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Epidemiology, geographical distribution, and economic
consequences of swine zoonoses: a narrative review

Salah Uddin Khan1,2, Kalina R Atanasova1,2, Whitney S Krueger1,2, Alejandro Ramirez3 and Gregory C Gray1,2

We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine

zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second,

we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012.

Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple

factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and

environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human

sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens

to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of

swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation

requires an interdisciplinary collaborative ‘‘One Health’’ approach from veterinarians, environmental and public health professionals,

and the swine industry.

Emerging Microbes and Infections (2013) 2, e92; doi:10.1038/emi.2013.87; published online 24 December 2013

Keywords: swine; zoonoses; epidemiology; transmission; review

INTRODUCTION

The history of pig raising goes back as far as ,9000 BC, likely with the

domestication of wild boars in Eurasia.1 Since then, pork has served as

a major source of human nutrition. In the last 50 years, the consump-

tion of pork and the demands of products from pigs have increased,

causing the global pig population to grow from 406 million to 966

million heads.2 Pigs are anatomically and physiologically similar to

humans in terms of dentition, ocular, dermal, cardiovascular, renal,

and digestive systems.3 While these have led to great advances in

human and pig health, including substituting human organs with

swine organs, these shared biological characteristics sometimes have

the potential to permit pathogens to cross the species barrier.4,5

Although, pigs have been long known to serve as reservoirs for zoo-

notic pathogens, our understanding regarding zoonotic disease eco-

logy in pigs is rather superficial.6,7 As such, although many swine

pathogens are well-controlled, some zoonotic pathogens have become

well-established in swine populations, imparting health and economic

burdens. Some of these viruses, bacteria and parasites are emerging or

re-emerging in nature, while others appear sporadically or transmit to

man only under certain circumstances.8 Reducing these diseases in

animals and humans often requires adopting primary or secondary

prevention techniques, or a combination of both.9 However, doing so

requires extensive understanding of husbandry practices, ecological

preconditions, human risk behaviors, and the modes of transmission

for swine-associated zoonoses. To facilitate a better understanding of

their prevention and control, this review discusses the epidemiology,

geographical distribution, and economic consequences of selected

swine zoonoses from a global perspective.

LITERATURE REVIEW AND DATA SUMMARIZATION

We performed literature searches in two stages: first, to identify the

zoonotic pathogens associated with swine and second, to identify the

literature describing specific zoonotic pathogens. For the first stage, we

performed a literature review in PubMed and in Google Scholar

(English only) for articles published from January 1980 to October

2012, and searched by using the following terms: (swine or pig or boar

or Sus scrofa) and (zoonoses or zoonosis or zoonotic). Additional

relevant articles and books published between 1970 and 2012 were

identified by reviewing the references from the collection of reports

and through examining the authors’ collections of publications. We

included other swine-associated zoonotic diseases by reviewing lists

compiled by the World Organization for Animal Health (www.oie.int)

and the Merck Veterinary Manual (http://www.merckmanuals.com).

Once the list of zoonoses was identified, we performed disease specific

literature reviews to gather epidemiology and population level disease

burden data from PubMed, Google Scholar, and in authors’ personal

files using the following terms: (disease name or pathogen name) and

(swine or pig or boar or Sus scrofa).

We classified the swine-associated zoonoses in three major categor-

ies: emerging, endemic, and sporadic. An emerging zoonosis was

defined when ‘‘the disease did not occur in humans before, or had

occurred previously but affected only a small number of people in an
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isolated place, or had occurred in a population but was not recognized

as a distinct disease’’.10 Diseases were defined as endemic where they

appeared to cluster geographically but not in time and as sporadic when

they were clustered only in time.11 Zoonoses were sub-categorized into

two groups: global occurrence and occurrence limited to a region(s) or

geography. Additionally, we briefly reviewed the overall economic con-

sequence data of swine zoonoses and swine-associated pathogens with

zoonotic potential.

To demonstrate global distribution of the swine-associated zoo-

noses, we performed ‘‘geographically weighted regression’’, an explor-

atory spatial analysis to develop a risk map for the emerging, endemic,

and sporadic swine associated zoonoses after adjusting for population

and swine density (2011) for each of the countries.12 We obtained

human population density data from World Bank reports (www.

worldbank.org), and pig density data from World Organization for

Animal Health (www.oie.int).

