
RESEARCH ARTICLE

Estimating sparse functional brain networks

with spatial constraints for MCI identification

Yanfang Xue1☯, Limei Zhang1☯, Lishan Qiao1☯*, Dinggang Shen2,3¤a

1 School of Mathematics, Liaocheng University, Liaocheng, China, 2 Department of Radiology and BRIC,

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America,

3 Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea

☯ These authors contributed equally to this work.

¤a Current address: Department of Research and Development, Shanghai United Imaging Intelligence Co.,

Ltd., Shanghai, China

* qlishan@163.com

Abstract

Functional brain network (FBN), estimated with functional magnetic resonance imaging

(fMRI), has become a potentially useful way of diagnosing neurological disorders in their

early stages by comparing the connectivity patterns between different brain regions across

subjects. However, this depends, to a great extent, on the quality of the estimated FBNs,

indicating that FBN estimation is a key step for the subsequent task of disorder identification.

In the past decades, researchers have developed many methods to estimate FBNs, includ-

ing Pearson’s correlation and (regularized) partial correlation, etc. Despite their widespread

applications in current studies, most of the existing methods estimate FBNs only based on

the dependency between the measured blood oxygen level dependent (BOLD) signals,

which ignores spatial relationship of signals associated with different brain regions. Due to

the space and material parsimony principle of our brain, we believe that the spatial distance

between brain regions has an important influence on FBN topology. Therefore, in this paper,

we assume that spatially neighboring brain regions tend to have stronger connections and/

or share similar connections with others; based on this assumption, we propose two novel

methods to estimate FBNs by incorporating the information of brain region distance into the

estimation model. To validate the effectiveness of the proposed methods, we use the esti-

mated FBNs to identify subjects with mild cognitive impairment (MCI) from normal controls

(NCs). Experimental results show that the proposed methods are better than the baseline

methods in the sense of MCI identification accuracy.

Introduction

Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disease with the

main characteristics of memory loss and cognitive decline. Currently, more than 35 million

people suffer from AD all over the world [1], not only causing agony of losing memory for

patients, but also bringing heavy financial burdens to the patient family and society. Unfortu-

nately, researchers have not yet found an effective way of treating AD completely. Intervention
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is currently believed to play an important role in preventing or delaying AD at the stage of

mild cognitive impairment (MCI).

To predict MCI (or AD as early as possible), researchers have explored many approaches

from multiple aspects, including biochemistry [2], genetic [3], and brain imaging [4]. Espe-

cially, in recent years, functional magnetic resonance imaging (fMRI), which achieves blood

oxygen level dependent (BOLD) signals, provides a noninvasive way of identifying subjects

with MCI from normal controls (NCs). In practice, however, fMRI signals are arbitrarily

scaled and have no unit [5], which causes the difficulty of comparing fMRI time series directly

between different subjects. In contrast, fMRI-based functional brain network (FBN) has

become a potentially effective tool to find informative patterns in fMRI data, and has been

used to investigate MCI identification. In fact, with the help of FBN analysis, researchers

recently have made a considerable progress in probing the mechanism of neurological diseases

[6].

Normally, FBN is estimated by calculating the statistical dependency between the measured

BOLD signals associated with different brain regions of interest (ROIs). The most classic

method is Pearson’s correlation (PC), which is unfortunately sensitive to both direct and indi-

rect relationship between ROIs and thus often results in false functional connections [5]. In

contrast, partial correlation [7], as an alternative to PC, is only sensitive to direct relationship

by regressing out the confounding effect from other ROIs. In fact, regardless of using which

correlation-based method (without regularizers or postprocessing), the estimated FBN tends

to be dense, when simply interpreting pairwise correlations between ROIs as weights of brain

network connections. Therefore, a threshold or L1-regularizer is generally employed in corre-

lation-based models for estimating sparse FBNs. The representative methods include regular-

ized PC [8], sparse inverse covariance estimation [9], and sparse representation (SR) [10]. In

addition, researchers have also developed many complex higher-order FBN estimation meth-

ods, as summarized in recent review papers [11, 12] for most of these methods.

