haplogroup analysis of 835 MS patients and 1506
controls. They found a trend towards over-representation of super-
haplogroup U as the only evidence for association with MS. In a
parallel analysis of nuclear-encoded mitochondrial protein genes in
the same subjects, they also found a trend towards association with
the complex I gene, NDUFS2 [127]. Taken together, these studies have
contributed to evidence suggesting that variations in mtDNA and
nuclear-encoded mitochondrial protein genes may contribute to
disease susceptibility in MS.

A study of MS patients in Europe showed that a potentially
functional mtDNA SNP, nt13708 G/A, was significantly associated with
an increased risk of MS (P=0.0002). The study identified the
nt13708A variant as a allele susceptible to MS, which may suggest a
role in MS pathogenesis [126]. Recently, Vyshkina et al. [131]
discovered an association among common variants of the mitochon-
drial ND2 and ATP6 genes with both MS and systemic lupus
erythematosus. This finding raises the possibility of a shared
mitochondrial genetic background between these two autoimmune
diseases. On the other hand, an increasing number of case reports on
Leber's hereditary optic neuropathy (LHON) associated mtDNA point
mutations, and some patients with MS and LHON share the same
mtDNA mutation, suggesting that mitochondrial determinants may
contribute to genetic susceptibility in MS and LHON [132].

In fact, only a very small subgroup of MS patients, usually with
prominent optic neuritis, may carry pathogenic LHON mutations. This
overlap between the two diseases may be related to the association of
MS with an mtDNA haplotype (a set of mtDNA polymorphisms)
within which pathogenic LHON mutations preferentially occur
[133,134]. In a recent study, 58 unrelated Bulgarian patients with
RRMS and 104 randomly selected healthy individuals were analyzed
for the presence of 14 mtDNA polymorphisms determining major
European haplogroups as well as three (4216, 14 798, 13 708)
secondary LHON mutations. Restriction enzyme analysis, used to
screen patients and controls for common haplogroup-associated
polymorphisms, showed that each of these changes which occurred
in MS patients at a similar rate to control subjects. However, 21 of the
58 patients (36.2%) were positive for the T4 216C mutation, while
only 11.3% of the controls carried this mutation (Pb0.01; OR=4.38),
suggesting that the 4216C base substitution may be a predisposing
marker for MS. These findings also supported the hypothesis that
particular mtDNA variants may contribute to the genetic suscept-
ibility of some people with MS [132,135]. To further study the
relationship between LHON and MS, Hwang et al. [136] tested 20
Korean MS patients for the presence of mtDNA mutations at
nucleotide (nt) 11778, and nt 14484, 3460, and 15257. However,
none of the MS patients exhibited any pathogenic LHON mtDNA
mutations. This result is in agreement with that of Japanese MS
patients [137]. It may be the case that racial characteristics may
influence the association.
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5.3. Mitochondrial dysfunction in MS

Increasing evidence suggests that mitochondrial dysfunction is
involved in MS [138,139]. Ultrastructural analysis of demyelinated
spinal cord lesions showed dramatically reduced numbers of
mitochondria and microtubules, and demonstrated Ca2+-mediated
destruction of chronically demyelinated axons and axonal swelling
[57,110]. Further, the gene expression study showed an unbalanced
gene expression inMS patients [57]. As reduced energy production is a
major contributor to Ca2+-mediated axonal degeneration, authors
focused on changes in oxidative phosphorylation and inhibitory
neurotransmission. Compared with controls, 488 transcripts were
decreased and 67 were increased in the MS cortex. Twenty-six
nuclear-encoded mitochondrial genes and the functional activities of
mitochondrial respiratory chain complexes I and III were decreased in
the MS motor cortex. Reduced mitochondrial gene expression was
specific for neurons. In addition, synaptic components of GABAergic
neurotransmission and the density of inhibitory interneuron pro-
cesses also were decreased in the MS cortex.