We did not obtain formal ethical approval because this study

reviewed data from already published literatures. For this body of

research, the role of the funding agencies was to provide monetary

support only. They did not have any role in the project’s conception,

design, analysis, or manuscript preparation. A detailed list of the

primary data and their references are included as supplementary mate-

rials to the manuscript.

EMERGING SWINE ZOONOSES

Emerging swine-associated zoonoses occurring worldwide

A number of emerging zoonotic swine pathogens are thought to have a

worldwide distribution: hepatitis E virus (HEV), swine influenza

viruses (SIV), livestock-associated methicillin-resistant Staphylo-

coccus aureus (LA-MRSA), Streptococcus suis, Streptococcus porcinus,

Clostridium difficile, Burkholderia pseudomallei, Cysticercus cellulosae

(pork tapeworm), and Giardia intestinalis (Figure 1 and Supplemen-

tary Table S1).

Hepatitis E virus. First isolated in 1997 in the United States (US),

swine HEV infections have since been identified in numerous coun-

tries.13 While data on human clinical infections with swine HEV is

limited, experimental interspecies transmission of human and swine

HEVs have been documented only between pigs and primates,14–16

demonstrating their zoonotic potential. In addition, seroepidemiolo-

gical studies have presented evidence of swine HEV infections among

swine veterinarians,17,18 indicating swine HEV may be causing asymp-

tomatic infections in humans.

Influenza viruses. Since at least the 1918 influenza pandemic, public

health professionals have been aware of cross-species influenza-like

infections between man and pigs, but the connection was not evident

until the 1920s when Dorset et. al. (1922) reported ‘‘hog flu’’, later the

experts began recalling similar illness in Iowa pigs five to six years

before 1918 pandemic.7,19,20 Pigs’ susceptibility to both human and

avian influenza viruses permit them to be infected with both mam-

malian and avian origin viruses. This may result in reassortment of

genetic materials between multiple subtype and species adapted influ-

enza viruses, leading to new influenza A viruses.21 Beginning in 1958,

serological studies started to report evidence of swine-origin influenza

A virus in human and subsequently sporadic cases were intermittently

detected.22,23 A 2007 review of SIV infections in man documented 50

human infections, with a 14% case-fatality rate.19 At that time such

infections were generally perceived as rare and infrequent risk of

human to human transmission. Since then, novel influenza virus

detections have increased, and the reported numbers of swine-like

influenza virus infections in man have tremendously escalated.

Initial observations of high case fatality rates associated with human

infection were likely biased in that novel influenza virus discovery was

chiefly performed among those with serious illnesses. Later as molecu-

lar screening of influenza A strains became more widely available and

surveillance increased more human SIV infections have been detected

Risk of emerging swine-associated zoonoses
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Figure 1 Global distribution of swine-associated emerging zoonoses, 1970 to 2012. These estimates are adjusted for 2011 human and pig population density of each

of the countries.
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among persons with mild influenza disease. Recently, increased SIV

detections among humans exposed to pigs at swine shows increased

our awareness of SIV zoonoses, and it is clear that the influenza A

viruses move both from pigs to man and from man to pigs.19,24–26 In

particular, the 2009 swine-like influenza A [A(H1N1)pdm09] pan-

demic heightened our awareness. First detected in North America

(early 2009), these novel H1N1 swine-like viruses spread between

humans within months to 214 countries27 and by 2010, had caused

an estimated 61 000 000 human infections; 274 000 hospitalizations;