Despite their continuous emergence, the current methods, to our best knowledge, only

employ the data in fMRI signals to estimate FBNs, which ignores spatial relationship between

these signals. In fact, due to the parsimony principle of our brain for saving the space and

material, the strength of connection between two brain ROIs will decrease as their distance

increases [13]. Here, we simply consider the friendship network as an analogy to FBN for

explaining the meaning of spatial “constraints”. In particular, each person in the friendship

network is a node (in analogy with ROI in FBN), while the social relations between two per-

sons are defined as the edge (in analogy with the functional connection in FBN). If two persons

are close in space, for example, studying in the same class or working in the same group, they

1) are likely to have a closer relationship, and/or 2) tend to share a more similar circle of

friends. Therefore, we have reasons to assume that those spatially close ROIs may have a stron-

ger functional connection, and/or share a more similar connection topology with other ROIs.

Based on such an assumption, in this paper, we incorporate spatial distance information into

the traditional model in two different ways, and in turn develop two novel FBN estimation

methods. In order to verify the effectiveness of the proposed methods, we apply the estimated

FBNs to identify subjects with MCI from NCs. The results show that our methods can achieve

higher classification accuracy than the baseline methods.

The rest of this paper is organized as follows. In Section of Related Works, we review two

representative FBN estimation methods. In Section of Materials and Methods, we introduce

the source of the data and our proposed methods including our motivation, models and algo-

rithms. In Section of Experiments and Results, we report the experimental setting and results.

In Section of Discussion, we discuss our findings, and the strength and limitation of the pro-

posed method. In the last section, we conclude the whole paper.
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Related work

As described earlier, researchers have developed many methods to estimate FBNs, including

PC [14], partial correlation [7], regularized partial correlation [10], and some complex higher-

order variants [12]. In this paper, we only focus on correlation-based methods, since they are

empirically verified to be more sensitive than complex higher-order methods according to a

recent comparative study [11].

Pearson’s correlation

PC is the simplest correlation-based method to estimate FBNs. Suppose that the brain has

been parcellated into P ROIs according to a certain atlas. Then, the functional connection wij
between the ith and jth ROIs can be defined via PC can be computed as follows:

wij ¼
ðxi � �xiÞ

T
ðxj � �xjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � �xiÞ
T
ðxi � �xiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � �xjÞ
T
ðxj � �xjÞ

q ð1Þ

wherewhere xi 2 RN is the �xi is the mean vector of the signal xi. Without loss of generality, we

redefine xi ¼
xi � �xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � �xiÞ
T ðxi � �xiÞ

p . Then, the PC-based functional connectivity can be simplified as

wij ¼ xiTxj that exactly corresponds to the optimal solution of the following problem:

minwij
XP

i;j¼1
kxi � wijxjk

2

2
ð2Þ

where P is the number of ROIs.

Sparse representation

As an alternative to PC, partial correlation is another commonly used FBN estimation method.

Different from PC, partial correlation is only sensitive to indirect dependency between ROIs

by regressing out the confounding effect from other ROIs. However, partial correlation needs

to calculate the inverse of the sample covariance matrix explicitly or implicitly, causing an ill-

posed problem. In order to obtain a stable estimation of FBN, an L1-regularizer is generally

introduced into the partial correlation model, which results in many popular FBN estimation

methods such as SR [15] given as follows:

minwijð
1

2

XP

i¼1
kxi �

X

j6¼i
wijxjk

2

2
þ l
X

j6¼i
jwijjÞ ð3Þ

Equivalently, Eq (3) can be simplified into the following matrix form:

minWð
1

2
kX � XWk2

F þ lkWk1
Þ ð4Þ

where X = [x1, x2, � � �, xP] 2 RN×P is the fMRI data matrix, W = (wij) 2 RP×P is the adjacency

matrix of the estimated FBN, λ is a regularized parameter for controlling the balance of two

terms in the objective function, k�kF and k�k1 denote the F-norm and L1-norm of a matrix,

respectively.