In addition, recently a number of mitochondrial respiratory chain
proteins in active lesions from acute MS was analyzed using
immunohistochemistry [56]. Functionally important defects of mito-
chondrial respiratory chain complex IV [cytochrome c oxidase (COX)]
including its catalytic component (COX-I) are present in some active
MS lesions (Pattern III) [140]. The lack of immunohistochemically
detected COX-I is apparent in oligodendrocytes, hypertrophied
astrocytes and axons, but not in microglia. These findings suggest
that hypoxia-like tissue injury in Pattern III MS lesions may be
initiated from mitochondrial impairment. On the other hand, in
inactive areas of chronic MS lesions the complex IV activity and
mitochondrial mass, judged by porin immunoreactivity, are increased
within approximately half of large chronically demyelinated axons
compared with large myelinated axons in the brain and spinal cord.
The axon-specific mitochondrial docking protein (syntaphilin) and
phosphorylated neurofilament-H were increased in chronic lesions
[141]. These results clearly indicate an adaptive change of mitochon-
drial function and morphology in chronic MS.

Recently, Regenold et al. investigated the relationship between
disturbed CNS mitochondrial energy metabolism and MS disease
progression by measuring cerebrospinal fluid (CSF) concentrations of
sorbitol, fructose, and lactate, all metabolites of extra-mitochondrial
glucose metabolism [142]. They found that concentrations of all three
metabolites, but not concentrations of glucose or myoinositol, were
significantly increased in CSF from secondary progressive and, to a
lesser degree, relapsing–remitting patients, compared to healthy
controls. Furthermore, CSF concentrations of sorbitol and fructose
(polyol pathway metabolites), but not lactate (anaerobic glycolysis
metabolite), correlated positively and significantly with Expanded
Disability Status Scale (EDSS) score, an index of neurologic disability
in MS patients. These findings suggest that abnormal mitochondrial
glucose metabolism is increased in MS patients and is associated with
disease progression [142].

Interestingly, analysis of mitochondrial enzymes on humanmuscle
showed that in people with MS, there were fewer type I fibers, and
that fibers of all types were smaller and had lower succinate
dehydrogenase (SDH, component of the respiratory chain complex
II) and SDH/alpha-glycerol-phosphate dehydrogenase (GPDH) but
not GPDH activities, suggesting that muscle in this disease is smaller
and relies more on anaerobic than aerobic-oxidative energy supply
than does muscle of healthy individuals [143]. Similar to brain,
muscles are also highly dependent on mitochondrial oxidative energy
metabolism, so it is reasonable that there is a weaker muscle in MS
patients, indicating muscle is also one of the targets of MS. In some
rare cases, MS could have a mitochondrial myopathy combination, in
which MRI showed widespread white matter lesions, muscle biopsy
showed ragged red fibres and COX (complex IV) deficiency, Southern
blot analysis revealed a large deletion of mtDNA [144]. Probably the
severe mitochondrial genomic deletion is the key cause or initiation
factor for this special case.

Another interesting key issue of mitochondria must be discussed
below. The mitochondrial permeability transition leads to mitochon-
drial swelling, outer membrane rupture and the release of apoptotic
mediators. The mitochondrial permeability transition pore (PTP) is
thought to consist of the adenine nucleotide translocator, a voltage-
dependent anion channel, and cyclophilin D (CyPD, the Ppif gene
product), a prolyl isomerase located within the mitochondrial matrix.
CyPD is a key regulator of the PTP and they are required for mediating
Ca2+- and oxidative damage-induced cell death [145,146]. In experi-
mental animal MS disease model, EAE mice lacking CyPD showed that
neurons missing CyPD, are resistant to oxidative agents thought to be
the mediators of axonal degeneration observed in both EAE and MS
and have mitochondria that are able to more effectively handle
elevated Ca2+. Consistent with this neuronal resistance, animals
missing CyPD are able to recover, clinically, following the induction of
EAE [109]. These results directly implicate pathological activation of
the mitochondrial PTP in the axonal damage occurring during MS, in
other word, PTP and mitochondria are the critical target of EAE,
perhaps multiple sclerosis.