and 12 470 deaths.28 Within five months of the first human infections,

A(H1N1)pdm09 virus was also identified in pigs,29,30 and now the

virus is thought to be globally enzootic in many pig herds.31,32 Novel

reassortant progeny from the A(H1N1)pdm09 virus are now a major

concern. For example, as of November 2013, at least 309 humans in 10

US states have now been found to be infected with influenza A H3N2

variant virus; a virus that continues to spread in the US.33

Methicillin-resistant staphylococcus aureus. Discovered in the early

2000’s, evidence suggests that LA-MRSA evolved as methicillin-susceptible

Staphylococcus aureus (MSSA) in humans, and through genetic mutation

moved into livestock, and later acquired methicillin resistance.34,35 Now

identified in pigs in Asia, Europe and North America, LA-MRSA is often

found colonizing noses and/or throats of pigs and may contribute to

infection in persons occupationally exposed to pigs, as well as their house-

hold contacts.36–40 In addition, an environmental survey illustrated air-

borne transmission and deposition of LA-MRSA for up to 300 meters

around swine barns with LA-MRSA infected pigs,41 further highlighting

the public health risks for LA-MRSA exposure.

Emerging swine-associated zoonoses occurring in limited

geographical locations

Emerging and re-emerging zoonotic swine pathogens with limited

geographical distributions include Ebola Reston virus, Nipah virus,

and Menangle viruses, which have the capability to cause severe dis-

eases in humans and may have pandemic potential (Figure 2 and

Supplementary Table S1).42–45

Ebola virus. Since 1976, repeated outbreaks of Ebola virus-Zaire have

been reported in Africa causing 47%–100% mortality in man.45,46 Pigs

have shown the potential to transmit Ebola virus-Zaire to non-human

primates.47 Ebola-Reston viruses were first reported in an imported

non-human primate in the US and later were detected in pigs in the

Philippines. There have now been at least three reports documenting

human infections with Ebola-Reston virus although none have been

associated with pigs.45,48,49 Experimentally, pigs are susceptible to

both Ebola-Zaire and Ebola-Reston viruses,50,51 so there are concerns

that pigs could play a role in future human outbreaks.

Nipah virus. There are several emerging and re-emerging zoonotic

paramyxoviruses which have involved pigs in their transmission

cycle. During 1998–1999, Nipah virus was identified in Malaysia

and Singapore causing widespread zoonosis. Spillover from

Pteropus bats triggered an outbreak in the pig population in

Malaysia in 1998. A high proportion of pigs experience morbidity

to Nipah virus infection, however most cases recover after several

days of clinical illness. This illness, however, decreases the economic

value of the commercially farmed pigs. During the outbreak the

virus rapidly spread among swine farms, when the farmers

attempted to take sick pigs to market to minimize economic loss.

Trading sick pigs accelerated Nipah virus spread across the country

(north-to-south and to Singapore).52 Overall human mortality due

to Nipah viral infection was ,40%. Having immediate contact with

an infected pig was identified as a risk factor for Nipah virus infec-

tion,53,54 however, a similar virus caused more than 70% case fat-

ality among humans in Bangladesh where pig’s role in the ecology

of the virus remains obscure.44,55,56

Risk of emerging swine-associated zoonoses occurring in limited geographical locations
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Figure 2 Global distribution of emerging swine-associated zoonoses occurring in limited geographical locations, 1970 to 2012. These estimates are adjusted for 2011

human and pig population density of each of the countries.
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Menangle virus. Another swine pathogen, the Menangle virus, known

to cause reproductive loss and death in pigs, has recently infected at

least two humans in Australia who were exposed to clinically ill

pigs.57,58 Although pig morbidity was as high as 90% in farms, the

virus appears to have limited pig-to-human transmission capacity and

seldom causes clinical illness in man.58 About 33% of the fruit bats

sampled from outbreak areas had neutralizing antibodies against the

virus, suggesting that they potentially are a natural reservoir for the

virus.58

ENDEMIC (NON-EMERGING SWINE ZOONOSES)

Endemic swine-associated zoonoses occurring worldwide

There exist numerous swine zoonoses that are distributed across mul-

tiple continents or at least several countries in a region (Figure 1).

Human morbidity for these diseases is moderate to high with a low

case fatality rate. This review for endemic swine zoonotic diseases

highlights: brucellosis, Campylobacter enteritis, Escherichia coli infec-

tions, leptospiroses, listeriosis, pasteurellosis, salmonelloses, yersiniases,

tuberculosis, erysipelas, West Nile virus infections, and echinococcosis

(Supplementary Table S1).