Materials and methods

Data acquisition and preprocessing

In this paper, we use the dataset that were collected in Geneva University Hospital. It shares

the same data source as previous works [16–18]. The raw dataset includes 60 subjects with
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MCI and 350 NCs. However, in order to avoid the class imbalance problem, the same number

of NCs as the subjects with MCI was randomly selected from the dataset. After data prepro-

cessing, 45 MCIs and 46NCs were left in our experiment, and the demographic information of

these subjects is shown in Table 1. All the preprocessed data can be downloaded from https://

github.com/X-Yanfang/xyf-DATA. The original fMRI signals of the subjects were obtained by

3.0T Philips MR scanner, and the imaging parameters are set as follows: the obtained matrix

size is 74 × 74 with 45 slices, voxel size is 2.97 × 2.97 × 3 mm3, TE is 30ms, and TR is 3000ms

with 180 repetition. The 3-dimensional coordinates of voxels are extracted from the automated

anatomical labeling (AAL) template [19]. All procedures performed in this study were in

accordance with the ethical standards of the institutional and/or national research committee

and with the 1964 Helsinki declaration and its later amendments or comparable ethical stan-

dards, and this study is supported by the ethics committee of Geneva University Hospital [16].

Noises caused by, for example, the scanner and head motion, have large influence on the

FBN estimation and analysis. In order to reduce the influence, a preprocessing pipeline is used

in this paper to improve fMRI data quality prior to FBN estimation. In particular, for each sub-

ject the first ten volumes in the fMRI time course are removed for signal stabilization. Then,

the remaining volumes were processed via Statistical Parametric Mapping (http://www.fil.ion.

ucl.ac.uk/spm/) and DPABI [20] according to a popularly-used scheme. The main steps

include 1) correcting slice timing and head motion; 2) regressing out nuisance signals with

Friston 24-parameters of head motion; 3) registering the corrected images to Montreal Neuro-

logical Institute standard space; 4) spatially smoothing the signals with the full-width-half-

maximum of 4mm, and filtering the signals using a band pass frequencies between 0.01 and

0.1. After that, we parcel the brain according to AAL atlas, and extract the mean signal from

each ROI. Note that we use AAL atlas mainly due to its popularity. In the discussion section,

we will give more details of the atlas selection and its possible effect on the results. As a result,

we get a data matrix X 2 RN×P (with N = 91 as the number of ROIs, and P = 80 as the length of

time series) that is the main material for estimating FBNs. Please see (16, 18) for more details

of the data preprocessing.

Proposed methods

As discussed in the introduction section, our brain, despite its extreme complexity, is believed

to organize similar to many existing physical system/networks in which the spatially close ele-

ments tend to have a stronger relationship. In fact, recent researches have also shown that spa-

tially proximal ROIs have a higher possibility of connection than spatially distant ROIs due to

the parsimony principle of wiring cost [13].

In Fig 1, we provide a simple toy network for explaining the above viewpoint intuitively, as

well as illustrating our motivation or assumption used in the newly proposed FBN estimation

methods that will be discussed shortly. First, as shown in Fig 1, there are edges between some

spatially close nodes (e.g., nodes 3 and 6), while usually no edge between spatially distant

nodes (e.g., nodes 3 and 9). Regarding the relationship between the connection strength and

spatial distance, Kaiser and Hilgetag investigated the fiber length distribution of cortical/

Table 1.

MCI NC

Number of subjects (male/female) 25/20 14/32

Age (mean ± SD) 74.13 ± 6.68 73.5 ± 3.50

MMSE (mean ± SD) 27.71 ± 1.73 28.10 ± 1.35

https://doi.org/10.1371/journal.pone.0235039.t001
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nervous connections in the macaque and C. elegans, and found that most connections tend to

be short in space [21]. Similar trend has been noted in human FBNs estimated with fMRI data

[22]. In particular, several studies revealed that the strength of functional connections

decreases with the spatial distance following a power-law [22–25]. Therefore, a natural

assumption (Assumption I) is that the connection strength in an FBN is inversely proportional
to the distance of different ROIs.

Further, more complex interaction between ROIs has been characterized by a higher-order

pattern (e.g., the correlations among different edges, or correlation’s correlation) in several

recent studies [26, 27]. This inspires us to give Assumption II that the spatial distance also
affects the network connections in a higher-order way. In other words, spatially close nodes share
the similar connection topology with other nodes. For example, the spatially close nodes 3 and 6

have a similar connection pattern with other nodes, as indicated by the binary vector in Fig 1.