5.4. Oxidative stress in MS

Reactive oxygen species (ROS) are the by-products of cellular
metabolism. Excessive ROS or an imbalance between cellular produc-
tion of ROS and the ability of cells to defend against them is referred to
as oxidative stress. Oxidative stress can cause cellular damage and
subsequent cell death because the ROS oxidize critical cellular
components, such as lipids, proteins, and DNA especially mitochon-
drial DNA [119,147–151]. In neurodegenerative and neuroinflamma-
tory disorders, there is evidence for a primary contribution of oxidative
stress in neuronal death, as opposed to other diseases where oxidative
stress more likely plays a secondary or by-stander role [152].

There is increasing evidence that oxidative stress is an important
component in the pathogenesis of MS. The inflammatory environment
in demyelinating lesions is conducive to the generation of reactive
oxygen species. Macrophages and microglia are known to express
myeloperoxidase (MPO) and generate ROS during myelin phagocy-
tosis in thewhitematter. Recent research involving the cerebral cortex
in MS indicates that microglial production of ROS is also likely to be
involved in cortical demyelination [153]. Protein kinase C (PKC) could
induce an increased production of ROS in mononuclear cells of
patients with MS compared to those of controls, and it was
predominantly or exclusively generated by PKC activated NADPH
oxidase [154]. The concentrations of reactive oxygen and/or nitrogen
species (e.g. superoxide, nitric oxide and peroxynitrite) can increase
dramatically under conditions such as inflammation, and this can
overwhelm the inherent antioxidant defences within lesions. Such
oxidative and/or nitrative stress can damage the lipids, proteins and
nucleic acids of cells and mitochondria, potentially causing cell death
[155]. Oligodendrocytes are more sensitive to oxidative and nitrative
stress in vitro than are astrocytes and microglia, seemingly due to a
diminished capacity for antioxidant defence, and the presence of
raised risk factors. Oxidative and nitrative stressmight therefore result
in selective oligodendrocyte death, and thereby demyelination in vivo.
The reactive species may also damage the myelin sheath, promoting
its attack by macrophages/microglia.

Evidence for the existence of oxidative and nitrative stress within
inflammatory demyelinating lesions includes the presence of both
lipid peroxidation and protein peroxides (protein carbonyls), and
nitrotyrosine (a marker for peroxynitrite formation) [155,156]. When
the ROS/RNS are generated in MS and animal models of MS, products
such as superoxide and peroxynitrite are formed that are highly toxic
to both glia and neuronal cells. Kalman's group has determined the
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level of DNA damage in MS patients using 8-hydroxy-deoxy-
guanosine (8-OH-dG) as an oxidative marker, they found that a
significant increase in DNA oxidation within plaques compared to
NAWM specimens in MS cerebella. A tendency for increase of
oxidative markers in normal-appearing cortical tissues located in
the proximity of MS plaques was also observed when compared to
those in control cortical specimens [157]. Also, oxidative damage to
mitochondrial DNA and impaired activity of mitochondrial enzyme
complexes in MS lesions suggest that inflammation can affect energy
metabolism, ATP synthesis, and viability of affected cells [138].

A recent report showed that oxidative stress occurs in progressive
as well as benign MS patients. For example, serum diene conjugate
levels (a measure of lipid peroxidation) were significantly elevated in
MS patients, especially patients with primary progressive phenotypes.
However, serum total antioxidative activity and total antiradical
activity were not different between MS patients and healthy controls
[158]. On the other hand, the chemical composition of human
cerebrospinal fluid is considered to reflect brain metabolism, there
is experimental evidence of a decrease in sulfhydryl groups (anti-
oxidants) and increased content of products of lipid peroxidation,
such as ultraweak chemiluminescence and liposoluble fluorescence,
which was higher in the CSF and plasma of MS patients than in
controls, clearly pointing out the role of oxidative stress in the
pathogenesis of MS [159].