Brucellosis. Each year, Brucella spp. cause more than 500 000 new

cases of human brucellosis. Fortunately, the mortality remains

low.59–61 B. suis, the organism responsible for swine brucellosis occurs

in many countries throughout the world. Abundance of wild and

domestic pigs is a major driver for B. suis occurrence.8,62 In South

America, this organism has also adapted to cattle, resulting in more

frequent disease outbreaks in those communities.8 A retrospective

cohort study in Argentina conducted between 2008–2011 studied

human brucellosis cases from clinical samples and isolated B. suis

biovar 1 in 53%, B. abortus in 27% cases and the remaining isolates

were not typed.63

Campylobacter. Campylobacter is one of the most common human

pathogens occurring globally, causing frequent gastrointestinal illness

in humans.64 It is estimated that approximately two million human

cases of Campylobacter-related food-borne illness occurred in US in

1997; however, the number of cases has declined in recent years due to

advances in food processing and chilling storage.65 Foodborne out-

break investigation report from 1998–2011 suggests the majority of

the human illnesses are attributed to C. jejuni, followed by C. coli. 66 A

nationwide survey in Denmark demonstrated that thermophilic

Campylobacter strains (C. jejuni, C. coli and C. lari) were present in

46% pigs sampled, but the serotypes commonly infecting human also

came from broiler poultry and cattle.67 However, C. coli is more com-

monly identified from pigs than C. jejuni.

Salmonellosis. Salmonella spp. are also a frequent cause of gastro-

enteritis in human.8 During 2009, the US Center for Disease Control

and Prevention (CDC) reported approximately 15 cases per 100 000

people in the US.68 One US study identified approximately 3% of the

pork products sold in supermarkets were contaminated with

Salmonella.69 A Dutch study estimated that 450 new Salmonella cases

(per 100 000 persons) occur each year and 5%–25% of all the cases

were associated with pork consumption.70 However, it is estimated

that only 5% of the Salmonella associated foodborne illnesses were

attributed to pork.71

Parasitic zoonoses. Of the parasitic zoonoses, cystic echinococcosis

(Echinococcus spp.) has multiple endemic foci with estimated annual

human incidence rates of: 13–75 in European countries, 143 in

South and Central America, 197 in East Asia, and 220 in Africa (per

100 000 population).72 The G1, G7, and Lion strain of E. granulosus

and E. multilocularis (European, and Hokkaido isolates) cause swine-

associated echinococcal zoonoses.72 Recent studies conducted in

China and European countries suggested high variance in the echino-

coccosis prevalence [0.15%–66%] in pigs.73,74 In Lithuania echino-

coccosis was more common in family owned pig farms than the

industrial pig farms (13.2% versus 4.1%).73 Other swine-associated

parasitic zoonoses include cryptosporidiasis, trichinellosis, and toxo-

plasmosis which have a global distribution (Supplementary Table S1).

Endemic swine-associated zoonoses occurring in limited

geographical locations

There are several swine-associated zoonoses endemic in specific

regions of the world. This geographical isolation is due to the abund-

ance of reservoirs and vectors, ecological factors, husbandry practices,

and specific human behaviors facilitating zoonotic transmission of the

diseases (Supplementary Table S1).

Yersiniosis. Food-borne bacterial enteritis caused by Yersinia enterocoli-

tica are almost always associated with pigs or under-cooked pork pro-

ducts.75,76 This psychrophilic pathogen is mostly found in Canada, the

western coast of South America, Europe, Australia, New Zealand, and

South Africa.77–79 Yersinia pseudotuberculosis, has been frequently iden-

tified in Europe and parts of Asia, and occurs sporadically in the US.