In contrast, the connection pattern associated with the remote node 9 is different.

Now, based on the above assumptions, we develop two novel FBN estimation methods by

incorporating the spatial distance information into the traditional SR model in both low- and

high-order ways, respectively.

Method 1: Estimating FBN based on assumption I. Based on Assumption I, we propose

to estimate FBN by the following optimization problem:

minwijð
1

2

XP

i¼1
kxi �

X

j6¼i
wijxjk

2

2
þ l
X

j6¼i
cijjwijjÞ ð5Þ

In Eq (5), we use the same data-fitting term as SR for capturing the partial correlation struc-

ture. The only difference is that a weight cij is introduced into the regularized term for

strengthening/weakening the functional connectivity according to the spatial distance between

different ROIs. In our method, we define cij = dij/dmax, where dij is the spatial distance between

the ith and jth ROIs, and dmax is the maximum value of dij for i, j = 1, 2, � � �, P. More specifically,

Fig 1. An illustrative example for explaining the motivation or assumption behind the proposed methods. The

binary column vector in the figure denotes the connection pattern between the current node and other nodes. If two

nodes (e.g., 3 and 6) are spatially closed, we assume they have a direct connection with a higher probability and share a

similar connection pattern with other nodes.

https://doi.org/10.1371/journal.pone.0235039.g001
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the spatial distance dij is defined as follows,

dij ¼
1

ninj

Xni

a¼1

Xnj

b¼1
kRia
� Rjb

k
2

ð6Þ

where Ria
denotes the 3-dimensional coordinates of the ath voxels in the ith ROI, ni and nj are

the numbers of voxels in the ith and jth ROIs, respectively. Mathematically, Eq (5) can be sim-

plified into the following matrix form:

minWð
1

2
kX � XWk2

F þ lkC �Wk1Þ ð7Þ

where C = (cij) 2 RP×P is the coefficient matrix whose elements are the normalized distance

between ROIs, and � denotes Hadamard product of two matrices.

Note that the objective function of Eq (7) is convex, but non-differentiable due to the

weighted L1-regularizer. Therefore, in this paper we use the proximal method [28] to solve

Eq (7). In particular, we first calculate the gradient of the data fitting term denoted by

f Wð Þ ¼ 1

2
kX � XWk2

F , and getrWf(W) = XT(XW − X). As a result, we have the following gra-

dient descent step:

Wkþ1 ¼Wk � akrf ðWkÞ ð8Þ

where αk is the step size of the kth iteration. Then, we use the proximal operation for λkC �
Wk1, defined as follows:

proximallkC�Wk1 ¼ signðwijÞ �maxfjwijj � l� cij; 0g ð9Þ

to map the current W into a feasible region. As a result, we get a simple algorithm for solving

Eq (7), as shown in Table 2.

Method 2: Estimating FBN based on assumption II. According to our previous discus-

sion, if two ROIs are close in space, they are more likely to share a similar connection topol-

ogy/pattern. Therefore, based on Assumption II we propose the second FBN estimation model

as follows:

minwijð
1

2

XP

i¼1
kxi �

X

j6¼i
wijxjk

2

2
þ
l1

2

XP

i;j¼1
kwi � wjk

2

2
sij þ l2

X

j6¼i
jwijjÞ ð10Þ

where wi is the ith column of the network adjacency matrix W, indicating the connection pat-

tern of the ith node with other nodes. λ1 and λ2 are the control parameters used to balance the

tradeoff among the three terms in the objective function.

Compared with the traditional SR reviewed in Eq (3), a new regularizer, i.e.,
PP

i;j¼1
kwi � wjk

2

2
sij, is introduced into the proposed model for constraining the spatially

close ROIs to have more similar connection patterns. In particular, sij is inversely propor-

tional to the spatial distance, reflecting the similarity of the connection topology between

Table 2. Algorithm for solving Eq (7).

Input: X, C, λ

Iterate

1. W W − αk(XT(XW − X))

2. W  proximallkC�Wk1 ¼ signðwijÞ �maxfjwijj � l� cij; 0g

End

Output: W

https://doi.org/10.1371/journal.pone.0235039.t002
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two ROIs, and is defined as follows:

sij ¼ e� dij ð11Þ

where dij is given in Eq (6).