Recent insights into the molecular pathogenesis of progression in
MS also list oxidative stress as one of main mechanisms. More
recently, Van Horssen J et al. [160] reported the presence of extensive
oxidative damage to proteins, lipids, and nucleotides occurring in
active demyelinating MS lesions, predominantly in reactive astrocytes
and myelin-laden macrophages. It is reasonable that some of
structurally-damaged myelin proteins are the targets of immune
system, which are recognized as foreign antigens. Hence we consider
that if not all, at lease for someMS patients, oxidative stress (including
nitrative stress) may be the primary mechanism in pathogenesis.

On the other hand, antioxidant enzymes, including superoxide
dismutase 1 and 2, catalase, and heme oxygenase 1, are markedly
upregulated in active demyelinating MS lesions compared to normal-
appearingwhite matter andwhitematter tissue from nonneurological
control brains [160]. Enhanced antioxidant enzyme production in
inflammatory MS lesions may reflect an adaptive defence mechanism
to reduce ROS-induced cellular damage. These data and observations
strongly indicate that antioxidant therapy may be a potential
treatment for MS patients.

5.5. Nitric oxide and MS

As described above, human blood macrophages, astrocytes, and
microglial cells make NO. NO is present at increased concentrations in
acute MS lesions [161] and is known to have a deleterious effect on
mitochondria [162]. The relationship between NO and cytochrome c
oxidase (mt complex IV) has been investigated at different integration
levels of the enzyme, including the in situ state, such as in mouse liver
mitochondria or cultured human SY5Y neuroblastoma cells [163].
Micromolar NO rapidly inhibits cytochrome c oxidase in turnover
with physiological substrates. The respiratory chain is inhibited by NO,
either supplied exogenously or produced endogenously via the NO
synthase activation. Inhibition of respiration is reversible, although it
remains to be clarified whether reversibility is always full and how it
depends on concentration of and time of exposure to NO. At least
under hypoxic condition, NO irreversibly inhibits cytochrome oxidase
[164]. NO and superoxide radicals combine to form peroxynitrate
(ONOO−), which breaks down to form the highly reactive radicals
hydroxyl radical and nitrogen dioxide [148]. In other words NO can
enhance the cellular toxicity of ROS.

Peroxynitrite and other reactive nitrogen oxide species exert a
toxic effect on neurons, axons and glia cells and enhance apoptosis. In
addition, they increase the blood–brain barrier (BBB) permeability
and can therefore promote invasion of inflammatory cells into the
CNS. On the other hand, uric acid, a purine metabolite and
peroxynitrite scavenger inhibits blood–CNS-barrier permeability
changes, CNS inflammation and tissue damage in EAE and in mice
with spinal cord injury [165,166]. More recently the concentrations of
uric acid, purine profile and creatinine in samples of cerebrospinal
fluid and serum of MS patients were measured in detail by HPLC [167].
The values of all compounds assayed were significantly higher in both
biological fluids of MS patients with respect to values measured in
controls. In particular, serum hypoxanthine, xanthine, uric acid and
sum of oxypurines were, respectively, 3.17, 3.11, 1.23 and 1.27-fold
higher in these patients than corresponding values recorded in
controls. Though differently from what previously reported, these
data clearly demonstrate that all purine compounds, including uric
acid, are elevated in biological fluids of MS patients. Reinforced by the
trend observed for creatinine, this corroborates the notion of
sustained purine catabolism, possibly due to imbalance in ATP
homeostasis, under these pathological conditions. As observed in
other pathological states, uric acid, purine compounds and creatinine,
can be considered markers of metabolic energy imbalance rather than
of reactive oxygen species, even in MS.