Pseudotuberculosis is commonly identified in rodents, and they are the

probable source of infection among pigs. Humans often become infected

via contaminated food and water.7

Tularemia. The zoonotic bacteria Francisella tularensis causes infec-

tions most prevalent in the US and Russia, and are sporadically

reported in other Northern Hemisphere, including Scandinavia, the

Czech Republics, Austria, Germany and Japan.8 However, recent

reports suggest the pathogen is enzootic in Turkey, Yugoslavia,

Spain, Kosovo, and Switzerland.80 More than 125 species of domestic

and wild animals are reservoirs for this pathogen. Clinical and sero-

logical studies have identified F. tularensis infection both in wild and

domestic pigs.81,82 Transmission of this pathogen occurs via all major

routes and is remarkably efficient in transmitting itself from one host

to another via all major transmission routes (Table 1).8

Japanese encephalitis. Japanese encephalitis virus is endemic in the

southern and eastern part of Asia, and the Pacific.83 About one half of

the global population are in the endemic region and about 30 000–50 000

new human cases occur annually in Asia, with 10 000 deaths, and about

15 000 cases develop permanent neurological and psychiatric seque-

lae.84,85 Factors, such as presence of abundant natural reservoirs (e.g. pigs

and wading ardeid water birds) and vectors mosquitoes, that prefer to

breed in the irrigated rice paddy fields in close proximity to humans, have

contributed to the maintenance of the pathogen’s transmission cycle.84

Vesicular stomatitis. Vesicular stomatitis virus infects pigs, cattle,

horses, and human in the countries of North and South America,

Africa, and Asia.7 Humans generally remain asymptomatic during

infection, however, a small fraction of those infected may exhibit

influenza-like-illness and hemorrhagic fever.8 This virus has been

identified in multiple wild and domestic mammals, arthropod vectors

(particularly Phlebotomus), and shown to infect humans through

direct contact, transdermal, and transcutaneous routes.8,86
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Parasitic zoonoses. Commonly occurring swine-associated parasitic

diseases are predominantly seen in focal parts of Asia (Figure 3).

These include giant intestinal fluke, Asian taeniasis, gastrodiscoidiasis,

Chinese liver fluke, and schistosomiasis. These diseases are frequently

seen in Eastern Asia, Southeast Asia, Kazakhstan, and Russia’s Volga

Delta region, and in Eastern Siberia.8,87–93 Multiple factors were

related to elevated risk of human infection: the parasite is enzootic

in animal reservoirs (including pigs) and in the environment; poor

animal husbandry and particular risk behaviors like improper sanita-

tion causing animal excreta to contaminate soil, water, aquatic plants,

and other animals; ingestion of water plants, and animal products

contaminated with infective states of the parasites; consuming raw

Table 1. Mode of exposure/transmission of the selected pathogens from pigs to man.

The dark shade indicates an established or primary route of transmission. The lighter shade indicates a suspected route of transmission.

? denotes limited data, findings remain suspected.
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or undercooked food; and occupational hazards such as agricultural

workers and freshwater fishing.8,88,90,92,93 In summary, primitive pig

production practices accompanied by poor sanitation and hygiene

may lead to increased regional parasitic infection.

Common routes of transmission for endemic swine-associated

zoonoses

Globally enzootic swine-associated pathogens commonly transmit to

man via direct contact, food and water contamination, fecal-oral

transmission, and sometimes vector-borne routes (Table 1).

Corresponding swine-associated zoonotic pathogens that are confined

to specific geographic regions are more often influenced by factors

affecting their ecological niches, such as vector-reservoir abundance,

climatic factors, and human behaviors, particularly that of consuming

undercooked food.7,8,92

SPORADIC SWINE ZOONOSES

Sporadic swine-associated zoonoses occurring worldwide

The majority of the swine-associated zoonoses that are sporadic in nat-

ure have a worldwide distribution. Influenza B and C viruses, clostridial

infection, dermatophytosis (except Microsporum canis), sarcosporidiosis,

and balantidiasis, all fall into this category (Supplementary Table S1).

While the zoonosis due to influenza B virus is somewhat controversial,

the influenza C virus has shown to infect both humans and pigs.94–96

Nevertheless, these viruses cause low morbidity and mortality in both

species.97,98

Tetanus. Tetanus caused by Clostridium tetani occurs globally, but

most often in developing countries among rural population with poor

vaccination and public health infrastructure.99 According to World

Health Organization (WHO), there were 14 132 reported cases world-

wide in 2011 and 61 000 estimated deaths in children aged ,5 years.100

Domestic animals such as cattle and horses are highly susceptible to

clostridial infection and contaminate the environment through fecal

shedding. In the high prevalence areas like New Guinea, pigs are

reported to have contributed to the zoonotic transmission of C.