With a series of mathematical formulation, Eq (10) can be simplified into the following

matrix form:

minWð
1

2
kX � XWk2

F þ
l1

2
tr WðD � SÞWTð Þ þ l2kWk1Þ ð12Þ

where S = (sij) 2 RP×P is the defined similarity matrix in Eq (11), D is a diagonal matrix whose

diagonal element is the row sum of S, i.e., Djj ¼
PP

i¼1
sij; j ¼ 1; 2; � � � ; P. It can be noted that

D − S is in fact the graph Laplacian of S.

Similar to Method 1, the proximal method is used to solve Eq (12). Specifically, we consider

the first two terms in Eq (12) as a whole, and denote it as

f Wð Þ ¼ 1

2
kX � XWk2

F þ
l1

2
tr WðD � SÞWTð Þ. Then, we can easily get its derivativerWf(W) =

XT(XW − X) + λ1W(D − S). As a result, we have the following algorithm to solve Eq (12), as

shown in Table 3.

Experiments and result

Feature selection and classification based on estimated FBNs

After obtaining the “clean” fMRI data, we estimate FBNs based on different methods, and

compare their performance by a systematical experiment consisting of several main steps as

shown in Fig 2.

Step 1: Estimating FBNs based on different methods and parametric values. For PC, we esti-

mate FBNs by removing a percentage of weak connections, where the candidate percentage

Table 3. Algorithm for solving Eq (12).

Input: X, S, λ1, λ2

Iterate

1. W W − αk(XT(XW − X) + λ1W(D − S))

2. W  proximall2kWk1
¼ signðwijÞ �maxfjwijj � l2; 0g

End

Output: W

https://doi.org/10.1371/journal.pone.0235039.t003

Fig 2. The experimental pipeline.

https://doi.org/10.1371/journal.pone.0235039.g002
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is selected in the set of [100%, 90%, � � �, 10%]. For SR and Method 1, we use different values

of the regularization parameter in the range of [0.001, 0.002, � � �, 0.009, 0.01]. For Method 2,

the two regularized parameters, λ1 and λ2, are selected in the ranges of [2−10, 2−9, � � �, 2−2,

2−1] and [0.001, 0.002, � � �, 0.009, 0.01], respectively.

Step 2: Feature selection and classification. We use t-test (with p-value equal to 0.01) for select-

ing discriminative features, and use the linear support vector machines (SVM) (with default

parameter C = 1) for performing classification tasks. Due to the limitation of sample size,

we use the leave-one-out (LOO) cross validation to calculate the performance of different

methods. Specifically, for the 91 subjects in the dataset, 90 of them are used for training,

while the remaining one is used for testing. After a complete loop, we will obtain 91 classifi-

ers, and the final classification accuracy is defined as:

accuracy ¼
the number of correct classification
the number of trained classifiers

; ð13Þ

Since the parameters involved in the FBN estimation models may affect the structure of

brain network, we select the optimal parametric values by an inner LOO cross validation on

the training set, as shown in Fig 2. In light of this, we will obtain a series of classification results

in the inner LOO. Lastly, we determine the parametric values corresponding to the best classi-

fication accuracy, and use the FBNs estimated by the optimal parametric value to conduct the

outer LOO for achieving the final classification results.

Experimental results

A set of quantitative measurements, including accuracy, sensitivity and specificity, are used to

evaluate the classification performance. Their definitions are given as follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð14Þ

Sensitivity ¼
TP

TP þ FN
ð15Þ

specif icity ¼
TN

TN þ FP
ð16Þ

where TP is the number of positive subjects correctly classified in the MCI identification task,

and FN is the number of negative subjects incorrectly classified in the MCI identification task.

Accordingly, TN and FP are the numbers of their corresponding subjects, respectively. As a

result, the classification performances are reported in Table 4.

Table 4. The classification performance of Method 2.