Nitric oxide synthases (NOS) also play an important role under
physiological as well as pathological conditions [161,168,169]. Active
iNOS enzyme has been demonstrated in astrocytes in acute and
chronic active MS lesions at the lesion edge where de myelination is
occurring [170,171]. QRT-PCR analysis detected significant upregula-
tion of the neuronal form of NOS (nNOS), in most of the MS normal-
appearing white matter tissue samples, this change together with the
upregulation of HIF-1 in oligodendrocytes and neurons supports the
view of oligodendrocyte and/or neuronal dysfunction in this non-
lesion containing tissue as a possible primary cause [52].

6. Development of therapeutic approaches in MS

6.1. immunomodulatory treatments

Themajor development of the past decades is that MS has changed
from an untreatable to a treatable disease. Four immunomodulatory
treatments (glatiramer acetate and three interferon-b preparations)
and two immunosuppressants (natalizumab and mitoxantrone) are
now approved for the treatment of MS and allow the frequency of
attacks to be diminished and the progression of disability to be
slowed, at least in the shorten medium-term. In addition, a number of
new strategies were developed for the treatment of the disease, such
as novel immunomodulators (including antibodies/immunosuppres-
sants), therapeutic strategies targeting leukocyte differentiation
molecules, costimulatory molecules, anti-adhesion molecules, che-
motaxis, autologous stem cell transplantation, anti-infectious thera-
pies and strategies for neuroprotection neurorepair and remyelination
(for detail, see previous reviews [3,5,172–174]). Furthermore, there are
good scientific rationales for the use of combination therapy in MS,
and the clinical trials are also currently underway to establish the
therapeutic efficacy and safety of various combination therapies for
MS patients [175]. Recently a small scale, open-label, 7-month trial of
combination therapy with intramuscular interferon beta-1a and oral
doxycycline, a potent inhibitor of matrix metalloproteinases, in
patients with RRMS was successfully completed [176]. The combina-
tion of doxycycline and interferon beta-1a treatment resulted in
reductions in contrast-enhancing lesion numbers and posttreatment
Expanded Disability Status Scale values (Pb0.001 for both). Totally
this combination treatment was effective, safe, and well tolerated. To
evaluate the efficacy and tolerability of this combination, more
important work is double-blind, randomized, placebo-controlled
clinical trials in larger cohorts of patients with MS. This hopeful trial
may encourage related reasonable combination study in the near
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future. In EAE animal models, some novel combination or cocktail
therapy studies already showed the therapeutic efficacy. For instance,
multiple Ag peptides (MAPs) containing 8 PLP (139–151) peptides
arranged around a dendrimeric branched lysine core were tested to
influence the expression and development of relapsing EAE in SJL
mice. The PLP (139–151) MAPs were very efficient agents in
preventing the development of clinical disease when administered
after immunization. The treatment effect with these MAPs was
peptide specific and long lasted over a 60-day observation period
[177]. Such effective cocktail agents should be tested in different EAE
models (including non-human primate model) prior to clinical
patient trial. Hence evaluation of specific combination therapies in
the controlled setting of preclinical studies and clinical trials should be
a priority in MS research.

6.2. Complementary and alternative medicine for MS

MS is a chronic, unpredictable neurological disease that mainly
affects the CNS and has no known cure. Because of this, many people
with MS often seek complementary and alternative medicine (CAM)
therapies to manage their disease symptoms [178]. Results from the
literature showed that around 63% of people with MS reported that
they used one or more CAM therapies [178,179]. The major reasons for
choosing CAM were as follows: conventional treatment was not
effective, anecdotal reports of CAM's help, and doctor referral [178].
Common CAM therapies that people use include dietary modification,
nutritional and herbal supplementation, and mind–body therapies,
including acupuncture and massage [178,180]. There is a revival of
interest amongMS researchers about the therapeutic potential of low-
fat diet and essential fatty acid supplementation in MS. The efficacy of
specific vitamin supplementation remains unclear. Recently, cannabis
and yoga have been studied in more controlled studies and have
provided evidence that they may have some benefit [180]. The
research on CAM therapies in MS is still exploratory, but considering
peoples' interest and common use of these therapies, further research
in this area is clearly warranted [180].