tetani.99

Ringworm. The majority of the species of zoonotic ringworm causing

fungi (Microsporum nanum, M. gypseum, Trichophyton mentagrophytes,

T. rubrum, and T. verrucosum) occur worldwide,101 although M. canis

seems limited to North and South America, Europe, and Africa.102 Pigs

are the reservoir for M. nanum, but are also susceptible to the other

species. This fungus has a broad spectrum of hosts including mammals

and rodents.101 It is highly contagious among animal populations and

often crosses the species barrier to infect humans via contaminated

fomites. Although the mortality due to this ringworm is low, the cost of

treatment puts this disease in the high economic burden category.7

Parasitic infections. Sarcosystis spp. cause zoonoses worldwide and

pigs are the intermediate host for one of the causal organisms, S.

suihominis. This is transmitted when humans consume undercooked

pork.7 The protozoa is generally absent among swine herds that are

raised under good hygienic conditions; however, a study in Germany

showed that about 30%–40% of some swine herds may carry this

zoonotic pathogen.8 Balantidium coli occurs worldwide, particularly

in regions with a temperate or subtropical climate.8 Swine are the

primary host for this ciliated protozoon. Disease prevalence in

humans is less than 1%, but may be markedly higher in endemic

regions.103 Most human infections are asymptomatic or limited to

mild diarrhea and abdominal discomfort. However, in rare instances,

the protozoa may lead to hemorrhagic lesions in the intestine, per-

foration, secondary bacterial infection, and generalized peritonitis.104

Risk of endemic swine-associated zoonoses occurring in limited geographical locations
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Figure 3 Global distribution of endemic swine-associated zoonoses occurring in limited geographical locations, 1970 to 2012. These estimates are adjusted for 2011

human and pig population density of each of the countries.
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Sporadic swine-associated zoonoses occurring in limited