Accuracy Sensitivity specificity

PC 60.44% 57.78% 63.04%

SR 67.03% 62.22% 71.74%

Method 1 71.43% 75.56% 67.39%

Method 2 76.92% 82.22% 71.74%

https://doi.org/10.1371/journal.pone.0235039.t004
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As shown in Table 4, we can find that the proposed methods are superior to the baseline

methods. Hence, we argue that the spatial distance between different brain regions may play a

potentially important role in estimating FBNs. Furthermore, we note that Method 2 works bet-

ter than Method 1. In our opinion, this result is possibly caused by the fact that Method 1 is

based on a too harsh assumption that two brain regions have stronger functional connection if

they are close in spatial location, while Method 2 is based on a relatively moderate assumption

that considers the distance information in a higher-order way.

For an intuitive comparison, we visualize the FBNs estimated by PC, SR and our proposed

methods, respectively, in Fig 3. It can be seen that the PC-based FBN is dense, since the pair-

wise full correlation is used to model the network adjacency matrix. As a result, it will lead to

more false connections, and in turn affect the final classification accuracy. In contrast, SR and

our methods can obtain spare FBNs by removing some weak or potentially noisy connections

from the estimated FBN due to the L1 regularizer. Note that, the sparsity plays an important

role in FBN estimation, but over-sparsity will cause the loss of useful discriminative connec-

tions. Therefore, we determine the suitable sparsity when estimating FBNs by a nested cross

validation on the training data. Particularly, compared with the traditional SR and Method 1,

the proposed Method 2 tends to achieve a cleaner FBN with clear modularity structures, as

shown in Fig 3(d). Note that the density of networks estimated with the proposed methods

may vary from subject to subject, due to the fact that the L_1-regularizer controls the network

density indirectly, and the nested LOO CV automatically assigns an optimal value for the regu-

larized parameter.

Fig 3. FBNs estimated by 4 different methods.

https://doi.org/10.1371/journal.pone.0235039.g003
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Sensitivity to parameters

Parameters generally have an important influence on the FBN structure and the subsequent

classification accuracy. In order to investigate the sensitivity of different methods to the

involved parameters, we compute the classification accuracy under different parametric com-

binations, and report the results in Fig 4. Since there are two parameters in Method 2, we show

the classification accuracy in a 2-dimensional bar graph. It can be observed from Fig 4 that the

classification accuracy fluctuates heavily with the change of the parametric values, indicating

that most of the FBN estimation methods are sensitive to the free parameters.

As shown in Fig 4, the classification accuracies fluctuate with the change of the parametric

values. In particular, for PC-based FBNs, the optimal parametric values (i.e., network density)

is 70%, and we note that an over-sparsity instead results in a drop of classification accuracy.

For SR and Method 1, the L1-regularizer is introduced into the FBN estimation model for

removing the weak connections and controlling the density of the estimated FBNs. From

Fig 4(b) and 4(c), we observe that the optimal values of parameter λ are 0.009 and 0.01 for SR

and Method 1, respectively. Note that two regularized parameters are involved in Method 2.

One (λ2) is used for controlling the density of the FBNs, while the other (λ1) is used for model-

ling the similarity of two ROIs. As shown in Fig 4(d), λ1 = 2−5 and λ2 = 0.003 is the optimal

combination for the two parameters. Therefore, for our proposed methods, we suggest setting

the parametric value for L1-regularizer within the range of [10−3, 10−2], while the parametric

value for high-order regularizer (in Method 2) within the range of [2−5, 2−3].

Influence of parameter cij on results

Parameter cij, as the function of the dij, is used for strengthening/weakening the functional

connectivity. We expect that the larger distance suppresses the connection, while the closer

distance promotes the connection. In light of this, there are many definitions for cij. To investi-

gate their effects, we compare the classification results by defining different cij, and report the

results in Table 5. As shown in Table 5, the classification results are slightly affected by differ-

ent definitions of cij.