Traditional Chinese medicine (TCM) has an intrinsic system for
treatment of patients. It has been used for several thousands of years
and today it is still an important part of the Medicine in China.
Interestingly, the Journal of the Integration of Chinese Medicine and
Western Medicine showed that the most MS patients could be divided
to two main types by syndrome typing according to their clinical
manifestations, the Gan-Shen yin-deficiency (GSYD) type and the
both yin-yang deficiency (YYD) type [181]. They found that the age of
first attack was later, level of MBP in cerebrospinal fluid was higher, in
the YYD type than those in the GSYD type. Besides, the relapsing time
in GSYD type, and the blood–brain barrier index and level of MBP in
YYD type showed an ascending trend (P=0.056, 0.074, 0.093,
respectively). The distinguishing and classification of patients with
MS is the first step for treatment of patients with the disease by using
TCM. However, more important issue is randomized, well-controlled
clinical trial on the MS patients. This is a difficult task but it should be
completed as soon as possible. On the other hand, the existed
immunological difference between the MS patients of GSYD type and
those of YYD type indicates that traditional Chinese medicine has
scientific basis even it is not fully understood. Recently, an Iranian
herbal-marine medicine, MS14, was reported to ameliorates experi-
mental allergic encephalomyelitis in mice [182]. Hence the CAM
exploration of both basic and clinical study is widely performed and it
would be expected to provide more useful therapeutic agents for
treatment of MS patients.

6.3. Mitochondria targeted approaches in MS

As described above, multiple sclerosis is very complex, it con-
sidered to be an autoimmune and neurodegenerative disease. Current
treatments for MS include immunomodulatory agents but no
neuroprotective or regenerative therapy is available. Especially not
all patients with MS respond well to treatment with these agents.
From various animal models, we have learned that remyelination in
the CNS is a potent neuroprotective mechanism [183]. The knowledge
about oligodendrocyte biology and the process of remyelination has
greatly increased in recent years [58,184–186]; however, the precise
mechanisms are far from being understood, and remyelination,
neurogeneration as well as neuroprotection occur only in animal
models. Although remyelination is, in principle, also possible in the
diseased MS brain, it is not clear why it fails in many MS patients. The
clinical trials performed so far either failed to show an effect or were
insufficient in design. Thus, further knowledge about the molecular
mechanisms of the repair processes and MS pathophysiology is
required to achieve the ultimate goal of a neuroprotective and
neuroregenerative treatment in MS.

As described above, CyPD knockout mouse studies have provided
evidence of direct links between mitochondrial function, Ca2+

overload, and axonal destruction during EAE, and by extension, MS.
Hence, compounds that are able to inhibit the PTP by inactivation of
CyPD specifically or by other mechanisms that modulate the PTP,
would seem to warrant investigation as neuroprotective therapies in
MS [109]. Intravenous mitoxantrone (novantrone) treatment
improved neurological disability and delayed progression of MS in
patients with worsening relapsing–remitting or secondary progres-
sive disease [187]. Regarding the action mechanisms of this approved
immunosuppressant mitoxantrone, a synthetic analog of anthraqui-
none, at least in tumor cells, the mitochondrial PTP targeted
mechanism is involved [188].

Mitochondrial DNA repair is a new and important part for
neuroprotection in aging related diseases includingMS [189]. Multiple
pathways of DNA repair have been elucidated for nuclear DNA.
However, it appears that only base excision repair is functioning in
mitochondria [190]. This repair pathway is responsible for the removal
of most endogenous damage including alkylation damage and
oxidative damage. Interestingly, astrocytes exhibit efficient repair,
whereas, other glial cell types and neuronal cells exhibit a reduced
ability to remove lesions from mtDNA [190]. A strategy of targeting
DNA repair proteins to mitochondria to enhance mtDNA repair
capacity was developed [190,191]. Enhancement of mtDNA repair in
oligodendrocytes provided protection from reactive oxygen species-
and cytokine-induced apoptosis. These experiments provide a novel
strategy for protecting sensitive CNS cells and thus provide new
treatment options for neurodegenerative diseases, such as MS.