geographical locations

The numbers of sporadically occurring zoonoses limited to particular

regions are few. These zoonoses are primarily influenced by the

abundance of reservoirs, and by particular human behaviors exposing

them to the pathogen. One example is Pasteurella aerogenes infection,

which is occasionally reported only from European countries.105 This

organism is infrequently identified in swine as a normal oral and

intestinal flora.106,107 In Europe, swine workers have acquired infec-

tion through bites from pigs.105

SWINE-ASSOCIATED ZOONOSES WITH LIMITED ZOONOTIC

POTENTIAL

Rotavirus. Rotavirus frequently causes diarrhea in children under

five years of age.108 It is most concerning in the less developed

countries within Asia and sub-Saharan Africa.108 Rotavirus strains

G3, G5, and G9, are predominantly found in pigs and other animal

reservoirs. Recent evidences suggest that these viruses may exchange

genetic materials with human viruses and cause increased human

morbidity.109

West Nile virus. West Nile virus commonly occurs in Africa, Asia,

Europe, and Australia, and it recently emerged and established itself

in North America.110 The virus causes clinical signs of disease in only

about 20%–30% the infected humans.111–113 Symptoms may range

from uncomplicated fever to fatal encephalitis. Although laboratory

studies suggest pigs develop enough viremia to play the role of a

reservoir, the role of domestic pigs in the West Nile virus transmission

remains obscure.7,113

Pseudorabies virus. Since 1914, there are several anecdotal reports of

pseudorabies (Aujeszky’s disease) in humans.114 Between 1983 and

1986, three suspected human cases of pseudorabies were identified

in Europe. Each of these patients had a history of having direct contact

with cats and other domestic animals. Researchers followed up the

cases and identified pseudorabies antibodies through neutralization

and immunoprecipitation assays, 5–15 months after clinical onset of

illness.115 However, later serological studies were unable to detect

pseudorabies antibodies in occupationally exposed populations.114

Pigs are the only reservoir for this virus.7

Norovirus. Typically, swine norovirus is only detected in fecal sam-

ples of apparently healthy adult pigs; however, experimental infec-

tions have resulted in mild gastroenteritis.116 Even though swine

norovirus has not been found to cause illness in humans, antibodies

against human norovirus strains have been detected in pigs.116

Because human norovirus strains are able to replicate in pigs, there

is a potential for human and swine norovirus exchanging genetic

material inside a swine host resulting in novel norovirus strains

with zoonotic potential.117

Hendra virus. Hendra virus has caused recent sporadic equine and

human outbreaks in Australia with a ,40% case fatality rate in

man.118 While Hendra virus infections have chiefly involved horses

and man, laboratory studies show that pigs are susceptible to infection,

which enables pigs to be a potential candidate to play a role in the

disease ecology.119

Henipa-like virus. Recent studies identified evidence of henipa-like

virus infections in pigs in Ghana and Bangladesh.56,120 Although evid-

ence of human infection was not yet assessed in these studies, the

report of this virus in pigs concerned public health experts as other

henipa-like viruses may infect humans. Hendra and Nipah viruses

(Henipaviruses) have caused zoonoses in Australia, Malaysia,

Singapore, India, and Bangladesh.121 Nipah viruses caused 283 human

cases and 109 deaths in Malaysia and Singapore during the 1998–1999

outbreaks.122 Laboratory studies also confirmed that pigs are capable

of being infected with Hendra viruses which naturally infect fruit bats,

horses, and have caused multiple human outbreaks in Australia.119

Xenotransplantation-associated zoonoses. Xenotransplantation, the

process of using animal tissues or organs in man, has increased during

last 100 years.5 Pig organs and tissues have become one of the most

frequent transplant source in xenotransplantation. This additional

pathway of transmission may enable certain pathogens to move from

pigs to man. Retroviruses are a particular concern because of their

history of crossing species barriers. It was hypothesized that the human

immunodeficiency virus (HIV) and human T-cell leukemia virus have

likely derived from simian immunodeficiency virus and simian T-cell

leukemia virus, respectively.123,124 Studies suggest that porcine endo-

genous retroviruses may find its way to human hosts in the same

manner.125 An in vitro study showed that human fibroblasts were

susceptible to porcine lymphotropic herpesvirus and could be activated

through xenotransplantation.125,126 Genotype 3 of HEV is most com-

monly identified in pigs in Europe and genotype 1 is common in

humans.127,128 Recent studies suggest that HEV (particularly the geno-

type 3) infections are more commonly associated with organ allotrans-

plant recipients.129,130 Emerging pathogens such as lymphocytic

choriomeningitis virus and swine torque teno viruses have shown to

infect humans through swine xenotransplantation deteriorating the

immune systems of the HIV/AIDS patients and leading to death.131,132

Considering these pathogens as zoonotic should raise public health

concerns and lead to defining pathogen-free swine stock for xenotrans-

plantation.

ECONOMIC CONSEQUENCES OF SWINE ASSOCIATED

ZOONOSES

Many of the emerging and re-emerging zoonoses causing diseases in

humans and pigs have potential to cause severe economic consequences

because of the mortality and production loss in pigs, trade sanctions on

exporting animal products from an infected country or region, public

health concerns leading to pig culling operations and reduced pork

consumption, and public health burden of the diseases.43,58,133 Often

the decisions to control a disease using drastic measures are influenced

by cultural and community context.53,134,135 During the 1998–1999

Nipah outbreaks in Malaysia and Singapore, millions of pigs were culled

to contain the outbreak that spread through the trade of sick pigs.53

This resulted in an estimated loss of USD $97 million and a drop in

local pork consumption by 80%.136 Following the news on pandemic

influenza H1N1 [A(H1N1)pdm09] outbreaks in April 2009, the ref-

erence to ‘‘swine flu’’ caused US pork prices to decline, reaching a

low of USD $0.49 per lb in August 2009, which was about one half

of the previous year’s price (Figure 4). Twenty-seven countries

imposed import restrictions for US pork products.137 Although

there were several other reasons for the price drop, pandemic influ-

enza H1N1 [A(H1N1)pdm09] likely contributed to the majority of

the loss. The National Pork Board estimates US pork producers lost

an estimated $13.64 per head from April 24 to May 2, 2009 and the
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industry accumulated some USD $7.2 million in losses daily (per-

sonal communication: National Pork Board, US 2009). An exces-

sively cautious response was observed in Egypt during the 2009

pandemic when the country culled its entire swine population over

concerns that the pandemic influenza virus in pigs would pose a

major public health concern.138 In the US, swine brucellosis out-

breaks caused considerable economic losses during the 1920–1950s.