Discriminative features

In addition to the classification accuracy itself, a more informative aspect is which features/

connections in FBN contribute to the final accuracy. In this paper, we find the discriminative

Fig 4. Classification accuracy by PC, SR and the proposed methods based on different parametric values. The

horizontal axis represents network density (a) or regularization parameter (b-d), and the vertical axis represents the

classification accuracy.

https://doi.org/10.1371/journal.pone.0235039.g004
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connections in two different ways. For the first way, we record the top features selected by t-

test with the default p-value of 0.01 in each loop of the cross validation, and report the com-

mon features in Fig 5(a). For the second way, we select discriminative features according to

the mean of the absolute weights derived from SVM classifier in all loops of cross validation. It

is generally believed that the larger the absolute weight of the corresponding feature is, the

more discriminative this feature could be. Accordingly, the result is shown in Fig 5(b). Finally,

we consider the features selected simultaneously by the two ways contributing the most to the

MCI identification. Specially, the brain regions involved in the selected features by both ways

include precuneus, amygdala, para-hippocampal. This finding is consistent with several previ-

ous studies on MCI [29, 30].

FBN estimation with simulated data

Besides experiments on the real data set, we also estimate FBNs based on a set of simulated

BOLD signals for evaluating the generalizability of the proposed methods and analyzing their

ability to detect the network structures. First, we extract a subnetwork with 10 nodes from Fig

1 as the ground truth. As shown in Fig 6(a)–6(b), the nodes in the given network can be parcel-

lated into two groups, indicating that the ground truth of FBN has a clear modularity structure.

Then, based on the ground-truth network, we generate simulated BOLD signals with 1500

time points using MULAN toolbox [31]. Note that all the parametric values used in MULAN

generator are provided by default in the supplementary material of [31]. In Fig 6(c), we show

the 10 simulated BOLD signal series associated with 10 nodes. Finally, we estimate FBNs based

on the simulated BOLD signals using different methods, and visualize the estimated results in

Fig 6(d)–6(g).

From Fig 6, we have the following observations: 1) PC can only detect one of the network

modules, and lead to some false connections. 2) SR can remove the weak (potentially false)

connections, which makes the adjacency matrix look cleaner. However, it cannot recover the

original network structure as PC. 3) The proposed Method 1 can roughly detect the network

structure, but, comparing to the ground truth, there are some false connections between (and

within) the two modules. 4) Different from the other three methods, our Method 2 can not
only detect the original network structure, but also include the fewest false connections. Fur-

ther, we also quantify the similarity between the estimated brain networks and ground truth

by Pearson’s correlation coefficient as shown in Table 6. The results show that Method 2

achieves the highest similarity to the ground truth. This is consistent with the above observa-

tions in Fig 6(d)–6(g).

Discussion

In this work, we propose two SR-based methods by combining the spatial information into the

FBN estimation model in both low-order (Method 1) and high-order (Method 2) ways. Espe-

cially for Method 2, the experimental results show that its performance is better than other

Table 5. The classification results of Method 1 under different value of cij.

Accuracy Sensitivity specificity

cij ¼ dij=dmax
71.43% 75.56% 67.39%

cij ¼
d2
ij

.

dmax

71.43% 73.33% 69.57%

cij ¼
d3
ij

.

dmax

70.33% 71.11% 69.57%

https://doi.org/10.1371/journal.pone.0235039.t005
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Fig 5. The selected features/connections based on t-test (a) and the weighs of SVM classifier (b). The color is set

randomly for better visualization, and the width of the arc represents the discriminability of the corresponding

connection.

https://doi.org/10.1371/journal.pone.0235039.g005
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methods, including PC, SR and Method 1. This may be due to the fact that we do not only take

the distance between different ROIs into account, but also attempt to model higher correlation

(e.g., the correlation among different edges [30] or correlations’ correlation [24]) in the model.

In addition, we note that there are more free parameters (λ1 & λ2) in Method 2 than other

methods, which provides more flexibility to the model. However, the fact of more free parame-

ters is not necessarily the reason for improving the performance that largely depends on

whether the optimal parameter can be found in the training dataset. In our experiment, the

optimal parametric value is selected by an inner CV on the training data, and Method 2

(under the selected optimal parametric value) is better than other methods. Although empiri-

cal results show the effectiveness of our proposed methods, there are many aspects that need to

be further explored in the future. Therefore, in what follows, we give a brief discussion on sev-

eral issues that the readers might be interested in.