As described in Pathology section, ion channels and ionic
imbalance are involved in the MS initiation and development, some
channel blockers should protect axons from inflammatory mediators.
In fact, Na+ channel blocker tetrodotoxin, which can block Na+ influx
throughout the anoxic period, has been shown to preserve ATP levels,
concurrent with protecting white matter axons from NO-induced
injury [192]. Another Na+ channel blockers phenytoin and flecainide
have been shown to be protective in mouse and ratmodels of EAE, and
the protective effect on axons and clinical improvement persists for as
long as 180 days in mice treated regularly with phenytoin [193–195].

Neurotrophic factors such as insulin-like growth factor-I, platelet-
derived growth factor (PDGF), fibroblast growth factor and ciliary
neurotrophic factor (CNTF) are multifunctional growth factors which
are found in the CNS. In vitro and in vivo studies have shown that
neurotrophic factors influence proliferation, differentiation, survival,
and regeneration of mature oligodendrocytes and oligodendroglial
precursors in favor of a myelin repair. Sincemyelin breakdown is often
severe in MS, the possibility of growth factors use in the treatment of
MS has been considered and recently, some have been shown to
reduce lesion severity and promote myelin regeneration in EAE
[196,197]. To investigate the role of endogenous CNTF in inflammatory
demyelinating disease, MOG-induced EAE in CNTF-deficient and wild-
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type C57BL/6 mice was studied. Disease was more severe in CNTF-
deficient mice and recovery was poor, with a 60% decrease in the
number of proliferating oligodendrocyte precursor cells and a more
than 50% increase in the rate of oligodendrocyte apoptosis. In addition,
vacuolar dystrophy of myelin and axonal damage were more severe in
CNTF-deficient mice. These specific pathological features could be
prevented by treatment with an antiserum against tumor necrosis
factor-alpha, suggesting that endogenous CNTF may counterbalance
this effect of TNF-α [198]. Hence CNTF modulates, in an inflammatory
environment, glial cell survival and is an outcome determinant of EAE
and it may be a hopeful agent for treatment of MS patients. More
recently the neuroprotective role of CTNF was confirmed by over-
expression of CNTF in EAE mice, possibly by exerting their immunor-
egulatory activity, inhibiting inflammation, reducing demyelination,
and stimulating oligodendrogenesis [199].

Oligodendroglia are the cells that form and maintain myelin
sheaths, the oligodendroglial lineage targeted approaches would be
very interesting. Notably remyelination is regulated by stimulators
and inhibitors [69,184,200]. Leucine-rich repeats and Ig domain-
containing, neurite outgrowth inhibitor receptor-interacting protein-1
(LINGO-1) is a potent negative regulator of axonal myelination. Loss of
LINGO-1 function by Lingo1 gene knockout or by treatment with an
antibody antagonist of LINGO-1 function leads to functional recovery
from EAE. This remyelination role is associated with enhanced OPCs
differentiation. Therefore antagonism of LINGO-1 or its pathway is a
promising approach for the treatment of MS [201,202].

Since oxidative damage has been known to be involved in
inflammatory and autoimmune-mediated tissue destruction in
which, modulation of oxygen free radical production represents a
new approach to the treatment of inflammatory and autoimmune
diseases. Although a few antioxidants showed some efficacy in animal
models, there is limited and conflicting evidence of potential
therapeutic effects of antioxidants such as vitamins C and E in treating
MS. Otherwise, little information is available on the effect of
treatments with some antioxidants in patients with MS [203,204].