The country mostly eradicated the disease through changes in man-

agement and regulations; however, this disease continues to cause

production losses in South America, most countries of Europe

(except Britain and Scandinavia), Africa, and Southeast Asia.7,139

Cost effectiveness analyses of the swine-associated diseases’ eradica-

tion programs may encourage a country or region to allocate suf-

ficient resources to eradicate diseases posing public health threats.

In addition to the economic losses for the swine industry, swine

zoonoses also cause human morbidity and mortality which have major

economic consequences. However, for simplicity sake, we did not

include the human economic consequences in these estimates.

DISCUSSION

In this report, we have described the epidemiology, geographical dis-

tributions, and economic consequences of major swine zoonoses. We

have summarized the mechanisms of disease transmission along with

the ecological and behavioral factors influencing the process. Our goal

was to inform medical, veterinary, epidemiology, microbiology, and

social science experts of the established and emerging threats common

for humans and swine, as well as to shed light on some pathogens that

may be potential future threats.

The majority of emerging human pathogens are zoonotic.140

Frequently changing husbandry practices and environmental factors

(e.g. large scale domestic animal production, urbanization, interaction

between wild and domestic swine populations with humans, popu-

lation increases, etc.) may predispose humans and pigs to pathogens

common to other species, or may allow for the adaptation of these

organisms to humans or swine. Being omnivorous and having the

anatomy and physiology similar to that of man, pigs are a good med-

ium for the adaptation and increase in virulence of organisms that

have so far not been identified as human pathogens.3 Moreover, with

the increase in human populations, consumption of pork and pork

products has increased markedly in the last one hundred years.2

Additionally, the scientific breakthrough that allowed xenotransplan-

tation of porcine organs, tissues, and porcine hormones in human

medicine, has opened a new pathway for future cross-species trans-

mission of swine pathogens currently not common to humans.5

Pathogens that first emerged in wild species and in a particular

geographical region and gained the ability to infect domesticated pigs

may spread to a wider territory by the trade industry of food and

livestock.52,141 Moreover, pathogens that adapt to and become estab-

lished in swine have a much higher probability of spreading to

humans, due to the intensity of swine farming worldwide and the close

contact between pigs and humans. Swine workers are constantly

exposed to bodily fluid secretions from a wide variety of swine pro-

ducts, and sometimes may become exposed to pathogens in ways that

do not occur in natural conditions (e.g. respiratory spread of fecally-

shed pathogens or aerosolization of organ fluids during slaughter

house operations). Since their emergence, many of the swine-assoc-

iated zoonoses have been infrequently considered as causes of human

illness, especially among populations of humans that are occupation-

ally and traditionally exposed to pigs or raw pig products. In several

Asian countries, some parasitic swine zoonoses (e.g. trichinellosis,

teniasis/cisticercosis) are quite common because of human food

habits, particularly eating raw and undercooked food.7,8,87

Although pigs are one of the major sources of animal protein glob-

ally, and the industry represents a large portion of the economy for

many countries, steps should be taken to minimize swine-associated

zoonoses of public health concern. A solution to this requires uniform
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understanding and consensus between the swine industry, farmers,

veterinarians, clinicians, public health professionals, and other stake-

holders. Addressing these complex issues requires integrative and cross-

disciplinary efforts to achieve optimum health for people, pigs and their

environment through the ‘‘One Health’’ approach.142 Such an interdis-

ciplinary, and inter-institutional collaborative approach provides a

united platform upon which stakeholders can come together as colla-

borators, develop a more complete understanding regarding a complex

problem, and tackle these problems with carefully designed, multiple

interventions. Such a collaborative strategy has potential to gain much

wider acceptability among swine farmers, the swine industry, as well as

among public health professionals. Embracing the principles of ‘‘One

Health’’ will improve swine zoonoses surveillance, raise stakeholders’

awareness on swine-associated zoonoses, help reduce risky behaviors

associated with swine production and pork consumption, encourage

improved personal hygiene, and demonstrate the need for cost-benefit

analyses of swine pathogen control efforts.
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