For defining ROIs, researchers have developed many schemes, which can be roughly sepa-

rated into atlas-based and data-driven methods. Atlas-based methods, such as AAL [19], ana-

tomical Harvard-Oxford (HO) [32], Automatic Non-linear Imaging Matching and

Anatomical Labeling (ANIMAL) [33], and Bootstrap Analysis of Stable Clusters (BASC) atlas

[34], expect that the voxels within the same ROI tend to share the similar structure or function.

In practice, however, this kind of methods generally suffer from low consistency [33, 35], par-

tially due to individual difference, boundary vagueness and data unreliability. Additionally, the

final BOLD signal is extracted by averaging on the voxels within a ROI, which results in infor-

mation loss, and in turn makes the estimated FBNs include some unreliable connections [36].

As an alternative to atlas-based methods, data-driven methods directly work on the used

dataset, and thus can relieve the low consistency issue to some extent. The popular methods

for learning ROIs from data include clustering methods [37] and group independent compo-

nent analysis methods (GICA) [38]. The clustering methods separate voxels into functionally

homogeneous parcels, and define each parcel as a ROI. In contrast, GICA methods decompose

Fig 6. (a-b) The given network as ground truth; (c) The simulated BOLD signals generated by MULAN

toolbox (https://github.com/HuifangWang/MULAN); (d)-(g) The estimated FBNs by running four different methods

based on the simulated BOLD signals in (c).

https://doi.org/10.1371/journal.pone.0235039.g006

Table 6. The similarity between ground truth network and the generated FBNs.

PC SR Method 1 Method 2

Ground truth 43.99% 50.13% 51.02% 70.04%

https://doi.org/10.1371/journal.pone.0235039.t006
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the data into some components, each of which corresponds to a spatial map as the ROI. How-

ever, for data-driven methods, selecting the number of clusters or components is an exceed-

ingly challenging problem. This is one of reasons why we simply use AAL atlas for parceling

the brain in this paper. Another reason we use AAL is its popularity. For example, in a recent

study [39], Brown et al. reviewed 77 works, in which AAL is the most commonly used method

to define ROIs. In light of this, it is convenient for researchers to compare their findings with

other studies. In summary, there is no consensus as to which ROI definition scheme is the best

[5]. A recent study [40] systematically evaluated the influences of different aspects (including

atlas selection, FBN estimation and classification design) on the FBN-based classification accu-

racy, and shown that, relative to the two others, the selection of atlas brings smaller influence

on the final results.

For the performance improvement of the proposed methods in terms of classification accu-

racy, more information (e.g., spatial distance between ROIs) is included in this paper for esti-

mating FBNs. For the spatial distance information, it can be uniquely (at least easily)

determined in the voxel scale. However, in the ROI level, determining the spatial distance is

not a trivial problem, because it heavily depends on both the calculation methods and the defi-

nition of ROIs. In [41], Alexander-Bloch et al. calculate spatial information using Euclidean

distance between different ROIs centroids. In this paper, we define the distance as the average

of the distances between all the voxel pairs in different ROIs. However, it is difficult for these

methods to accurately assign physical distance between the ROIs with different sizes. For

example, the distance between the two physically adjacent ROIs with big sizes may be greater

than the distance between two nonadjacent ROIs with small sizes. Therefore, application of

the distance between ROIs should be cautious, and further study is needed for designing a

“good” metric to measuring distance between the ROIs with different shapes and sizes.

Conclusion

PC and SR are the two baseline methods to estimate FBNs. PC, as the simplest method, is sen-

sitive to indirect relationship between BOLD signals. In contrast, SR not only regresses out the

indirect confounding effect before calculating the correlation between ROIs, but also incorpo-

rates the sparse prior into the FBN estimation model. However, SR estimates FBN only based

on BOLD signals, yet ignoring their spatial location. Therefore, in this paper we propose two

novel methods to estimate FBN by incorporating spatial distance information into the estima-

tion model in two different ways. In order to verify the effectiveness of proposed methods, we

conduct experiments based on the estimated FBNs. The results show that the proposed meth-

ods obtain a superior performance in the task of MCI classification. Therefore, we argue that

the distance between different brain regions may play an important role in improving the qual-

ity of the estimated FBNs. In the future, we plan to conduct more experiments to evaluate the

influence of the spatial distance on other FBN estimation methods.
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