In the initial phase of MS lesion formation, ROS are known to
mediate the transendothelial migration of monocytes and induce a
dysfunction of the BBB. The beneficial effect of the antioxidant alpha-
lipoic acid (LA) on these phenomena has been investigated [205].
Interestingly, LA dose-dependently prevented the development of
clinical signs in a rat model for MS, and clinical improvement was
coupled to a decrease in leukocyte infiltration into the CNS, in
particularmonocytes. Live cell imaging assessed that ROS areproduced
within minutes upon the interaction of monocytes with brain
endothelium. Monocyte adhesion to an in vitro model of the BBB
subsequently induced enhanced permeability, which could be inhib-
ited by LA. Hence LA has a protective effect on EAE not only by affecting
the migratory capacity of monocytes, but also by stabilization of the
BBB,making LA an attractive therapeutic agent for the treatment ofMS.

As discussed above, the mitochondrial-targeted antioxidants,
particularly MitoQ, SS31, CART may have potential role in EAE model
or MS disease [115,116,206]. Recently we discovered a potential direct
interaction between neuropeptide CART and subunit B of the
mitochondrial enzyme succinate dehydrogenase (SDHB). We found
that CART significantly increased SDH function, mt complex II activity
and ATP generation in purified mitochondria and primary cultured
neurons. Furthermore, pretreatment with CART enhanced mitochon-
drial mechanisms of neuronal survival and prevented the decline in
SDH and CII activities and ATP production after OGD. The findings
suggest that CART's neuroprotective mechanism of action may be
linked to preservation of mitochondrial function and prevention of
energy failure after ischemia–reperfusion injury [206]. Importantly,
CART has a transcription activity and stimulates brain-derived
neurotrophic factor production in cultured neuronal cells [207,208].
More recently we found that CART has a protective role in a mouse
EAEmodel (unpublished data). This observation further indicates that
mitochondrial-targeted neuroprotection benefit EAE and probably MS
patients.

A double-blind, placebo-controlled, parallel group designed
clinical trial of the effect of Ginkgo biloba, a popular herbal medicine
in China and Japan, on functional measures in MS has been completed
[209]. The Ginkgo group (patients received 240mg per day of a Ginkgo
special extract, EGb 761 had significantly more individuals showing
improvement on four or more measures with improvements
associated with significantly larger effect sizes on measures of fatigue,
symptom severity, and functionality. The Ginkgo group also exhibited
less fatigue at follow-up compared with the placebo group. This
exploratory pilot study also showed that no adverse events or side
effects were reported. Therefore Ginkgo exerted modest beneficial
effects on select functional measures (e.g., fatigue) among some
individuals with MS. Even though the study may need verification
from a multiple-center and large scale study, the exciting functional
data indicate CAM and traditional medicine are worth further
exploring for the treatment of MS, as well as other related diseases.

7. Conclusions and future directions

In summary, MS is a complicated autoimmune and neurodegen-
erative disease and causal factors are still unknown. Several cellular
mechanisms have been proposed, including genetic factors, viral
infections, autoimmune attack, demyelination, mitochondrial dys-
function, free radicals production, ionic imbalance and cellular
clearance system dysfunction leading to final neuron loss. These
factors work either as a primary cause or secondary consequence,
however in many cases they work together to cause the MS disease.
On-going efforts across world in searching genetic loci that may cause
vast majority of patients with MS may provide some important clues
to understand the disease process. Given the central role of the
mitochondria in many important cellular functions including energy
production, it is reasonable that its dysfunction is the key contributor
to neurodegenerative process of this disease. We propose that the
inflammation may be initiated by infection or by intrinsic imbalance
(such as cellular energy failure and increased oxidative stress in
neurons or oligodendrocytes), and tissue response to this inflamma-
tion that controlled by DNA defects (in nuclear and mitochondrial
genomes) in MS patients. Therefore, mitochondrial-targeted and
neuroprotective treatments, or combination of neuroprotection and
immunomodulatory may represent new and correct approach of MS
therapy.
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